
The Riemann sphere can be visualized
as the complex number plane wrapped
around a sphere (by some form of
stereographic projection – details are
given below).
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In mathematics, the Riemann sphere, named after the 19th century
mathematician Bernhard Riemann, is a model of the extended
complex plane, the complex plane plus a point at infinity. This
extended plane represents the extended complex numbers, that is,
the complex numbers plus a value ∞ for infinity. With the Riemann
model, the point "∞" is near to very large numbers, just as the point
"0" is near to very small numbers.

The extended complex numbers are useful in complex analysis
because they allow for division by zero in some circumstances, in a
way that makes expressions such as 1/0 = ∞ well-behaved. For
example, any rational function on the complex plane can be extended
to a continuous function on the Riemann sphere, with the poles of the
rational function mapping to infinity. More generally, any
meromorphic function can be thought of as a continuous function
whose codomain is the Riemann sphere.

In geometry, the Riemann sphere is the prototypical example of a Riemann surface, and is one of the simplest
complex manifolds. In projective geometry, the sphere can be thought of as the complex projective line
P1(C), the projective space of all complex lines in C2. As with any compact Riemann surface, the sphere
may also be viewed as a projective algebraic curve, making it a fundamental example in algebraic geometry.
It also finds utility in other disciplines that depend on analysis and geometry, such as quantum mechanics and
other branches of physics.
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Extended complex numbers

The extended complex numbers consist of the complex numbers C together with ∞. The extended complex
numbers may be written as C ∪ {∞}, and are often denoted by adding some decoration to the letter C, such
as
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Geometrically, the set of extended complex numbers is referred to as the Riemann sphere (or extended
complex plane).

Arithmetic operations

Addition of complex numbers may be extended by defining, for z ∈ C,

for any complex number z, and multiplication may be defined by

for all nonzero complex numbers z, with ∞ ⋅ ∞ = ∞. Note that ∞ + ∞, ∞ - ∞ and 0 ⋅ ∞ are left undefined.
Unlike the complex numbers, the extended complex numbers do not form a field, since ∞ does not have a
multiplicative inverse. Nonetheless, it is customary to define division on C ∪ {∞} by

for all nonzero complex numbers z, with ∞/0 = ∞ and 0/∞ = 0.

Rational functions

Any rational function f(z) = g(z)/h(z) can be extended to a continuous function on the Riemann sphere.
Specifically, if  is a complex number such that the denominator  is zero but the numerator  is
nonzero, then  can be defined as ∞. (If both the numerator and denominator are zero, then they share a
common factor, and the fraction should first be reduced to lowest terms.) Moreover, f(∞) can be defined as
the limit of f(z) as z → ∞, which may be finite or infinite.

For example, given the function

we may define f(5) = ∞ since the denominator is zero at z = 5, and f(∞) = 3 since f(z) → 3 as z → ∞. Using
these definitions, f becomes a continuous function from the Riemann sphere to itself.

When viewed as a complex manifold, these rational functions are in fact holomorphic functions from the
Riemann sphere to itself.

As a complex manifold

As a one-dimensional complex manifold, the Riemann sphere can be described by two charts, both with
domain equal to the complex number plane C. Let ζ and ξ be complex coordinates on C. Identify the nonzero
complex numbers ζ with the nonzero complex numbers ξ using the transition maps

Since the transition maps are holomorphic, they define a complex manifold, called the Riemann sphere.

Intuitively, the transition maps indicate how to glue two planes together to form the Riemann sphere. The
planes are glued in an "inside-out" manner, so that they overlap almost everywhere, with each plane
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contributing just one point (its origin) missing from the other plane. In other words, (almost) every point in
the Riemann sphere has both a ζ value and a ξ value, and the two values are related by ζ = 1/ξ. The point
where ξ = 0 should then have ζ-value "1/0"; in this sense, the origin of the ξ-chart plays the role of "∞" in the
ζ-chart. Symmetrically, the origin of the ζ-chart plays the role of ∞ in the ξ-chart.

Topologically, the resulting space is the one-point compactification of a plane into the sphere. However, the
Riemann sphere is not merely a topological sphere. It is a sphere with a well-defined complex structure, so
that around every point on the sphere there is a neighborhood that can be biholomorphically identified with
C.

On the other hand, the uniformization theorem, a central result in the classification of Riemann surfaces,
states that the only simply-connected one-dimensional complex manifolds are the complex plane, the
hyperbolic plane, and the Riemann sphere. Of these, the Riemann sphere is the only one that is a closed
surface (a compact surface without boundary). Hence the two-dimensional sphere admits a unique complex
structure turning it into a one-dimensional complex manifold.

As the complex projective line

The Riemann sphere can also be defined as the complex projective line. This is the subset of C2 consisting
of all pairs (α, β) of complex numbers, not both zero, modulo the equivalence relation

for all nonzero complex numbers λ. The complex plane C, with coordinate ζ, can be mapped into the
complex projective line by

Another copy of C with coordinate ξ can be mapped in by

These two complex charts cover the projective line. For nonzero ξ the identifications

demonstrate that the transition maps are ζ = 1/ξ and ξ = 1/ζ, as above.

This treatment of the Riemann sphere connects most readily to projective geometry. For example, any line
(or smooth conic) in the complex projective plane is biholomorphic to the complex projective line. It is also
convenient for studying the sphere's automorphisms, later in this article.

As a sphere

The Riemann sphere can be visualized as the unit sphere x2 + y2 + z2 = 1 in the three-dimensional real space
R3. To this end, consider the stereographic projection from the unit sphere minus the point (0, 0, 1) onto the
plane z = 0, which we identify with the complex plane by ζ = x + iy. In Cartesian coordinates (x, y, z) and
spherical coordinates (φ, θ) on the sphere (with φ the zenith and θ the azimuth), the projection is

Similarly, stereographic projection from (0, 0, −1) onto the plane z = 0, identified with another copy of the
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Stereographic projection of a complex
number A onto a point α of the Riemann
sphere

complex plane by ξ = x - i y, is written

In order to cover the unit sphere, one needs the two
stereographic projections: the first will cover the whole sphere
except the point (0,0,1) and the second except the point (0,0,-1).
Hence, one needs two complex planes, one for each projection,
which can be intuitively seen as glued back-to-back at z=0. Note
that the two complex planes are identified differently with the
plane z = 0. An orientation-reversal is necessary to maintain
consistent orientation on the sphere, and in particular complex
conjugation causes the transition maps to be holomorphic.

The transition maps between ζ-coordinates and ξ-coordinates are
obtained by composing one projection with the inverse of the other. They turn out to be ζ = 1/ξ and ξ = 1 /ζ,
as described above. Thus the unit sphere is diffeomorphic to the Riemann sphere.

Under this diffeomorphism, the unit circle in the ζ-chart, the unit circle in the ξ-chart, and the equator of the
unit sphere are all identified. The unit disk |ζ| < 1 is identified with the southern hemisphere z < 0, while the
unit disk |ξ| < 1 is identified with the northern hemisphere z > 0.

Metric

A Riemann surface does not come equipped with any particular Riemannian metric. However, the complex
structure of the Riemann surface does uniquely determine a metric up to conformal equivalence. (Two
metrics are said to be conformally equivalent if they differ by multiplication by a positive smooth function.)
Conversely, any metric on an oriented surface uniquely determines a complex structure, which depends on
the metric only up to conformal equivalence. Complex structures on an oriented surface are therefore in
one-to-one correspondence with conformal classes of metrics on that surface.

Within a given conformal class, one can use conformal symmetry to find a representative metric with
convenient properties. In particular, there is always a complete metric with constant curvature in any given
conformal class.

In the case of the Riemann sphere, the Gauss-Bonnet theorem implies that a constant-curvature metric must
have positive curvature K. It follows that the metric must be isometric to the sphere of radius  in R3

via stereographic projection. In the ζ-chart on the Riemann sphere, the metric with K = 1 is given by

In real coordinates ζ = u + iv, the formula is

Up to a constant factor, this metric agrees with the standard Fubini–Study metric on complex projective
space (of which the Riemann sphere is an example).

Conversely, let S denote the sphere (as an abstract smooth or topological manifold). By the uniformization
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A Möbius transformation acting on
the sphere, and on the plane by
stereographic projection

theorem there exists a unique complex structure on S. It follows that any metric on S is conformally
equivalent to the round metric. All such metrics determine the same conformal geometry. The round metric is
therefore not intrinsic to the Riemann sphere, since "roundness" is not an invariant of conformal geometry.
The Riemann sphere is only a conformal manifold, not a Riemannian manifold. However, if one needs to do
Riemannian geometry on the Riemann sphere, the round metric is a natural choice.

Automorphisms

Main article: Möbius transformation

The study of any mathematical object is aided by an understanding of its
group of automorphisms, meaning the maps from the object to itself that
preserve the essential structure of the object. In the case of the Riemann
sphere, an automorphism is an invertible biholomorphic map from the
Riemann sphere to itself. It turns out that the only such maps are the
Möbius transformations. These are functions of the form

where a, b, c, and d are complex numbers such that .
Examples of Möbius transformations include dilations, rotations, translations, and complex inversion. In fact,
any Möbius transformation can be written as a composition of these.

The Möbius transformations are profitably viewed as transformations on the complex projective line. In
projective coordinates, the transformation f' can be written

Thus the Möbius transformations can be described as 2 × 2 complex matrices with nonzero determinant; two
matrices yield the same Möbius transformation if and only if they differ by a nonzero factor. Thus the Möbius
transformations exactly correspond to the projective linear transformations PGL(2, C).

If one endows the Riemann sphere with the Fubini–Study metric, then not all Möbius transformations are
isometries; for example, the dilations and translations are not. The isometries form a proper subgroup of
PGL(2, C), namely PSU(2). This subgroup is isomorphic to the rotation group SO(3), which is the group of
symmetries of the unit sphere in R3 (which, when restricted to the sphere, become the isometries of the
sphere).

Applications

In complex analysis, a meromorphic function on the complex plane (or on any Riemann surface, for that
matter) is a ratio f/g of two holomorphic functions f and g. As a map to the complex numbers, it is undefined
wherever g is zero. However, it induces a holomorphic map (f, g) to the complex projective line that is
well-defined even where g = 0. This construction is helpful in the study of holomorphic and meromorphic
functions. For example, on a compact Riemann surface there are no non-constant holomorphic maps to the
complex numbers, but holomorphic maps to the complex projective line are abundant.

The Riemann sphere has many uses in physics. In quantum mechanics, points on the complex projective line
are natural values for photon polarization states, spin states of massive particles of spin 1/2, and 2-state
particles in general. The Riemann sphere has been suggested as a relativistic model for the celestial sphere. In
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string theory, the worldsheets of strings are Riemann surfaces, and the Riemann sphere, being the simplest
Riemann surface, plays a significant role. It is also important in twistor theory.

See also

Conformal geometry
Cross-ratio
Hopf bundle
Dessin d'enfant
Directed infinity
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