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In the context of abstract algebra or universal algebra, a
monomorphism is an injective homomorphism. A monomorphism from
X to Y is often denoted with the notation .

In the more general setting of category theory, a monomorphism (also
called a monic morphism or a mono) is a left-cancellative morphism, that is, an arrow f : X → Y such that,
for all morphisms g1, g2 : Z → X,

Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions");
in some categories the notions coincide, but monomorphisms are more general, as in the examples below.

The categorical dual of a monomorphism is an epimorphism, i.e. a monomorphism in a category C is an
epimorphism in the dual category Cop. Every section is a monomorphism, and every retraction is an
epimorphism.
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Relation to invertibility

Left invertible morphisms are necessarily monic: if l is a left inverse for f (meaning l is a morphism and
), then f is monic, as

A left invertible morphism is called a split mono.

However, a monomorphism need not be left-invertible. For example, in the category Group of all groups and
group morphisms among them, if H is a subgroup of G then the inclusion f : H → G is always a
monomorphism; but f has a left inverse in the category if and only if H has a normal complement in G.

A morphism f : X → Y is monic if and only if the induced map f∗ : Hom(Z, X) → Hom(Z, Y), defined by
 for all morphisms h : Z → X , is injective for all Z.

Examples

Every morphism in a concrete category whose underlying function is injective is a monomorphism; in other
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words, if morphisms are actually functions between sets, then any morphism which is a one-to-one function
will necessarily be a monomorphism in the categorical sense. In the category of sets the converse also holds,
so the monomorphisms are exactly the injective morphisms. The converse also holds in most naturally
occurring categories of algebras because of the existence of a free object on one generator. In particular, it is
true in the categories of all groups, of all rings, and in any abelian category.

It is not true in general, however, that all monomorphisms must be injective in other categories; that is, there
are settings in which the morphisms are functions between sets, but one can have a function that is not
injective and yet is a monomorphism in the categorical sense. For example, in the category Div of divisible
(abelian) groups and group homomorphisms between them there are monomorphisms that are not injective:
consider, for example, the quotient map q : Q → Q/Z, where Q is the rationals under addition, Z the integers
(also considered a group under addition), and Q/Z is the corresponding quotient group. This is not an
injective map, as for example every integer is mapped to 0. Nevertheless, it is a monomorphism in this
category. This will follows from the implication q ∘ h = 0 ⇒ h = 0, which we now prove. If h : G → Q,
where G is some divisible group, and q o h = 0, then h(x) ∈ Z, ∀ x ∈ G. Now fix some x ∈ G. Without loss
of generality, we may assume that h(x) ≥ 0 (otherwise, choose −x instead). Then, letting n=h(x)+1, since G is
a divisible group, there exists some y ∈ G such that x = ny, so h(x) = n h(y). From this, and 0 ≤ h(x) < h(x) +
1=n, it follows that

Since h(y) ∈ Z, it follows that h(y) = 0, and thus h(x) = 0 = h(−x), ∀ x ∈ G. This says that h = 0, as desired.

To go from that implication to the fact that q is an epimorphism, assume that q o f = q o g for some
morphisms f, g : G → Q, where G is some divisible group. Then q o (f − g) = 0, where (f − g) : x ↦ f(x) −
g(x). (Since (f − g)(0) = 0, and (f - g)(x + y) = (f - g)(x) + (f - g)(y), it follows that (f - g) ∈ Hom(G, Q)).
From the implication just proved, q o (f − g) = 0 ⇒ f − g = 0 ⇔ ∀ x ∈ G, f(x) = g(x) ⇔ f = g. Hence q is a
monomorphism, as claimed.

Properties

In a topos, every monic is an equalizer, and any map that is both monic and epic is an isomorphism.
Every isomorphism is monic.

Related concepts

There are also useful concepts of regular monomorphism, strong monomorphism, and extremal
monomorphism. A regular monomorphism equalizes some parallel pair of morphisms. An extremal
monomorphism is a monomorphism that cannot be nontrivially factored through an epimorphism: Precisely,
if m=g ∘ e with e an epimorphism, then e is an isomorphism. A strong monomorphism satisfies a certain
lifting property with respect to commutative squares involving an epimorphism.

Terminology

The companion terms monomorphism and epimorphism were originally introduced by Nicolas Bourbaki;
Bourbaki uses monomorphism as shorthand for an injective function. Early category theorists believed that
the correct generalization of injectivity to the context of categories was the cancellation property given
above. While this is not exactly true for monic maps, it is very close, so this has caused little trouble, unlike
the case of epimorphisms. Saunders Mac Lane attempted to make a distinction between what he called
monomorphisms, which were maps in a concrete category whose underlying maps of sets were injective, and
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monic maps, which are monomorphisms in the categorical sense of the word. This distinction never came
into general use.

Another name for monomorphism is extension, although this has other uses too.

See also

embedding
isomorphism
subobject
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Epimorphism
From Wikipedia, the free encyclopedia

In category theory, an epimorphism (also called an epic morphism or,
colloquially, an epi) is a morphism f : X → Y which is right-cancellative
in the sense that, for all morphisms g1, g2 : Y → Z,

Epimorphisms are analogues of surjective functions, but they are not exactly the same. The dual of an
epimorphism is a monomorphism (i.e. an epimorphism in a category C is a monomorphism in the dual
category Cop).

Many authors in abstract algebra and universal algebra define an epimorphism simply as an onto or
surjective homomorphism. Every epimorphism in this algebraic sense is an epimorphism in the sense of
category theory, but the converse is not true in all categories. In this article, the term "epimorphism" will be
used in the sense of category theory given above. For more on this, see the section on Terminology below.
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Examples

Every morphism in a concrete category whose underlying function is surjective is an epimorphism. In many
concrete categories of interest the converse is also true. For example, in the following categories, the
epimorphisms are exactly those morphisms which are surjective on the underlying sets:

Set, sets and functions. To prove that every epimorphism f: X → Y in Set is surjective, we compose it
with both the characteristic function g1: Y → {0,1} of the image f(X) and the map g2: Y → {0,1} that
is constant 1.
Rel, sets with binary relations and relation preserving functions. Here we can use the same proof as
for Set, equipping {0,1} with the full relation {0,1}×{0,1}.
Pos, partially ordered sets and monotone functions. If f : (X,≤) → (Y,≤) is not surjective, pick y0 in Y \
f(X) and let g1 : Y → {0,1} be the characteristic function of {y | y0 ≤ y} and g2 : Y → {0,1} the
characteristic function of {y | y0 < y}. These maps are monotone if {0,1} is given the standard
ordering 0 < 1.
Grp, groups and group homomorphisms. The result that every epimorphism in Grp is surjective is due
to Otto Schreier (he actually proved more, showing that every subgroup is an equalizer using the free
product with one amalgamated subgroup); an elementary proof can be found in (Linderholm 1970).
FinGrp, finite groups and group homomorphisms. Also due to Schreier; the proof given in
(Linderholm 1970) establishes this case as well.
Ab, abelian groups and group homomorphisms.
K-Vect, vector spaces over a field K and K-linear transformations.

Epimorphism - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Epimorphism

1 of 4 24/11/2012 02:02



Mod-R, right modules over a ring R and module homomorphisms. This generalizes the two previous
examples; to prove that every epimorphism f: X → Y in Mod-R is surjective, we compose it with both
the canonical quotient map g 1: Y → Y/f(X) and the zero map g2: Y → Y/f(X).
Top, topological spaces and continuous functions. To prove that every epimorphism in Top is
surjective, we proceed exactly as in Set, giving {0,1} the indiscrete topology which ensures that all
considered maps are continuous.
HComp, compact Hausdorff spaces and continuous functions. If f: X → Y is not surjective, let y in
Y-fX. Since fX is closed, by Urysohn's Lemma there is a continuous function g1:Y → [0,1] such that g1
is 0 on fX and 1 on y. We compose f with both g1 and the zero function g2: Y → [0,1].

However there are also many concrete categories of interest where epimorphisms fail to be surjective. A few
examples are:

In the category of monoids, Mon, the inclusion map N → Z is a non-surjective epimorphism. To see
this, suppose that g1 and g2 are two distinct maps from Z to some monoid M. Then for some n in Z,
g1(n) ≠ g2(n), so g1(-n) ≠ g2(-n). Either n or -n is in N, so the restrictions of g1 and g2 to N are
unequal.
In the category of algebras over commutative ring R, take R[N] → R[Z], where R[G] is the group ring
of the group G and the morphism is induced by the inclusion N → Z as in the previous example. This
follows from the observation that 1 generates the algebra R[Z] (note that the unit in R[Z] is given by 0
of Z), and the inverse of the element represented by n in Z is just the element represented by -n. Thus
any homomorphism from R[Z] is uniquely determined by its value on the element represented by 1 of
Z.
In the category of rings, Ring, the inclusion map Z → Q is a non-surjective epimorphism; to see this,
note that any ring homomorphism on Q is determined entirely by its action on Z, similar to the
previous example. A similar argument shows that the natural ring homomorphism from any
commutative ring R to any one of its localizations is an epimorphism.
In the category of commutative rings, a finitely generated homomorphism of rings f : R → S is an
epimorphism if and only if for all prime ideals P of R, the ideal Q generated by f(P) is either S or is
prime, and if Q is not S, the induced map Frac(R/P) → Frac(S/Q) is an isomorphism (EGA IV 17.2.6).
In the category of Hausdorff spaces, Haus, the epimorphisms are precisely the continuous functions
with dense images. For example, the inclusion map Q → R, is a non-surjective epimorphism.

The above differs from the case of monomorphisms where it is more frequently true that monomorphisms
are precisely those whose underlying functions are injective.

As to examples of epimorphisms in non-concrete categories:

If a monoid or ring is considered as a category with a single object (composition of morphisms given
by multiplication), then the epimorphisms are precisely the right-cancellable elements.
If a directed graph is considered as a category (objects are the vertices, morphisms are the paths,
composition of morphisms is the concatenation of paths), then every morphism is an epimorphism.

Properties

Every isomorphism is an epimorphism; indeed only a right-sided inverse is needed: if there exists a morphism
j : Y → X such that fj = idY, then f is easily seen to be an epimorphism. A map with such a right-sided inverse
is called a split epi. In a topos, a map that is both a monic morphism and an epimorphism is an isomorphism.

The composition of two epimorphisms is again an epimorphism. If the composition fg of two morphisms is an
epimorphism, then f must be an epimorphism.

As some of the above examples show, the property of being an epimorphism is not determined by the
morphism alone, but also by the category of context. If D is a subcategory of C, then every morphism in D
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which is an epimorphism when considered as a morphism in C is also an epimorphism in D; the converse,
however, need not hold; the smaller category can (and often will) have more epimorphisms.

As for most concepts in category theory, epimorphisms are preserved under equivalences of categories:
given an equivalence F : C → D, then a morphism f is an epimorphism in the category C if and only if F(f) is
an epimorphism in D. A duality between two categories turns epimorphisms into monomorphisms, and vice
versa.

The definition of epimorphism may be reformulated to state that f : X → Y is an epimorphism if and only if
the induced maps

are injective for every choice of Z. This in turn is equivalent to the induced natural transformation

being a monomorphism in the functor category SetC.

Every coequalizer is an epimorphism, a consequence of the uniqueness requirement in the definition of
coequalizers. It follows in particular that every cokernel is an epimorphism. The converse, namely that every
epimorphism be a coequalizer, is not true in all categories.

In many categories it is possible to write every morphism as the composition of a monomorphism followed
by an epimorphism. For instance, given a group homomorphism f : G → H, we can define the group K =
im(f) = f(G) and then write f as the composition of the surjective homomorphism G → K which is defined
like f, followed by the injective homomorphism K → H which sends each element to itself. Such a
factorization of an arbitrary morphism into an epimorphism followed by a monomorphism can be carried out
in all abelian categories and also in all the concrete categories mentioned above in the Examples section
(though not in all concrete categories).

Related concepts

Among other useful concepts are regular epimorphism, extremal epimorphism, strong epimorphism, and
split epimorphism. A regular epimorphism coequalizes some parallel pair of morphisms. An extremal
epimorphism is an epimorphism that has no monomorphism as a second factor, unless that monomorphism is
an isomorphism. A strong epimorphism satisfies a certain lifting property with respect to commutative
squares involving a monomorphism. A split epimorphism is a morphism which has a right-sided inverse.

A morphism that is both a monomorphism and an epimorphism is called a bimorphism. Every isomorphism is
a bimorphism but the converse is not true in general. For example, the map from the half-open interval [0,1)
to the unit circle S1 (thought of as a subspace of the complex plane) which sends x to exp(2πix) (see Euler's
formula) is continuous and bijective but not a homeomorphism since the inverse map is not continuous at 1,
so it is an instance of a bimorphism that is not an isomorphism in the category Top. Another example is the
embedding Q → R in the category Haus; as noted above, it is a bimorphism, but it is not bijective and
therefore not an isomorphism. Similarly, in the category of rings, the maps Z → Q and Q → R are
bimorphisms but not isomorphisms.

Epimorphisms are used to define abstract quotient objects in general categories: two epimorphisms f1 : X →
Y1 and f2 : X → Y2 are said to be equivalent if there exists an isomorphism j : Y1 → Y2 with j f1 = f2. This is
an equivalence relation, and the equivalence classes are defined to be the quotient objects of X.
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Terminology

The companion terms epimorphism and monomorphism were first introduced by Bourbaki. Bourbaki uses
epimorphism as shorthand for a surjective function. Early category theorists believed that epimorphisms
were the correct analogue of surjections in an arbitrary category, similar to how monomorphisms are very
nearly an exact analogue of injections. Unfortunately this is incorrect; strong or regular epimorphisms
behave much more closely to surjections than ordinary epimorphisms. Saunders Mac Lane attempted to
create a distinction between epimorphisms, which were maps in a concrete category whose underlying set
maps were surjective, and epic morphisms, which are epimorphisms in the modern sense. However, this
distinction never caught on.

It is a common mistake to believe that epimorphisms are either identical to surjections or that they are a
better concept. Unfortunately this is rarely the case; epimorphisms can be very mysterious and have
unexpected behavior. It is very difficult, for example, to classify all the epimorphisms of rings. In general,
epimorphisms are their own unique concept, related to surjections but fundamentally different.

See also

List of category theory topics
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