The von Neumann Algebras of Quantum Permutation Groups

Michael Brannan
Queen's University

CMS Winter Meeting
December 10, 2011.

From permutations to quantum permutations

- Consider a finite set of n points $X_{n}=\{1,2, \ldots, n\}$. Recall that $\operatorname{Aut}\left(X_{n}\right) \cong \operatorname{Aut}\left(C\left(X_{n}\right)\right) \cong S_{n}$, the permutation group.

From permutations to quantum permutations

- Consider a finite set of n points $X_{n}=\{1,2, \ldots, n\}$. Recall that $\operatorname{Aut}\left(X_{n}\right) \cong \operatorname{Aut}\left(C\left(X_{n}\right)\right) \cong S_{n}$, the permutation group.
- Today's Goal: To study the analogue of S_{n} within the framework of compact quantum groups, and discuss some of their operator algebraic aspects.

From permutations to quantum permutations

- Consider a finite set of n points $X_{n}=\{1,2, \ldots, n\}$. Recall that $\operatorname{Aut}\left(X_{n}\right) \cong \operatorname{Aut}\left(C\left(X_{n}\right)\right) \cong S_{n}$, the permutation group.
- Today's Goal: To study the analogue of S_{n} within the framework of compact quantum groups, and discuss some of their operator algebraic aspects.
- To quantize S_{n} : Replace S_{n} with the Hopf algebra $C\left(S_{n}\right)$, then "deform" $C\left(S_{n}\right)$ to get a genuine quantum group.
- Let $U: S_{n} \hookrightarrow M_{n}(\mathbb{C}) ; U(g)=\left[u_{i j}(g)\right] \in M_{n}(\mathbb{C})$ be the "permutation matrix" representation.
- Easy to check: The coordinate functions $u_{i j}: S_{n} \rightarrow \mathbb{C}$ generate $C\left(S_{n}\right)$, obviously commute, and satisfy:

$$
u_{i j}=u_{i j}^{*}=u_{i j}^{2} \text { and } U=\left[u_{i j}\right] \text { is unitary in } M_{n}\left(C\left(S_{n}\right)\right)
$$

From permutations to quantum permutations

- Consider a finite set of n points $X_{n}=\{1,2, \ldots, n\}$. Recall that $\operatorname{Aut}\left(X_{n}\right) \cong \operatorname{Aut}\left(C\left(X_{n}\right)\right) \cong S_{n}$, the permutation group.
- Today's Goal: To study the analogue of S_{n} within the framework of compact quantum groups, and discuss some of their operator algebraic aspects.
- To quantize S_{n} : Replace S_{n} with the Hopf algebra $C\left(S_{n}\right)$, then "deform" $C\left(S_{n}\right)$ to get a genuine quantum group.
- Let $U: S_{n} \hookrightarrow M_{n}(\mathbb{C}) ; U(g)=\left[u_{i j}(g)\right] \in M_{n}(\mathbb{C})$ be the "permutation matrix" representation.
- Easy to check: The coordinate functions $u_{i j}: S_{n} \rightarrow \mathbb{C}$ generate $C\left(S_{n}\right)$, obviously commute, and satisfy:

$$
u_{i j}=u_{i j}^{*}=u_{i j}^{2} \text { and } U=\left[u_{i j}\right] \text { is unitary in } M_{n}\left(C\left(S_{n}\right)\right)
$$

Hopf algebra maps Δ, κ, ϵ on $C\left(S_{n}\right)$ encode group structure of S_{n} :

$$
\underbrace{\Delta u_{i j}=\sum_{k} u_{i k} \otimes u_{k j}}_{\text {coproduct } \Delta f(x, y)=f(x y)}, \underbrace{\kappa\left(u_{i j}\right)=u_{j i}}_{\text {co-inverse } \kappa f(x)=f\left(x^{-1}\right)}, \quad \underbrace{\epsilon\left(u_{i j}\right)=\delta_{i j}}_{\text {co-unit } \epsilon f=f(e)}
$$

The quantum permutation group S_{n}^{+}

Definition/Theorem (Wang 1998)
Consider the universal unital C*-algebra

$$
A_{s}(n)=C^{*}\left(\left\{v_{i j}\right\}_{i, j=1}^{n} \mid V=\left[v_{i j}\right] \text { is unitary \& } v_{i j}=v_{i j}^{2}=v_{i j}^{*}\right),
$$

and endow $A_{s}(n)$ with a Hopf C^{*}-algebra structure just like $C\left(S_{n}\right)$:

$$
\begin{aligned}
& \text { (coproduct) } \Delta: A_{s}(n) \rightarrow A_{s}(n) \otimes A_{s}(n) ; \quad \Delta v_{i j}=\sum_{k} v_{i k} \otimes v_{k j}, \\
& \text { (co-inverse) } \kappa: A_{s}(n) \rightarrow A_{s}(n)^{\text {op } ; ~} \kappa\left(v_{i j}\right)=v_{j i}, \\
& \text { (co-unit) } \epsilon: A_{s}(n) \rightarrow \mathbb{C} ; \quad \epsilon\left(v_{i j}\right)=\delta_{i j} .
\end{aligned}
$$

The quantum permutation group S_{n}^{+}

Definition/Theorem (Wang 1998)
Consider the universal unital C*-algebra

$$
A_{s}(n)=C^{*}\left(\left\{v_{i j}\right\}_{i, j=1}^{n} \mid V=\left[v_{i j}\right] \text { is unitary \& } v_{i j}=v_{i j}^{2}=v_{i j}^{*}\right),
$$

and endow $A_{s}(n)$ with a Hopf C^{*}-algebra structure just like $C\left(S_{n}\right)$:

$$
\begin{aligned}
& \text { (coproduct) } \Delta: A_{s}(n) \rightarrow A_{s}(n) \otimes A_{s}(n) ; \quad \Delta v_{i j}=\sum_{k} v_{i k} \otimes v_{k j}, \\
& \text { (co-inverse) } \kappa: A_{s}(n) \rightarrow A_{s}(n)^{\text {op } ; ~} \quad \kappa\left(v_{i j}\right)=v_{j i}, \\
& \text { (co-unit) } \epsilon: A_{s}(n) \rightarrow \mathbb{C} ; \quad \epsilon\left(v_{i j}\right)=\delta_{i j} .
\end{aligned}
$$

$\Longrightarrow S_{n}^{+}:=\left(A_{s}(n), \Delta, \kappa, \epsilon\right)$ is a compact quantum group, called the quantum permutation group.

The quantum permutation group S_{n}^{+}

Definition/Theorem (Wang 1998)
Consider the universal unital C^{*}-algebra

$$
A_{s}(n)=C^{*}\left(\left\{v_{i j}\right\}_{i, j=1}^{n} \mid V=\left[v_{i j}\right] \text { is unitary \& } v_{i j}=v_{i j}^{2}=v_{i j}^{*}\right),
$$

and endow $A_{s}(n)$ with a Hopf C^{*}-algebra structure just like $C\left(S_{n}\right)$:

$$
\begin{aligned}
& \text { (coproduct) } \Delta: A_{s}(n) \rightarrow A_{s}(n) \otimes A_{s}(n) ; \quad \Delta v_{i j}=\sum_{k} v_{i k} \otimes v_{k j}, \\
& \text { (co-inverse) } \kappa: A_{s}(n) \rightarrow A_{s}(n)^{\text {op } ; ~} \quad \kappa\left(v_{i j}\right)=v_{j i}, \\
& \text { (co-unit) } \epsilon: A_{s}(n) \rightarrow \mathbb{C} ; \quad \epsilon\left(v_{i j}\right)=\delta_{i j} .
\end{aligned}
$$

$\Longrightarrow S_{n}^{+}:=\left(A_{s}(n), \Delta, \kappa, \epsilon\right)$ is a compact quantum group, called the quantum permutation group.

- Note: \exists natural quotient maps $A_{s}(n) \rightarrow C\left(S_{n}\right) \Longrightarrow S_{n}<S_{n}^{+}$.
- Terminology "quantum permutation group" is justified: S_{n}^{+}is the universal quantum automorphism group acting on $C\left(X_{n}\right)$.

The reduced operator algebras on S_{n}^{+}

- S_{n}^{+}has a unique Haar integral. I.e., a state $h: A_{s}(n) \rightarrow \mathbb{C}$, which is Δ-invariant:

$$
(h \otimes \mathrm{id}) \Delta(x)=(\mathrm{id} \otimes h) \Delta(x)=h(x) 1
$$

- Do the GNS construction:
$L^{2}\left(S_{n}^{+}\right)=L^{2}\left(A_{S}(n), h\right), \quad \lambda: A_{s}(N) \rightarrow \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right)$GNS representation.

The reduced operator algebras on S_{n}^{+}

- S_{n}^{+}has a unique Haar integral. I.e., a state $h: A_{s}(n) \rightarrow \mathbb{C}$, which is Δ-invariant:

$$
(h \otimes \mathrm{id}) \Delta(x)=(\mathrm{id} \otimes h) \Delta(x)=h(x) 1
$$

- Do the GNS construction:
$L^{2}\left(S_{n}^{+}\right)=L^{2}\left(A_{S}(n), h\right), \quad \lambda: A_{s}(N) \rightarrow \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right)$GNS representation.
- Get the reduced \mathbf{C}^{*}-algebra and reduced von Neumann algebra:

$$
C_{\mathrm{red}}\left(S_{n}^{+}\right)=\lambda\left(A_{s}(n)\right) \subset \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right), \quad L^{\infty}\left(S_{n}^{+}\right):=\lambda\left(A_{s}(n)\right)^{\prime \prime} .
$$

The reduced operator algebras on S_{n}^{+}

- S_{n}^{+}has a unique Haar integral. I.e., a state $h: A_{s}(n) \rightarrow \mathbb{C}$, which is Δ-invariant:

$$
(h \otimes \mathrm{id}) \Delta(x)=(\mathrm{id} \otimes h) \Delta(x)=h(x) 1
$$

- Do the GNS construction:
$L^{2}\left(S_{n}^{+}\right)=L^{2}\left(A_{S}(n), h\right), \quad \lambda: A_{s}(N) \rightarrow \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right)$GNS representation.
- Get the reduced \mathbf{C}^{*}-algebra and reduced von Neumann algebra:

$$
C_{\text {red }}\left(S_{n}^{+}\right)=\lambda\left(A_{s}(n)\right) \subset \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right), \quad L^{\infty}\left(S_{n}^{+}\right):=\lambda\left(A_{s}(n)\right)^{\prime \prime} .
$$

- Heuristic Model: $A_{s}(N)=C_{\text {full }}^{*}\left(\widehat{S_{n}^{+}}\right), C_{\text {red }}\left(S_{n}^{+}\right)=C_{\text {red }}^{*}\left(\widehat{S_{n}^{+}}\right)$and $L^{\infty}\left(S_{n}^{+}\right)=\mathcal{L}\left(\widehat{S_{n}^{+}}\right)$, where $\widehat{S_{n}^{+}}$is the dual discrete quantum group.

The reduced operator algebras on S_{n}^{+}

- S_{n}^{+}has a unique Haar integral. I.e., a state $h: A_{s}(n) \rightarrow \mathbb{C}$, which is Δ-invariant:

$$
(h \otimes \mathrm{id}) \Delta(x)=(\mathrm{id} \otimes h) \Delta(x)=h(x) 1
$$

- Do the GNS construction:
$L^{2}\left(S_{n}^{+}\right)=L^{2}\left(A_{S}(n), h\right), \quad \lambda: A_{s}(N) \rightarrow \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right)$GNS representation.
- Get the reduced \mathbf{C}^{*}-algebra and reduced von Neumann algebra:

$$
C_{\text {red }}\left(S_{n}^{+}\right)=\lambda\left(A_{s}(n)\right) \subset \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right), \quad L^{\infty}\left(S_{n}^{+}\right):=\lambda\left(A_{s}(n)\right)^{\prime \prime} .
$$

- Heuristic Model: $A_{s}(N)=C_{\text {full }}^{*}\left(\widehat{S_{n}^{+}}\right), C_{\text {red }}\left(S_{n}^{+}\right)=C_{\text {red }}^{*}\left(\widehat{S_{n}^{+}}\right)$and $L^{\infty}\left(S_{n}^{+}\right)=\mathcal{L}\left(\widehat{S_{n}^{+}}\right)$, where $\widehat{S_{n}^{+}}$is the dual discrete quantum group.
- We will mainly focus on the structure of $L^{\infty}\left(S_{n}^{+}\right)$.

Some known results on S_{n}^{+}and $L^{\infty}\left(S_{n}^{+}\right)$

- (Wang 1998) If $1 \leq n \leq 3, A_{s}(n) \cong C\left(S_{n}\right)$. I.e., $S_{n}=S_{n}^{+}$.
- (Wang 1998) If $n \geq 4, A_{s}(n), C_{\text {red }}\left(S_{n}^{+}\right)$, and $L^{\infty}\left(S_{n}^{+}\right)$) are non-commutative and infinite dimensional.

Some known results on S_{n}^{+}and $L^{\infty}\left(S_{n}^{+}\right)$

- (Wang 1998) If $1 \leq n \leq 3, A_{s}(n) \cong C\left(S_{n}\right)$. I.e., $S_{n}=S_{n}^{+}$.
- (Wang 1998) If $n \geq 4, A_{s}(n), C_{\text {red }}\left(S_{n}^{+}\right)$, and $L^{\infty}\left(S_{n}^{+}\right)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\Longrightarrow L^{\infty}\left(S_{n}^{+}\right)$is a finite vN . algebra

Some known results on S_{n}^{+}and $L^{\infty}\left(S_{n}^{+}\right)$

- (Wang 1998) If $1 \leq n \leq 3, A_{s}(n) \cong C\left(S_{n}\right)$. I.e., $S_{n}=S_{n}^{+}$.
- (Wang 1998) If $n \geq 4, A_{s}(n), C_{\text {red }}\left(S_{n}^{+}\right)$, and $L^{\infty}\left(S_{n}^{+}\right)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\Longrightarrow L^{\infty}\left(S_{n}^{+}\right)$is a finite $v N$. algebra
- (Banica 1999) $L^{\infty}\left(S_{n}^{+}\right) / C_{\text {red }}\left(S_{n}^{+}\right)$injective/nuclear iff $n \leq 4$.

Some known results on S_{n}^{+}and $L^{\infty}\left(S_{n}^{+}\right)$

- (Wang 1998) If $1 \leq n \leq 3, A_{s}(n) \cong C\left(S_{n}\right)$. I.e., $S_{n}=S_{n}^{+}$.
- (Wang 1998) If $n \geq 4, A_{s}(n), C_{\text {red }}\left(S_{n}^{+}\right)$, and $L^{\infty}\left(S_{n}^{+}\right)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\Longrightarrow L^{\infty}\left(S_{n}^{+}\right)$is a finite vN . algebra
- (Banica 1999) $L^{\infty}\left(S_{n}^{+}\right) / C_{\text {red }}\left(S_{n}^{+}\right)$injective/nuclear iff $n \leq 4$.
- (Banica+Collins 2008) At $n=4, \exists$ explicit embedding

$$
L^{\infty}\left(S_{4}^{+}\right) \hookrightarrow M_{4}(\mathbb{C}) \bar{\otimes} L^{\infty}\left(S U_{2}\right)
$$

Some known results on S_{n}^{+}and $L^{\infty}\left(S_{n}^{+}\right)$

- (Wang 1998) If $1 \leq n \leq 3, A_{s}(n) \cong C\left(S_{n}\right)$. I.e., $S_{n}=S_{n}^{+}$.
- (Wang 1998) If $n \geq 4, A_{s}(n), C_{\text {red }}\left(S_{n}^{+}\right)$, and $L^{\infty}\left(S_{n}^{+}\right)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\Longrightarrow L^{\infty}\left(S_{n}^{+}\right)$is a finite $v N$. algebra
- (Banica 1999) $L^{\infty}\left(S_{n}^{+}\right) / C_{\text {red }}\left(S_{n}^{+}\right)$injective/nuclear iff $n \leq 4$.
- (Banica+Collins 2008) At $n=4, \exists$ explicit embedding

$$
L^{\infty}\left(S_{4}^{+}\right) \hookrightarrow M_{4}(\mathbb{C}) \bar{\otimes} L^{\infty}\left(S U_{2}\right) .
$$

- (Banica+Collins 2007, Curran 2009) The projections $\left\{\lambda\left(v_{i j}\right)\right\}_{i, j=1}^{n} \subset L^{\infty}\left(S_{n}^{+}\right)$are asymptotically free as $n \rightarrow \infty$.

Some known results on S_{n}^{+}and $L^{\infty}\left(S_{n}^{+}\right)$

- (Wang 1998) If $1 \leq n \leq 3, A_{s}(n) \cong C\left(S_{n}\right)$. I.e., $S_{n}=S_{n}^{+}$.
- (Wang 1998) If $n \geq 4, A_{s}(n), C_{\text {red }}\left(S_{n}^{+}\right)$, and $L^{\infty}\left(S_{n}^{+}\right)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\Longrightarrow L^{\infty}\left(S_{n}^{+}\right)$is a finite $v N$. algebra
- (Banica 1999) $L^{\infty}\left(S_{n}^{+}\right) / C_{\text {red }}\left(S_{n}^{+}\right)$injective/nuclear iff $n \leq 4$.
- (Banica+Collins 2008) At $n=4, \exists$ explicit embedding

$$
L^{\infty}\left(S_{4}^{+}\right) \hookrightarrow M_{4}(\mathbb{C}) \bar{\otimes} L^{\infty}\left(S U_{2}\right) .
$$

- (Banica+Collins 2007, Curran 2009) The projections $\left\{\lambda\left(v_{i j}\right)\right\}_{i, j=1}^{n} \subset L^{\infty}\left(S_{n}^{+}\right)$are asymptotically free as $n \rightarrow \infty$.
- (Köstler+Speicher 2008) Free independence (with amalgamation) is characterized by invariance under quantum permutations by S_{n}^{+}.

Some known results on S_{n}^{+}and $L^{\infty}\left(S_{n}^{+}\right)$

- (Wang 1998) If $1 \leq n \leq 3, A_{s}(n) \cong C\left(S_{n}\right)$. I.e., $S_{n}=S_{n}^{+}$.
- (Wang 1998) If $n \geq 4, A_{s}(n), C_{\text {red }}\left(S_{n}^{+}\right)$, and $L^{\infty}\left(S_{n}^{+}\right)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\Longrightarrow L^{\infty}\left(S_{n}^{+}\right)$is a finite vN . algebra
- (Banica 1999) $L^{\infty}\left(S_{n}^{+}\right) / C_{\text {red }}\left(S_{n}^{+}\right)$injective/nuclear iff $n \leq 4$.
- (Banica+Collins 2008) At $n=4, \exists$ explicit embedding

$$
L^{\infty}\left(S_{4}^{+}\right) \hookrightarrow M_{4}(\mathbb{C}) \bar{\otimes} L^{\infty}\left(S U_{2}\right) .
$$

- (Banica+Collins 2007, Curran 2009) The projections $\left\{\lambda\left(v_{i j}\right)\right\}_{i, j=1}^{n} \subset L^{\infty}\left(S_{n}^{+}\right)$are asymptotically free as $n \rightarrow \infty$.
- (Köstler+Speicher 2008) Free independence (with amalgamation) is characterized by invariance under quantum permutations by S_{n}^{+}.

Question (Banica+Collins 2008)
What can be said about $L^{\infty}\left(S_{n}^{+}\right) n \geq 5$? Is it a I_{1}-factor?

Approximation, factoriality and fullness for $L^{\infty}\left(S_{n}^{+}\right)$

In the non-injective regime $n \geq 5$:
Theorem (B. 2011)
If $n \geq 8, L^{\infty}\left(S_{n}^{+}\right)$is a full type I_{1}-factor. Moreover, $L^{\infty}\left(S_{n}^{+}\right)$has the Haagerup property (HP) for all $n \geq 5$.

Approximation, factoriality and fullness for $L^{\infty}\left(S_{n}^{+}\right)$

In the non-injective regime $n \geq 5$:
Theorem (B. 2011)
If $n \geq 8, L^{\infty}\left(S_{n}^{+}\right)$is a full type I_{1}-factor. Moreover, $L^{\infty}\left(S_{n}^{+}\right)$has the Haagerup property (HP) for all $n \geq 5$.
Note:

- A finite $v N$. algebra (M, τ) has the HP if \exists a net of τ-preserving, normal, UCP maps $\Phi_{t}: M \rightarrow M$ s.t.

1. $\forall t, \Phi_{t}: L^{2}(M, \tau) \rightarrow L^{2}(M, \tau)$ is compact,
2. $\forall x \in M, \lim _{t}\left\|\Phi_{t} x-x\right\|_{2}=0$.

Approximation, factoriality and fullness for $L^{\infty}\left(S_{n}^{+}\right)$

In the non-injective regime $n \geq 5$:
Theorem (B. 2011)
If $n \geq 8, L^{\infty}\left(S_{n}^{+}\right)$is a full type I_{1}-factor. Moreover, $L^{\infty}\left(S_{n}^{+}\right)$has the Haagerup property (HP) for all $n \geq 5$.
Note:

- A finite $v N$. algebra (M, τ) has the HP if \exists a net of τ-preserving, normal, UCP maps $\Phi_{t}: M \rightarrow M$ s.t.

1. $\forall t, \Phi_{t}: L^{2}(M, \tau) \rightarrow L^{2}(M, \tau)$ is compact,
2. $\forall x \in M, \lim _{t}\left\|\Phi_{t} x-x\right\|_{2}=0$.

- A I_{1}-factor (M, τ) is full (or non-Gamma) if for any sequence

$$
\begin{aligned}
& \left\{x_{n}\right\}_{n} \subset \mathcal{U}(M) \quad \text { s.t. }\left\|x_{n} y-y x_{n}\right\|_{2} \rightarrow 0 \forall y \in M \\
& \quad \Longrightarrow\left\|x_{n}-\tau\left(x_{n}\right) 1\right\|_{2} \rightarrow 0
\end{aligned}
$$

Approximation, factoriality and fullness for $L^{\infty}\left(S_{n}^{+}\right)$

In the non-injective regime $n \geq 5$:

Theorem (B. 2011)

If $n \geq 8, L^{\infty}\left(S_{n}^{+}\right)$is a full type I_{1}-factor. Moreover, $L^{\infty}\left(S_{n}^{+}\right)$has the Haagerup property (HP) for all $n \geq 5$.

Note:

- A finite vN . algebra (M, τ) has the HP if \exists a net of τ-preserving, normal, UCP maps $\Phi_{t}: M \rightarrow M$ s.t.

$$
\text { 1. } \forall t, \Phi_{t}: L^{2}(M, \tau) \rightarrow L^{2}(M, \tau) \text { is compact, }
$$

$$
\text { 2. } \forall x \in M, \lim _{t}\left\|\Phi_{t} x-x\right\|_{2}=0 \text {. }
$$

- A I_{1}-factor (M, τ) is full (or non-Gamma) if for any sequence

$$
\begin{aligned}
& \left\{x_{n}\right\}_{n} \subset \mathcal{U}(M) \quad \text { s.t. }\left\|x_{n} y-y x_{n}\right\|_{2} \rightarrow 0 \forall y \in M \\
& \quad \Longrightarrow\left\|x_{n}-\tau\left(x_{n}\right) 1\right\|_{2} \rightarrow 0
\end{aligned}
$$

- Classical examples of $v N$. algebras with above properties are $\mathcal{L}\left(\mathbb{F}_{n}\right)$, $n \geq 2$ (or $\mathcal{L}(\Gamma)$ for any non-amenable i.c.c. hyperbolic group Γ).
- Factoriality/fullness remains open when $5 \leq n \leq 7$!

About the proofs

Our analysis of $L^{\infty}\left(S_{n}^{+}\right)$is based on the representation theory of S_{n}^{+}.

About the proofs

Our analysis of $L^{\infty}\left(S_{n}^{+}\right)$is based on the representation theory of S_{n}^{+}. Definition
A d-dimensional unitary representation of S_{n}^{+}is a unitary operator $W=\left[w_{i j}\right] \in M_{d}\left(A_{S}(n)\right)$ s.t. $\Delta w_{i j}=\sum_{k=1}^{d} w_{i k} \otimes w_{k j} \forall i, j$.

About the proofs

Our analysis of $L^{\infty}\left(S_{n}^{+}\right)$is based on the representation theory of S_{n}^{+}. Definition
A d-dimensional unitary representation of S_{n}^{+}is a unitary operator $W=\left[w_{i j}\right] \in M_{d}\left(A_{S}(n)\right)$ s.t. $\Delta w_{i j}=\sum_{k=1}^{d} w_{i k} \otimes w_{k j} \forall i, j$.
Obvious examples: Trivial representation $1_{A_{s}(n)} \in A_{s}(n)$, fundamental representation $V=\left[v_{i j}\right] \in M_{n}\left(A_{s}(n)\right)$.

About the proofs

Our analysis of $L^{\infty}\left(S_{n}^{+}\right)$is based on the representation theory of S_{n}^{+}. Definition
A d-dimensional unitary representation of S_{n}^{+}is a unitary operator $W=\left[w_{i j}\right] \in M_{d}\left(A_{S}(n)\right)$ s.t. $\Delta w_{i j}=\sum_{k=1}^{d} w_{i k} \otimes w_{k j} \forall i, j$.
Obvious examples: Trivial representation $1_{A_{s}(n)} \in A_{s}(n)$, fundamental representation $V=\left[v_{i j}\right] \in M_{n}\left(A_{s}(n)\right)$.
Usual constructions: Direct sum $W^{1} \oplus W^{2}$, tensor products $W^{1} \boxtimes W^{2}=\left[w_{i j}^{1} w_{k l}^{2}\right] \in M_{d_{1} d_{2}}\left(A_{s}(n)\right)$, conjugate representation $\bar{W}=\left[w_{i j}^{*}\right]$, unitary equivalence \sim and irreducibility.

About the proofs

Our analysis of $L^{\infty}\left(S_{n}^{+}\right)$is based on the representation theory of S_{n}^{+}. Definition
A d-dimensional unitary representation of S_{n}^{+}is a unitary operator $W=\left[w_{i j}\right] \in M_{d}\left(A_{S}(n)\right)$ s.t. $\Delta w_{i j}=\sum_{k=1}^{d} w_{i k} \otimes w_{k j} \forall i, j$.
Obvious examples: Trivial representation $1_{A_{s}(n)} \in A_{s}(n)$, fundamental representation $V=\left[v_{i j}\right] \in M_{n}\left(A_{s}(n)\right)$.
Usual constructions: Direct sum $W^{1} \oplus W^{2}$, tensor products $W^{1} \boxtimes W^{2}=\left[w_{i j}^{1} w_{k l}^{2}\right] \in M_{d_{1} d_{2}}\left(A_{s}(n)\right)$, conjugate representation $\bar{W}=\left[w_{i j}^{*}\right]$, unitary equivalence \sim and irreducibility.
Theorem (Banica 1999)
\exists a maximal family of inequivalent finite dimensional irreducible unitary reps. $\left\{W^{\times}\right\}_{x=0}^{\infty}$, where $W^{x}=\left[w_{i j}^{\times}\right] \in M_{d_{x}}\left(A_{s}(n)\right)$, such that

- $W^{0}=1_{A_{s}(N)}, V \cong W^{0} \oplus W^{1}$,
- $W^{x} \sim \overline{W^{x}},(x \geq 0)$.
- $W^{1} \boxtimes W^{x} \sim W^{x+1} \oplus W^{x} \oplus W^{x-1},(x \geq 1)$ "fusion rules".

About the proofs

Our analysis of $L^{\infty}\left(S_{n}^{+}\right)$is based on the representation theory of S_{n}^{+}. Definition
A d-dimensional unitary representation of S_{n}^{+}is a unitary operator $W=\left[w_{i j}\right] \in M_{d}\left(A_{S}(n)\right)$ s.t. $\Delta w_{i j}=\sum_{k=1}^{d} w_{i k} \otimes w_{k j} \forall i, j$.
Obvious examples: Trivial representation $1_{A_{s}(n)} \in A_{s}(n)$, fundamental representation $V=\left[v_{i j}\right] \in M_{n}\left(A_{s}(n)\right)$.
Usual constructions: Direct sum $W^{1} \oplus W^{2}$, tensor products $W^{1} \boxtimes W^{2}=\left[w_{i j}^{1} w_{k l}^{2}\right] \in M_{d_{1} d_{2}}\left(A_{s}(n)\right)$, conjugate representation
$\bar{W}=\left[w_{i j}^{*}\right]$, unitary equivalence \sim and irreducibility.
Theorem (Banica 1999)
\exists a maximal family of inequivalent finite dimensional irreducible unitary reps. $\left\{W^{\times}\right\}_{x=0}^{\infty}$, where $W^{x}=\left[w_{i j}^{\times}\right] \in M_{d_{x}}\left(A_{s}(n)\right)$, such that

- $W^{0}=1_{A_{s}(N)}, V \cong W^{0} \oplus W^{1}$,
- $W^{x} \sim \overline{W^{x}},(x \geq 0)$.
- $W^{1} \boxtimes W^{x} \sim W^{x+1} \oplus W^{x} \oplus W^{x-1},(x \geq 1)$ "fusion rules".

Peter-Weyl decomposition of L^{2} :
$L^{2}\left(S_{n}^{+}\right)=\bigoplus_{x \geq 0} L_{x}^{2}\left(S_{n}^{+}\right), \quad L_{x}^{2}\left(S_{n}^{+}\right)=\operatorname{span}\left\{\Lambda_{h}\left(w_{i j}^{\times}\right): 1 \leq i, j \leq d_{x}\right\}$.

The Haagerup property

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}\left(S_{n}^{+}\right)$: To each $\psi \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$, associate

$$
M_{\psi}=\bigoplus_{x \geq 0} \psi(x) \operatorname{id}_{L^{2}\left(S_{n}^{+}\right)} \in \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right) .
$$

The Haagerup property

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}\left(S_{n}^{+}\right)$: To each $\psi \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$, associate

$$
M_{\psi}=\bigoplus_{x \geq 0} \psi(x) \operatorname{id}_{L^{2}\left(S_{n}^{+}\right)} \in \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right) .
$$

Call ψ a radial multiplier if M_{ψ} restricts to a NUCP map on $L^{\infty}\left(S_{n}^{+}\right)$.

The Haagerup property

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}\left(S_{n}^{+}\right)$: To each $\psi \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$, associate

$$
M_{\psi}=\bigoplus_{x \geq 0} \psi(x) \operatorname{id}_{L^{2}\left(S_{n}^{+}\right)} \in \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right)
$$

Call ψ a radial multiplier if M_{ψ} restricts to a NUCP map on $L^{\infty}\left(S_{n}^{+}\right)$.
Proposition (B. 2011)
For $x \in \mathbb{N}_{0}$, consider the character $\chi_{x}=(\operatorname{Tr} \otimes i d) W^{x} \in A_{s}(n)$. Then $\psi \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$ is a radial multiplier iff \exists a state $\psi \in C^{*}\left(\chi_{x}: x \in \mathbb{N}_{0}\right)^{*}$ s.t.

$$
\psi(x)=\frac{\varphi\left(\chi_{x}\right)}{\operatorname{dim} W^{x}}
$$

The Haagerup property

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}\left(S_{n}^{+}\right)$: To each $\psi \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$, associate

$$
M_{\psi}=\bigoplus_{x \geq 0} \psi(x) \operatorname{id}_{L^{2}\left(S_{n}^{+}\right)} \in \mathcal{B}\left(L^{2}\left(S_{n}^{+}\right)\right)
$$

Call ψ a radial multiplier if M_{ψ} restricts to a NUCP map on $L^{\infty}\left(S_{n}^{+}\right)$.
Proposition (B. 2011)
For $x \in \mathbb{N}_{0}$, consider the character $\chi_{x}=(\operatorname{Tr} \otimes i d) W^{x} \in A_{s}(n)$. Then $\psi \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$ is a radial multiplier iff \exists a state $\psi \in C^{*}\left(\chi_{x}: x \in \mathbb{N}_{0}\right)^{*}$ s.t.

$$
\psi(x)=\frac{\varphi\left(\chi_{x}\right)}{\operatorname{dim} W^{x}}
$$

- But since

$$
W^{1} \boxtimes W^{x} \sim W^{x+1} \oplus W^{x} \oplus W^{x-1} \Longrightarrow \chi_{1} \chi_{x}=\chi_{x+1}+\chi_{x}+\chi_{x-1}
$$

$$
\Longrightarrow C^{*}\left(\chi_{x}: x \in \mathbb{N}_{0}\right)=C^{*}\left(1, \chi_{1}\right)-\text { commutative! }
$$

The Haagerup property

- Write $C^{*}\left(1, \chi_{1}\right)=C^{*}\left(1, \chi_{1}+1\right) \cong C\left(\right.$ spectrum $\left.\left(1+\chi_{1}\right)\right)$. Since $V=\left[v_{i j}\right] \cong 1 \oplus W^{1}$,

$$
1+\chi_{1}=\chi_{v}=\sum_{i=1}^{n} v_{i i} .
$$

The Haagerup property

- Write $C^{*}\left(1, \chi_{1}\right)=C^{*}\left(1, \chi_{1}+1\right) \cong C\left(\right.$ spectrum $\left.\left(1+\chi_{1}\right)\right)$. Since $V=\left[v_{i j}\right] \cong 1 \oplus W^{1}$,

$$
1+\chi_{1}=\chi_{v}=\sum_{i=1}^{n} v_{i j} .
$$

- When $n \geq 4$, easy to show that

$$
\operatorname{spectrum}\left(\sum_{i} v_{i i}\right)=[0, n] \Longrightarrow C^{*}\left(1, \chi_{1}\right) \cong C([0, n]) \text {, }
$$

by considering some quotients of $A_{s}(n)$. (Ex. $C_{\text {red }}\left(S_{n}^{+}\right)$,
$C^{*}\left(\mathbb{Z}_{2}^{*[n / 2]}\right)$).

The Haagerup property

- Write $C^{*}\left(1, \chi_{1}\right)=C^{*}\left(1, \chi_{1}+1\right) \cong C\left(\operatorname{spectrum}\left(1+\chi_{1}\right)\right)$. Since $V=\left[v_{i j}\right] \cong 1 \oplus W^{1}$,

$$
1+\chi_{1}=\chi_{v}=\sum_{i=1}^{n} v_{i i} .
$$

- When $n \geq 4$, easy to show that

$$
\operatorname{spectrum}\left(\sum_{i} v_{i i}\right)=[0, n] \Longrightarrow C^{*}\left(1, \chi_{1}\right) \cong C([0, n])
$$

by considering some quotients of $A_{s}(n)$. (Ex. $C_{\text {red }}\left(S_{n}^{+}\right)$,
$C^{*}\left(\mathbb{Z}_{2}^{*[n / 2]}\right)$).

- Consequence: Radial multipliers \Longleftrightarrow Borel probability measures on $[0, n]$.

The Haagerup property

- Write $C^{*}\left(1, \chi_{1}\right)=C^{*}\left(1, \chi_{1}+1\right) \cong C\left(\operatorname{spectrum}\left(1+\chi_{1}\right)\right)$. Since $V=\left[v_{i j}\right] \cong 1 \oplus W^{1}$,

$$
1+\chi_{1}=\chi_{v}=\sum_{i=1}^{n} v_{i i} .
$$

- When $n \geq 4$, easy to show that

$$
\operatorname{spectrum}\left(\sum_{i} v_{i i}\right)=[0, n] \Longrightarrow C^{*}\left(1, \chi_{1}\right) \cong C([0, n])
$$

by considering some quotients of $A_{s}(n)$. (Ex. $C_{\text {red }}\left(S_{n}^{+}\right)$,
$C^{*}\left(\mathbb{Z}_{2}^{*[n / 2]}\right)$).

- Consequence: Radial multipliers \Longleftrightarrow Borel probability measures on $[0, n]$.
- Taking dirac measures $\delta_{t}(4<t<n)$ yields a net of radial multipliers $M_{\psi_{t}}$ s.t. $0<\psi_{t}(x) \leq C(t / n)^{x}$ and $\lim _{t \rightarrow n} M_{\psi_{t}}=$ id pointwise $\Longrightarrow \mathrm{HP}$.

Factoriality and fullness

- Consider the irrep. $W^{1}=\left[w_{i j}^{1}\right] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\left\{e_{i}\right\}_{i=1}^{n-1}$. Observe: $L^{\infty}\left(S_{n}^{+}\right)=\left\{\lambda\left(w_{i j}^{1}\right)\right\}^{\prime \prime}$.

Factoriality and fullness

- Consider the irrep. $W^{1}=\left[w_{i j}^{1}\right] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\left\{e_{i}\right\}_{i=1}^{n-1}$. Observe: $L^{\infty}\left(S_{n}^{+}\right)=\left\{\lambda\left(w_{i j}^{1}\right)\right\}^{\prime \prime}$.
- Study factoriality via the "commutator map"

$$
\begin{aligned}
& T: L^{\infty}\left(S_{n}^{+}\right) \rightarrow \mathbb{C}^{n-1} \otimes L^{\infty}\left(S_{n}^{+}\right) \otimes \mathbb{C}^{n-1}, \\
& T y=\sum_{1 \leq i, j \leq n} e_{j} \otimes\left(\lambda\left(w_{i j}^{1}\right) y-y \lambda\left(w_{i j}^{1}\right)\right) \otimes e_{i} \quad\left(y \in L^{\infty}\left(S_{n}^{+}\right)\right) .
\end{aligned}
$$

Factoriality and fullness

- Consider the irrep. $W^{1}=\left[w_{i j}^{1}\right] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\left\{e_{i}\right\}_{i=1}^{n-1}$. Observe: $L^{\infty}\left(S_{n}^{+}\right)=\left\{\lambda\left(w_{i j}^{1}\right)\right\}^{\prime \prime}$.
- Study factoriality via the "commutator map"

$$
\begin{aligned}
& T: L^{\infty}\left(S_{n}^{+}\right) \rightarrow \mathbb{C}^{n-1} \otimes L^{\infty}\left(S_{n}^{+}\right) \otimes \mathbb{C}^{n-1}, \\
& T y=\sum_{1 \leq i, j \leq n} e_{j} \otimes\left(\lambda\left(w_{i j}^{1}\right) y-y \lambda\left(w_{i j}^{1}\right)\right) \otimes e_{i} \quad\left(y \in L^{\infty}\left(S_{n}^{+}\right)\right) .
\end{aligned}
$$

Proposition (B.)
If $n \geq 8, \exists C(n)>0$ such that

$$
\|T y\|_{\mathbb{C}^{n-1} \otimes L^{2} \otimes \mathbb{C}^{n-1}} \geq C(n)\|y-h(y) 1\|_{2} \quad\left(y \in L^{\infty}\left(S_{n}^{+}\right)\right)
$$

and therefore $L^{\infty}\left(S_{n}^{+}\right)$is a full factor.

Factoriality and fullness

- Consider the irrep. $W^{1}=\left[w_{i j}^{1}\right] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\left\{e_{i}\right\}_{i=1}^{n-1}$. Observe: $L^{\infty}\left(S_{n}^{+}\right)=\left\{\lambda\left(w_{i j}^{1}\right)\right\}^{\prime \prime}$.
- Study factoriality via the "commutator map"

$$
\begin{aligned}
& T: L^{\infty}\left(S_{n}^{+}\right) \rightarrow \mathbb{C}^{n-1} \otimes L^{\infty}\left(S_{n}^{+}\right) \otimes \mathbb{C}^{n-1}, \\
& T y=\sum_{1 \leq i, j \leq n} e_{j} \otimes\left(\lambda\left(w_{i j}^{1}\right) y-y \lambda\left(w_{i j}^{1}\right)\right) \otimes e_{i} \quad\left(y \in L^{\infty}\left(S_{n}^{+}\right)\right) .
\end{aligned}
$$

Proposition (B.)
If $n \geq 8, \exists C(n)>0$ such that

$$
\|T y\|_{\mathbb{C}^{n-1} \otimes L^{2} \otimes \mathbb{C}^{n-1}} \geq C(n)\|y-h(y) 1\|_{2} \quad\left(y \in L^{\infty}\left(S_{n}^{+}\right)\right)
$$

and therefore $L^{\infty}\left(S_{n}^{+}\right)$is a full factor.

- Studying $T \Longleftrightarrow$ comparing $W^{1} \boxtimes W^{x}$ with $W^{x} \boxtimes W^{1}(x \geq 1)$. This is done by working with concrete models for $\left\{W^{x}\right\}_{x \geq 0}$:

Factoriality and fullness

- Consider the irrep. $W^{1}=\left[w_{i j}^{1}\right] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\left\{e_{i}\right\}_{i=1}^{n-1}$. Observe: $L^{\infty}\left(S_{n}^{+}\right)=\left\{\lambda\left(w_{i j}^{1}\right)\right\}^{\prime \prime}$.
- Study factoriality via the "commutator map"

$$
\begin{aligned}
& T: L^{\infty}\left(S_{n}^{+}\right) \rightarrow \mathbb{C}^{n-1} \otimes L^{\infty}\left(S_{n}^{+}\right) \otimes \mathbb{C}^{n-1}, \\
& T y=\sum_{1 \leq i, j \leq n} e_{j} \otimes\left(\lambda\left(w_{i j}^{1}\right) y-y \lambda\left(w_{i j}^{1}\right)\right) \otimes e_{i} \quad\left(y \in L^{\infty}\left(S_{n}^{+}\right)\right) .
\end{aligned}
$$

Proposition (B.)

If $n \geq 8, \exists C(n)>0$ such that

$$
\|T y\|_{\mathbb{C}^{n-1} \otimes L^{2} \otimes \mathbb{C}^{n-1}} \geq C(n)\|y-h(y) 1\|_{2} \quad\left(y \in L^{\infty}\left(S_{n}^{+}\right)\right)
$$

and therefore $L^{\infty}\left(S_{n}^{+}\right)$is a full factor.

- Studying $T \Longleftrightarrow$ comparing $W^{1} \boxtimes W^{x}$ with $W^{x} \boxtimes W^{1}(x \geq 1)$. This is done by working with concrete models for $\left\{W^{x}\right\}_{x \geq 0}$:
- Consider tensor powers of fundamental rep. $V^{\boxtimes x}$ and write W^{x} as the subrepresentation $W^{x}=Q_{x} V^{\boxtimes x} Q_{x} \subset V^{\boxtimes x}$, where

$$
Q_{x}=Q_{x}^{*}=Q_{x}^{2} \in \operatorname{Mor}\left(V^{\boxtimes x}, V^{\boxtimes x}\right)=\left\{S \in M_{n^{x}}(\mathbb{C}) \mid V^{\boxtimes x} S=S V^{\boxtimes x}\right\} .
$$

- (Banica 1999) If $n \geq 4, \operatorname{Mor}\left(V^{\boxtimes x}, V^{\boxtimes x}\right) \cong T L_{2 x}(\sqrt{n})$, the Temperley-Lieb planar algebra at index \sqrt{n}.

$$
T L_{2 x}(\sqrt{n})=C^{*}\left(1, f_{1}, \ldots, f_{2 x-1} \left\lvert\, \begin{array}{c}
f_{i}^{*}=f_{i}=f_{i}^{2}, f_{i} f_{i+1} f_{i}=\frac{1}{\sqrt{n}} f_{i}, \\
f_{i} f_{j}=f_{j} f_{i} \text { when }|i-j| \geq 2
\end{array}\right.\right)
$$

- (Banica 1999) If $n \geq 4, \operatorname{Mor}\left(V^{\boxtimes x}, V^{\boxtimes x}\right) \cong T L_{2 x}(\sqrt{n})$, the Temperley-Lieb planar algebra at index \sqrt{n}.

$$
T L_{2 x}(\sqrt{n})=C^{*}\left(1, f_{1}, \ldots, f_{2 x-1} \left\lvert\, \begin{array}{c}
f_{i}^{*}=f_{i}=f_{i}^{2}, f_{i} f_{i \pm 1} f_{i}=\frac{1}{\sqrt{n}} f_{i}, \\
f_{i} f_{j}=f_{j} f_{i} \text { when }|i-j| \geq 2
\end{array}\right.\right)
$$

Pictorially: $T L_{2 \times}(\sqrt{n})=$ planar algebra spanned by non-crossing pairings of $4 x$ points:

- (Banica 1999) If $n \geq 4, \operatorname{Mor}\left(V^{\boxtimes x}, V^{\boxtimes x}\right) \cong T L_{2 x}(\sqrt{n})$, the Temperley-Lieb planar algebra at index \sqrt{n}.

$$
T L_{2 x}(\sqrt{n})=C^{*}\left(1, f_{1}, \ldots, f_{2 x-1} \left\lvert\, \begin{array}{c}
f_{i}^{*}=f_{i}=f_{i}^{2}, f_{i} f_{i \pm 1} f_{i}=\frac{1}{\sqrt{n}} f_{i}, \\
f_{i} f_{j}=f_{j} f_{i} \text { when }|i-j| \geq 2
\end{array}\right.\right)
$$

Pictorially: $T L_{2 \times}(\sqrt{n})=$ planar algebra spanned by non-crossing pairings of $4 x$ points:

- By considering the Jones-Wenzl projection

$$
p_{2 x}:=1-\sup \left\{f_{1}, \ldots, f_{2 x-1}\right\} \in T L_{2 x}(\sqrt{n}) \cong \operatorname{Mor}\left(V^{\boxtimes x}, V^{\boxtimes x}\right)
$$

can prove $W^{x}=p_{2 x} V^{\boxtimes x} p_{2 x}$ acting on $H_{x}=p_{2 x}\left(\mathbb{C}^{n}\right)^{\otimes x}$.

- (Banica 1999) If $n \geq 4, \operatorname{Mor}\left(V^{\boxtimes x}, V^{\boxtimes x}\right) \cong T L_{2 x}(\sqrt{n})$, the Temperley-Lieb planar algebra at index \sqrt{n}.

$$
T L_{2 x}(\sqrt{n})=C^{*}\left(1, f_{1}, \ldots, f_{2 x-1} \left\lvert\, \begin{array}{c}
f_{i}^{*}=f_{i}=f_{i}^{2}, f_{i} f_{i \pm 1} f_{i}=\frac{1}{\sqrt{n}} f_{i}, \\
f_{i} f_{j}=f_{j} f_{i} \text { when }|i-j| \geq 2
\end{array}\right.\right)
$$

Pictorially: $T L_{2 \times}(\sqrt{n})=$ planar algebra spanned by non-crossing pairings of $4 x$ points:

- By considering the Jones-Wenzl projection

$$
p_{2 x}:=1-\sup \left\{f_{1}, \ldots, f_{2 x-1}\right\} \in T L_{2 x}(\sqrt{n}) \cong \operatorname{Mor}\left(V^{\boxtimes x}, V^{\boxtimes x}\right)
$$

can prove $W^{x}=p_{2 x} V^{\boxtimes x} p_{2 x}$ acting on $H_{x}=p_{2 x}\left(\mathbb{C}^{n}\right)^{\otimes x}$.

- Bounding $\left.T\right|_{(\mathbb{C} 1)^{\perp}}$ from below amounts to showing that the flip

Work in progress

- Can we find other approximation properties for $L^{\infty}\left(S_{n}^{+}\right)$? (Complete) metric approximation property? Is $C_{\text {red }}\left(S_{n}^{+}\right)$exact?

Work in progress

- Can we find other approximation properties for $L^{\infty}\left(S_{n}^{+}\right)$? (Complete) metric approximation property? Is $C_{\text {red }}\left(S_{n}^{+}\right)$exact?
- Is $L^{\infty}\left(S_{n}^{+}\right)$a prime factor?

Work in progress

- Can we find other approximation properties for $L^{\infty}\left(S_{n}^{+}\right)$? (Complete) metric approximation property? Is $C_{\text {red }}\left(S_{n}^{+}\right)$exact?
- Is $L^{\infty}\left(S_{n}^{+}\right)$a prime factor?
- (joint with B. Collins) Is it possible to construct matrix matrix models for $L^{\infty}\left(S_{n}^{+}\right)$?
\rightsquigarrow Connes' embedding property, and free entropy dimension estimates.

