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In algebra, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no general
algebraic solution—that is, solution in radicals— to polynomial equations of degree five or higher.[1] The theorem is
named after Paolo Ruffini, who made an incomplete proof in 1799, and Niels Henrik Abel, who provided a proof in
1823. Évariste Galois independently proved the theorem in a work that was posthumously published in 1846.[2]
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Interpretation

The content of this theorem is frequently misunderstood. It does not assert that higher-degree polynomial equations
are unsolvable. In fact, the opposite is true: every non-constant polynomial equation in one unknown, with real or
complex coefficients, has at least one complex number as solution; this is the fundamental theorem of algebra.
Although the solutions cannot always be expressed exactly with radicals, they can be computed to any desired
degree of accuracy using numerical methods such as the Newton–Raphson method or Laguerre method, and in this
way they are no different from solutions to polynomial equations of the second, third, or fourth degrees.

The theorem only concerns the form that such a solution must take. The theorem says that not all solutions of
higher-degree equations can be obtained by starting with the equation's coefficients and rational constants, and
repeatedly forming sums, differences, products, quotients, and radicals (n-th roots, for some integer n) of previously
obtained numbers. This clearly excludes the possibility of having any formula that expresses the solutions of an
arbitrary equation of degree 5 or higher in terms of its coefficients, using only those operations, or even of having
different formulas for different roots or for different classes of polynomials, in such a way as to cover all cases. (In
principle one could imagine formulas using irrational numbers as constants, but even if a finite number of those
were admitted at the start, not all roots of higher-degree equations could be obtained.) However some polynomial
equations, of arbitrarily high degree, are solvable with such operations. Indeed, if the roots happen to be rational
numbers, they can trivially be expressed as constants. The simplest nontrivial example is the equation xn = a,
where a is a positive real number, which has n solutions, given by:

Here the expression , which appears to involve the use of the exponential function, in fact just gives the
different possible values of  (the n-th roots of unity), so it involves only extraction of radicals.

Lower-degree polynomials

The solutions of any second-degree polynomial equation can be expressed in terms of addition, subtraction,
multiplication, division, and square roots, using the familiar quadratic formula: The roots of the following equation
are shown below:
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Analogous formulas for third- and fourth-degree equations, using cube roots and fourth roots, had been known since
the 16th century.

Quintics and higher

The Abel–Ruffini theorem says that there are some fifth-degree equations whose solution cannot be so expressed.
The equation  is an example. (See Bring radical.) Some other fifth degree equations can be
solved by radicals, for example , which factorizes to

. The precise criterion that distinguishes between those
equations that can be solved by radicals and those that cannot was given by Évariste Galois and is now part of
Galois theory: a polynomial equation can be solved by radicals if and only if its Galois group (over the rational
numbers, or more generally over the base field of admitted constants) is a solvable group.

Today, in the modern algebraic context, we say that second, third and fourth degree polynomial equations can
always be solved by radicals because the symmetric groups S2, S3 and S4 are solvable groups, whereas Sn is not
solvable for n ≥ 5. This is so because for a polynomial of degree n with indeterminate coefficients (i.e., given by
symbolic parameters), the Galois group is the full symmetric group Sn (this is what is called the "general equation of
the n-th degree"). This remains true if the coefficients are concrete but algebraically independent values over the
base field.

Proof

The following proof is based on Galois theory. Historically, Ruffini and Abel's proofs precede Galois theory.

One of the fundamental theorems of Galois theory states that an equation is solvable in radicals if and only if it has
a solvable Galois group, so the proof of the Abel–Ruffini theorem comes down to computing the Galois group of the
general polynomial of the fifth degree.

Let  be a real number transcendental over the field of rational numbers , and let  be a real number
transcendental over , and so on to  which is transcendental over . These numbers are
called independent transcendental elements over Q. Let  and let

Multiplying  out yields the elementary symmetric functions of the :

The coefficient of  in  is thus . Because our independent transcendentals  act as
indeterminates over , every permutation  in the symmetric group on 5 letters  induces an automorphism  on

 that leaves  fixed and permutes the elements . Since an arbitrary rearrangement of the roots of the product
form still produces the same polynomial, e.g.:

is still the same polynomial as
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the automorphisms  also leave  fixed, so they are elements of the Galois group . Now, since
 it must be that , as there could possibly be automorphisms there that are not in .

However, since the relative automorphisms  for splitting field of a quintic polynomial has at most 5! elements,
, and so  must be isomorphic to . Generalizing this argument shows that the Galois

group of every general polynomial of degree  is isomorphic to .

And what of ? The only composition series of  is  (where  is the alternating group on
five letters, also known as the icosahedral group). However, the quotient group  (isomorphic to  itself)
is not an abelian group, and so  is not solvable, so it must be that the general polynomial of the fifth degree has no
solution in radicals. Since the first nontrivial normal subgroup of the symmetric group on n letters is always the
alternating group on n letters, and since the alternating groups on n letters for  are always simple and
non-abelian, and hence not solvable, it also says that the general polynomials of all degrees higher than the fifth also
have no solution in radicals.

Note that the above construction of the Galois group for a fifth degree polynomial only applies to the general
polynomial, specific polynomials of the fifth degree may have different Galois groups with quite different
properties, e.g.  has a splitting field generated by a primitive 5th root of unity, and hence its Galois group is
abelian and the equation itself solvable by radicals. However, since the result is on the general polynomial, it does
say that a general "quintic formula" for the roots of a quintic using only a finite combination of the arithmetic
operations and radicals in terms of the coefficients is impossible. Q.E.D.

History

Around 1770, Joseph Louis Lagrange began the groundwork that unified the many different tricks that had been
used up to that point to solve equations, relating them to the theory of groups of permutations, in the form of
Lagrange resolvents. This innovative work by Lagrange was a precursor to Galois theory, and its failure to develop
solutions for equations of fifth and higher degrees hinted that such solutions might be impossible, but it did not
provide conclusive proof. The theorem, however, was first nearly proved by Paolo Ruffini in 1799, but his proof
was mostly ignored. He had several times tried to send it to different mathematicians to get it acknowledged,
amongst them, French mathematician Augustin-Louis Cauchy, but it was never acknowledged, possibly because the
proof was spanning 500 pages. The proof also, as was discovered later, contained an error. Ruffini assumed that a
solution would necessarily be a function of the radicals (in modern terms, he failed to prove that the splitting field is
one of the fields in the tower of radicals which corresponds to a solution expressed in radicals). While Cauchy felt
that the assumption was minor, most historians believe that the proof was not complete until Abel proved this
assumption. The theorem is thus generally credited to Niels Henrik Abel, who published a proof that required just
six pages in 1824.[3]

Insights into these issues were also gained using Galois theory pioneered by Évariste Galois. In 1885, John Stuart
Glashan, George Paxton Young, and Carl Runge provided a proof using this theory.

In 1963, Vladimir Arnold discovered a topological proof of the Abel-Ruffini theorem,[4] which served as a starting
point for topological Galois theory.[5]

See also

Theory of equations

Notes

^ Jacobson (2009), p. 211.1.
^ Galois, Évariste (1846). "OEuvres mathématiques d'Évariste Galois." (http://visualiseur.bnf.fr/ark:/12148
/cb343487840/date1846) . Journal des mathématiques pures et appliquées XI: 381–444. http://visualiseur.bnf.fr
/ark:/12148/cb343487840/date1846. Retrieved 2009-02-04.
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Fundamental theorem of algebra
From Wikipedia, the free encyclopedia

The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex
coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is
a complex number with zero imaginary part.

Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed.

The theorem is also stated as follows: every non-zero, single-variable, degree n polynomial with complex coefficients
has, counted with multiplicity, exactly n roots. The equivalence of the two statements can be proven through the use of
successive polynomial division.

In spite of its name, there is no purely algebraic proof of the theorem, since any proof must use the completeness of the
reals (or some other equivalent formulation of completeness), which is not an algebraic concept. Additionally, it is not
fundamental for modern algebra; its name was given at a time when the study of algebra was mainly concerned with
the solutions of polynomial equations with real or complex coefficients.
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History

Peter Rothe (Petrus Roth), in his book Arithmetica Philosophica (published in 1608), wrote that a polynomial equation
of degree n (with real coefficients) may have n solutions. Albert Girard, in his book L'invention nouvelle en l'Algèbre
(published in 1629), asserted that a polynomial equation of degree n has n solutions, but he did not state that they had
to be real numbers. Furthermore, he added that his assertion holds “unless the equation is incomplete”, by which he
meant that no coefficient is equal to 0. However, when he explains in detail what he means, it is clear that he actually
believes that his assertion is always true; for instance, he shows that the equation x4 = 4x − 3, although incomplete, has
four solutions (counting multiplicities): 1 (twice), −1 + i√2, and −1 − i√2.

As will be mentioned again below, it follows from the fundamental theorem of algebra that every non-constant
polynomial with real coefficients can be written as a product of polynomials with real coefficients whose degree is
either 1 or 2. However, in 1702 Leibniz said that no polynomial of the type x4 + a4 (with a real and distinct from 0) can
be written in such a way. Later, Nikolaus Bernoulli made the same assertion concerning the polynomial
x4 − 4x3 + 2x2 + 4x + 4, but he got a letter from Euler in 1742[1] in which he was told that his polynomial happened to
be equal to

where α is the square root of 4 + 2√7. Also, Euler mentioned that
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A first attempt at proving the theorem was made by d'Alembert in 1746, but his proof was incomplete. Among other
problems, it assumed implicitly a theorem (now known as Puiseux's theorem) which would not be proved until more
than a century later, and furthermore the proof assumed the fundamental theorem of algebra. Other attempts were
made by Euler (1749), de Foncenex (1759), Lagrange (1772), and Laplace (1795). These last four attempts assumed
implicitly Girard's assertion; to be more precise, the existence of solutions was assumed and all that remained to be
proved was that their form was a + bi for some real numbers a and b. In modern terms, Euler, de Foncenex, Lagrange,
and Laplace were assuming the existence of a splitting field of the polynomial p(z).

At the end of the 18th century, two new proofs were published which did not assume the existence of roots. One of
them, due to James Wood and mainly algebraic, was published in 1798 and it was totally ignored. Wood's proof had an
algebraic gap.[2] The other one was published by Gauss in 1799 and it was mainly geometric, but it had a topological
gap, filled by Alexander Ostrowski in 1920, as discussed in Smale 1981 [3] (http://projecteuclid.org
/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183547848) (Smale writes, "...I wish to point
out what an immense gap Gauss' proof contained. It is a subtle point even today that a real algebraic plane curve
cannot enter a disk without leaving. In fact even though Gauss redid this proof 50 years later, the gap remained. It was
not until 1920 that Gauss' proof was completed. In the reference Gauss, A. Ostrowski has a paper which does this and
gives an excellent discussion of the problem as well..."). A rigorous proof was published by Argand in 1806; it was here
that, for the first time, the fundamental theorem of algebra was stated for polynomials with complex coefficients,
rather than just real coefficients. Gauss produced two other proofs in 1816 and another version of his original proof in
1849.

The first textbook containing a proof of the theorem was Cauchy's Cours d'analyse de l'École Royale Polytechnique
(1821). It contained Argand's proof, although Argand is not credited for it.

None of the proofs mentioned so far is constructive. It was Weierstrass who raised for the first time, in the middle of
the 19th century, the problem of finding a constructive proof of the fundamental theorem of algebra. He presented his
solution, that amounts in modern terms to a combination of the Durand–Kerner method with the homotopy
continuation principle, in 1891. Another proof of this kind was obtained by Hellmuth Kneser in 1940 and simplified by
his son Martin Kneser in 1981.

Without using countable choice, it is not possible to constructively prove the fundamental theorem of algebra for
complex numbers based on the Dedekind real numbers (which are not constructively equivalent to the Cauchy real
numbers without countable choice[3]). However, Fred Richman proved a reformulated version of the theorem that
does work.[4]

Proofs

All proofs below involve some analysis, or at least the topological concept of continuity of real or complex functions.
Some also use differentiable or even analytic functions. This fact has led some to remark that the Fundamental
Theorem of Algebra is neither fundamental, nor a theorem of algebra.

Some proofs of the theorem only prove that any non-constant polynomial with real coefficients has some complex
root. This is enough to establish the theorem in the general case because, given a non-constant polynomial p(z) with
complex coefficients, the polynomial

has only real coefficients and, if z is a zero of q(z), then either z or its conjugate is a root of p(z).

A large number of non-algebraic proofs of the theorem use the fact (sometimes called “growth lemma”) that an n-th
degree polynomial function p(z) whose dominant coefficient is 1 behaves like zn when |z| is large enough. A more
precise statement is: there is some positive real number R such that:

when |z| > R.
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Complex-analytic proofs

Find a closed disk D of radius r centered at the origin such that |p(z)| > |p(0)| whenever |z| ≥ r. The minimum of |p(z)|
on D, which must exist since D is compact, is therefore achieved at some point z0 in the interior of D, but not at any
point of its boundary. The minimum modulus principle implies then that p(z0) = 0. In other words, z0 is a zero of p(z).

A variation of this proof that does not require the use of the minimum modulus principle (most proofs of which in turn
require the use of Cauchy's integral theorem or some of its consequences) is based on the observation that for the
special case of a polynomial function, the minimum modulus principle can be proved directly using elementary
arguments. More precisely, if we assume by contradiction that , then, expanding  in powers of

 we can write

Here, the 's are simply the coefficients of the polynomial , and we let  be the index of the first
coefficient following the constant term that is non-zero. But now we see that for  sufficiently close to  this has
behavior asymptotically similar to the simpler polynomial , in the sense that (as is easy to

check) the function  is bounded by some positive constant  in some neighborhood of . Therefore

if we define  and let , then for any sufficiently small positive
number  (so that the bound  mentioned above holds), using the triangle inequality we see that

When r is sufficiently close to 0 this upper bound for |p(z)| is strictly smaller than |a|, in contradiction to the definition
of z0. (Geometrically, we have found an explicit direction θ0 such that if one approaches z0 from that direction one can
obtain values p(z) smaller in absolute value than |p(z0)|.)

Another analytic proof can be obtained along this line of thought observing that, since |p(z)| > |p(0)| outside D, the
minimum of |p(z)| on the whole complex plane is achieved at z0. If |p(z0)| > 0, then 1/p is a bounded holomorphic
function in the entire complex plane since, for each complex number z, |1/p(z)| ≤ |1/p(z0)|. Applying Liouville's
theorem, which states that a bounded entire function must be constant, this would imply that 1/p is constant and
therefore that p is constant. This gives a contradiction, and hence p(z0) = 0.

Yet another analytic proof uses the argument principle. Let R be a positive real number large enough so that every
root of p(z) has absolute value smaller than R; such a number must exist because every non-constant polynomial
function of degree n has at most n zeros. For each r > R, consider the number

where c(r) is the circle centered at 0 with radius r oriented counterclockwise; then the argument principle says that this
number is the number N of zeros of p(z) in the open ball centered at 0 with radius r, which, since r > R, is the total
number of zeros of p(z). On the other hand, the integral of n/z along c(r) divided by 2πi is equal to n. But the difference
between the two numbers is

The numerator of the rational expression being integrated has degree at most n − 1 and the degree of the denominator
is n + 1. Therefore, the number above tends to 0 as r tends to +∞. But the number is also equal to N − n and so N = n.
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Still another complex-analytic proof can be given by combining linear algebra with the Cauchy theorem. To establish
that every complex polynomial of degree n > 0 has a zero, it suffices to show that every complex square matrix of size
n > 0 has a (complex) eigenvalue.[5] The proof of the latter statement is by contradiction.

Let A be a complex square matrix of size n > 0 and let In be the unit matrix of the same size. Assume A has no
eigenvalues. Consider the resolvent function

which is a meromorphic function on the complex plane with values in the vector space of matrices. The eigenvalues of
A are precisely the poles of R(z). Since, by assumption, A has no eigenvalues, the function R(z) is an entire function and
Cauchy theorem implies that

On the other hand, R(z) expanded as a geometric series gives:

This formula is valid outside the closed disc of radius ||A|| (the operator norm of A). Let r > ||A||. Then

(in which only the summand k = 0 has a nonzero integral). This is a contradiction, and so A has an eigenvalue.

Topological proofs

Let z0 ∈ C be such that the minimum of |p(z)| on the whole complex plane is achieved at z0; it was seen at the proof
which uses Liouville's theorem that such a number must exist. We can write p(z) as a polynomial in z − z0: there is
some natural number k and there are some complex numbers ck, ck + 1, ..., cn such that ck ≠ 0 and that

It follows that if a is a kth root of −p(z0)/ck and if t is positive and sufficiently small, then |p(z0 + ta)| < |p(z0)|, which is
impossible, since |p(z0)| is the minimum of |p| on D.

For another topological proof by contradiction, suppose that p(z) has no zeros. Choose a large positive number R such
that, for |z| = R, the leading term zn of p(z) dominates all other terms combined; in other words, such that
|z|n > |an − 1zn −1 + ··· + a0|. As z traverses the circle given by the equation |z| = R once counter-clockwise, p(z), like zn,
winds n times counter-clockwise around 0. At the other extreme, with |z| = 0, the “curve” p(z) is simply the single
(nonzero) point p(0), whose winding number is clearly 0. If the loop followed by z is continuously deformed between
these extremes, the path of p(z) also deforms continuously. We can explicitly write such a deformation as

 where t is greater than or equal to 0 and less than or equal to 1. If one views the
variable t as time, then at time zero the curve is p(z) and at time one the curve is p(0). Clearly at every point t, p(z)
cannot be zero by the original assumption, therefore during the deformation, the curve never crosses zero. Therefore
the winding number of the curve around zero should never change. However, given that the winding number started as
n and ended as 0, this is absurd. Therefore, p(z) has at least one zero.

Algebraic proofs

These proofs use two facts about real numbers that require only a small amount of analysis (more precisely, the
intermediate value theorem):

every polynomial with odd degree and real coefficients has some real root;
every non-negative real number has a square root.
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The second fact, together with the quadratic formula, implies the theorem for real quadratic polynomials. In other
words, algebraic proofs of the fundamental theorem actually show that if R is any real-closed field, then its extension

 is algebraically closed.

As mentioned above, it suffices to check the statement “every non-constant polynomial p(z) with real coefficients has
a complex root”. This statement can be proved by induction on the greatest non-negative integer k such that 2k divides
the degree n of p(z). Let a be the coefficient of zn in p(z) and let F be a splitting field of p(z) over C; in other words, the
field F contains C and there are elements z1, z2, ..., zn in F such that

If k = 0, then n is odd, and therefore p(z) has a real root. Now, suppose that n = 2km (with m odd and k > 0) and that
the theorem is already proved when the degree of the polynomial has the form 2k − 1m′ with m′ odd. For a real number
t, define:

Then the coefficients of qt(z) are symmetric polynomials in the zi's with real coefficients. Therefore, they can be
expressed as polynomials with real coefficients in the elementary symmetric polynomials, that is, in −a1, a2, ...,
(−1)nan. So qt(z) has in fact real coefficients. Furthermore, the degree of qt(z) is n(n − 1)/2 = 2k − 1m(n − 1), and
m(n − 1) is an odd number. So, using the induction hypothesis, qt has at least one complex root; in other words,
zi + zj + tzizj is complex for two distinct elements i and j from {1,...,n}. Since there are more real numbers than pairs
(i,j), one can find distinct real numbers t and s such that zi + zj + tzizj and zi + zj + szizj are complex (for the same i and
j). So, both zi + zj and zizj are complex numbers. It is easy to check that every complex number has a complex square
root, thus every complex polynomial of degree 2 has a complex root by the quadratic formula. It follows that zi and zj
are complex numbers, since they are roots of the quadratic polynomial z2 − (zi + zj)z + zizj.

J. Shipman showed in 2007 that the assumption that odd degree polynomials have roots is stronger than necessary; any
field in which polynomials of prime degree have roots is algebraically closed (so "odd" can be replaced by "odd prime"
and furthermore this holds for fields of all characteristics). For axiomatization of algebraically closed fields, this is the
best possible, as there are counterexamples if a single prime is excluded. However, these counterexamples rely on −1
having a square root. If we take a field where −1 has no square root, and every polynomial of degree n ∈ I has a root,
where I is any fixed infinite set of odd numbers, then every polynomial f(x) of odd degree has a root (since
(x2 + 1)kf(x) has a root, where k is chosen so that deg(f) + 2k ∈ I).

Another algebraic proof of the fundamental theorem can be given using Galois theory. It suffices to show that C has no
proper finite field extension.[6] Let K/C be a finite extension. Since the normal closure of K over R still has a finite
degree over C (or R), we may assume without loss of generality that K is a normal extension of R (hence it is a Galois
extension, as every algebraic extension of a field of characteristic 0 is separable). Let G be the Galois group of this
extension, and let H be a Sylow 2-group of G, so that the order of H is a power of 2, and the index of H in G is odd. By
the fundamental theorem of Galois theory, there exists a subextension L of K/R such that Gal(K/L) = H. As
[L:R] = [G:H] is odd, and there are no nonlinear irreducible real polynomials of odd degree, we must have L = R, thus
[K:R] and [K:C] are powers of 2. Assuming for contradiction [K:C] > 1, the 2-group Gal(K/C) contains a subgroup of
index 2, thus there exists a subextension M of C of degree 2. However, C has no extension of degree 2, because every
quadratic complex polynomial has a complex root, as mentioned above.

Geometric proof

There exists still another way to approach the fundamental theorem of algebra, due to J. M. Almira and A. Romero: by
Riemannian Geometric arguments. The main idea here is to prove that the existence of a non-constant polynomial p(z)
without zeroes implies the existence of a flat Riemannian metric over the sphere S2. This leads to a contradiction, since
the sphere is not flat.

Recall that a Riemannian surface (M,g) is said to be flat if its Gaussian curvature, which we denote by Kg, is identically
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null. Now, Gauss-Bonnet theorem, when applied to the sphere S2, claims that

,

which proves that the sphere is not flat.

Let us now assume that n > 0 and p(z) = a0 + a1z + ⋅⋅⋅ + anzn ≠ 0 for each complex number z. Let us define p*(z) =
znp(1/z) = a0zn + a1zz − 1 + ⋅⋅⋅ + an. Obviously, p*(z) ≠ 0 for all z in C . Consider the polynomial f(z) = p(z)p*(z). Then
f(z) ≠ 0 for each z in C. Furthermore,

.

We can use this functional equation to prove that g, given by

for w in C, and

for w ∈ S2\{0}, is a well defined Riemannian metric over the sphere S2 (which we identify with the extended complex
plane C ∪ {∞}).

Now, a simple computation shows that

,

since the real part of an analytic function is harmonic. This proves that Kg = 0.

Corollaries

Since the fundamental theorem of algebra can be seen as the statement that the field of complex numbers is
algebraically closed, it follows that any theorem concerning algebraically closed fields applies to the field of complex
numbers. Here are a few more consequences of the theorem, which are either about the field of real numbers or about
the relationship between the field of real numbers and the field of complex numbers:

The field of complex numbers is the algebraic closure of the field of real numbers.
Every polynomial in one variable x with real coefficients is the product of a constant, polynomials of the form
x + a with a real, and polynomials of the form x2 + ax + b with a and b real and a2 − 4b < 0 (which is the same
thing as saying that the polynomial x2 + ax + b has no real roots).
Every rational function in one variable x, with real coefficients, can be written as the sum of a polynomial
function with rational functions of the form a/(x − b)n (where n is a natural number, and a and b are real
numbers), and rational functions of the form (ax + b)/(x2 + cx + d)n (where n is a natural number, and a, b, c,
and d are real numbers such that c2 − 4d < 0). A corollary of this is that every rational function in one variable
and real coefficients has an elementary primitive.
Every algebraic extension of the real field is isomorphic either to the real field or to the complex field.

Bounds on the zeroes of a polynomial

Main article: Properties of polynomial roots

While the fundamental theorem of algebra states a general existence result, it is of some interest, both from the
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theoretical and from the practical point of view, to have information on the location of the zeroes of a given
polynomial. The simpler result in this direction is a bound on the modulus: all zeroes  of a monic polynomial

 satisfy an inequality  where

Notice that, as stated, this is not yet an existence result but rather an example of what is called an a priori bound: it
says that if there are solutions then they lie inside the closed disk of center the origin and radius . However, once
coupled with the fundamental theorem of algebra it says that the disk contains in fact at least one solution. More
generally, a bound can be given directly in terms of any p-norm of the n-vector of coefficients ,
that is , where  is precisely the q-norm of the 2-vector , q being the conjugate exponent of p, 1/p + 1/q
= 1, for any . Thus, the modulus of any solution is also bounded by

for  , and in particular

(where we define  to mean 1, which is reasonable since 1 is indeed the n-th coefficient of our polynomial). The case
of a generic polynomial of degree n, , is of course reduced to the case of a monic,
dividing all coefficients by . Also, in case that 0 is not a root, i.e. , bounds from below on the roots  follow
immediately as bounds from above on , that is, the roots of . Finally, the distance

 from the roots  to any point  can be estimated from below and above, seeing  as zeroes of the
polynomial , whose coefficients are the Taylor expansion of  at 

We report here the proof of the above bounds, which is short and elementary. Let  be a root of the polynomial
; in order to prove the inequality  we can assume, of course, . Writing the

equation as , and using the Hölder's inequality we find . Now, if
, this is , thus . In the case , taking into

account the summation formula for a geometric progression, we have

thus  and simplifying, . Therefore  holds, for all 

Notes
^ See section Le rôle d'Euler in C. Gilain's article Sur l'histoire du théorème fondamental de l'algèbre: théorie des
équations et calcul intégral.

1.

^ Concerning Wood's proof, see the article A forgotten paper on the fundamental theorem of algebra, by Frank Smithies.2.
^ For the minimum necessary to prove their equivalence, see Bridges, Schuster, and Richman; 1998; A weak countable
choice principle; available from [1] (http://www.math.fau.edu/richman/HTML/DOCS.HTM) .

3.

^ See Fred Richman; 1998; The fundamental theorem of algebra: a constructive development without choice; available
from [2] (http://www.math.fau.edu/richman/HTML/DOCS.HTM) .

4.

^ A proof of the fact that this suffices can be seen here.5.
^ A proof of the fact that this suffices can be seen here.6.
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