The von Neumann Algebras of Quantum Permutation Groups

Michael Brannan Queen's University

CMS Winter Meeting December 10, 2011.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider a finite set of n points X_n = {1,2,...,n}. Recall that Aut(X_n) ≅ Aut(C(X_n)) ≅ S_n, the permutation group.

- Consider a finite set of n points X_n = {1, 2, ..., n}. Recall that Aut(X_n) ≅ Aut(C(X_n)) ≅ S_n, the permutation group.
- Today's Goal: To study the analogue of S_n within the framework of compact quantum groups, and discuss some of their operator algebraic aspects.

- Consider a finite set of n points X_n = {1, 2, ..., n}. Recall that Aut(X_n) ≅ Aut(C(X_n)) ≅ S_n, the permutation group.
- Today's Goal: To study the analogue of S_n within the framework of compact quantum groups, and discuss some of their operator algebraic aspects.
- ► To quantize S_n: Replace S_n with the Hopf algebra C(S_n), then "deform" C(S_n) to get a genuine quantum group.
- Let U : S_n → M_n(ℂ); U(g) = [u_{ij}(g)] ∈ M_n(ℂ) be the "permutation matrix" representation.
- ► Easy to check: The coordinate functions u_{ij} : S_n → C generate C(S_n), obviously commute, and satisfy:

 $u_{ij} = u_{ij}^* = u_{ij}^2$ and $U = [u_{ij}]$ is unitary in $M_n(C(S_n))$.

- Consider a finite set of n points X_n = {1, 2, ..., n}. Recall that Aut(X_n) ≅ Aut(C(X_n)) ≅ S_n, the permutation group.
- Today's Goal: To study the analogue of S_n within the framework of compact quantum groups, and discuss some of their operator algebraic aspects.
- ► To quantize S_n: Replace S_n with the Hopf algebra C(S_n), then "deform" C(S_n) to get a genuine quantum group.
- Let U : S_n → M_n(ℂ); U(g) = [u_{ij}(g)] ∈ M_n(ℂ) be the "permutation matrix" representation.
- ► Easy to check: The coordinate functions u_{ij} : S_n → C generate C(S_n), obviously commute, and satisfy:

 $u_{ij} = u_{ij}^* = u_{ij}^2$ and $U = [u_{ij}]$ is unitary in $M_n(C(S_n))$.

Hopf algebra maps Δ, κ, ϵ on $C(S_n)$ encode group structure of S_n :

$$\Delta u_{ij} = \sum_{k} u_{ik} \otimes u_{kj}, \qquad \underbrace{\kappa(u_{ij}) = u_{ji}}_{\text{co-inverse } \kappa f(x) = f(x^{-1})}, \qquad \underbrace{\epsilon(u_{ij}) = \delta_{ij}}_{\text{co-unit } \epsilon f = f(e)}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The quantum permutation group S_n^+

Definition/Theorem (Wang 1998)

Consider the universal unital C*-algebra

$$A_{s}(n) = C^{*} \Big(\{ v_{ij} \}_{i,j=1}^{n} \mid V = [v_{ij}] \text{ is unitary } \& v_{ij} = v_{ij}^{2} = v_{ij}^{*} \Big),$$

and endow $A_s(n)$ with a Hopf C*-algebra structure just like $C(S_n)$:

$$\begin{array}{ll} (\text{coproduct}) \ \Delta : A_s(n) \to A_s(n) \otimes A_s(n); & \Delta v_{ij} = \sum_k v_{ik} \otimes v_{kj}, \\ (\text{co-inverse}) \ \kappa : A_s(n) \to A_s(n)^{\text{op}}; & \kappa(v_{ij}) = v_{ji}, \\ (\text{co-unit}) \ \epsilon : A_s(n) \to \mathbb{C}; & \epsilon(v_{ij}) = \delta_{ij}. \end{array}$$

The quantum permutation group S_n^+

Definition/Theorem (Wang 1998)

Consider the universal unital C*-algebra

$$A_{s}(n) = C^{*} \Big(\{ v_{ij} \}_{i,j=1}^{n} \mid V = [v_{ij}] \text{ is unitary } \& v_{ij} = v_{ij}^{2} = v_{ij}^{*} \Big),$$

and endow $A_s(n)$ with a Hopf C^{*}-algebra structure just like $C(S_n)$:

$$\begin{array}{ll} (\text{coproduct}) \ \Delta : A_s(n) \to A_s(n) \otimes A_s(n); & \Delta v_{ij} = \sum_k v_{ik} \otimes v_{kj}, \\ (\text{co-inverse}) \ \kappa : A_s(n) \to A_s(n)^{\text{op}}; & \kappa(v_{ij}) = v_{ji}, \\ (\text{co-unit}) \ \epsilon : A_s(n) \to \mathbb{C}; & \epsilon(v_{ij}) = \delta_{ij}. \end{array}$$

 \implies $S_n^+ := (A_s(n), \Delta, \kappa, \epsilon)$ is a compact quantum group, called the **quantum permutation group**.

The quantum permutation group S_n^+

Definition/Theorem (Wang 1998)

Consider the universal unital C*-algebra

$$A_{s}(n) = C^{*} \Big(\{ v_{ij} \}_{i,j=1}^{n} \mid V = [v_{ij}] \text{ is unitary } \& v_{ij} = v_{ij}^{2} = v_{ij}^{*} \Big),$$

and endow $A_s(n)$ with a Hopf C^{*}-algebra structure just like $C(S_n)$:

$$\begin{array}{ll} (\text{coproduct}) \ \Delta : A_s(n) \to A_s(n) \otimes A_s(n); & \Delta v_{ij} = \sum_k v_{ik} \otimes v_{kj}, \\ (\text{co-inverse}) \ \kappa : A_s(n) \to A_s(n)^{\text{op}}; & \kappa(v_{ij}) = v_{ji}, \\ (\text{co-unit}) \ \epsilon : A_s(n) \to \mathbb{C}; & \epsilon(v_{ij}) = \delta_{ij}. \end{array}$$

 \implies $S_n^+ := (A_s(n), \Delta, \kappa, \epsilon)$ is a compact quantum group, called the **quantum permutation group**.

- ▶ Note: \exists natural quotient maps $A_s(n) \twoheadrightarrow C(S_n) \implies S_n < S_n^+$.
- ► Terminology "quantum permutation group" is justified: S⁺_n is the universal quantum automorphism group acting on C(X_n).

► S_n^+ has a unique **Haar integral**. I.e., a state $h : A_s(n) \to \mathbb{C}$, which is Δ -invariant:

$$(h \otimes id)\Delta(x) = (id \otimes h)\Delta(x) = h(x)1.$$

Do the GNS construction:

 $L^2(S_n^+) = L^2(A_S(n), h), \quad \lambda : A_s(N) \to \mathcal{B}(L^2(S_n^+))$ GNS representation.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► S_n^+ has a unique **Haar integral**. I.e., a state $h : A_s(n) \to \mathbb{C}$, which is Δ -invariant:

$$(h \otimes id)\Delta(x) = (id \otimes h)\Delta(x) = h(x)1.$$

Do the GNS construction:

 $L^2(S_n^+) = L^2(A_S(n), h), \quad \lambda : A_s(N) \to \mathcal{B}(L^2(S_n^+))$ GNS representation.

Get the reduced C*-algebra and reduced von Neumann algebra:

$$C_{\mathrm{red}}(S_n^+) = \lambda(A_s(n)) \subset \mathcal{B}(L^2(S_n^+)), \quad L^{\infty}(S_n^+) := \lambda(A_s(n))''.$$

▶ S_n^+ has a unique **Haar integral**. I.e., a state $h : A_s(n) \to \mathbb{C}$, which is Δ -invariant:

$$(h \otimes id)\Delta(x) = (id \otimes h)\Delta(x) = h(x)1.$$

Do the GNS construction:

 $L^2(S_n^+) = L^2(A_S(n), h), \quad \lambda : A_s(N) \to \mathcal{B}(L^2(S_n^+))$ GNS representation.

Get the reduced C*-algebra and reduced von Neumann algebra:

$$C_{\mathrm{red}}(S_n^+) = \lambda(A_s(n)) \subset \mathcal{B}(L^2(S_n^+)), \quad L^{\infty}(S_n^+) := \lambda(A_s(n))''.$$

▶ Heuristic Model: $A_s(N) = C^*_{\text{full}}(\widehat{S_n^+}), \ C_{\text{red}}(S_n^+) = C^*_{\text{red}}(\widehat{S_n^+})$ and $L^{\infty}(S_n^+) = \mathcal{L}(\widehat{S_n^+})$, where $\widehat{S_n^+}$ is the dual discrete quantum group.

► S_n^+ has a unique **Haar integral**. I.e., a state $h: A_s(n) \to \mathbb{C}$, which is Δ -invariant:

$$(h \otimes id)\Delta(x) = (id \otimes h)\Delta(x) = h(x)1.$$

Do the GNS construction:

 $L^2(S_n^+) = L^2(A_S(n), h), \quad \lambda : A_s(N) \to \mathcal{B}(L^2(S_n^+))$ GNS representation.

Get the reduced C*-algebra and reduced von Neumann algebra:

$$C_{\mathrm{red}}(S_n^+) = \lambda(A_s(n)) \subset \mathcal{B}(L^2(S_n^+)), \quad L^{\infty}(S_n^+) := \lambda(A_s(n))''.$$

Heuristic Model: A_s(N) = C^{*}_{full}(S⁺_n), C_{red}(S⁺_n) = C^{*}_{red}(S⁺_n) and L[∞](S⁺_n) = L(S⁺_n), where S⁺_n is the dual discrete quantum group.
 We will mainly focus on the structure of L[∞](S⁺_n).

- (Wang 1998) If $1 \le n \le 3$, $A_s(n) \cong C(S_n)$. I.e., $S_n = S_n^+$.
- (Wang 1998) If $n \ge 4$, $A_s(n)$, $C_{red}(S_n^+)$, and $L^{\infty}(S_n^+)$) are non-commutative and infinite dimensional.

- ▶ (Wang 1998) If $1 \le n \le 3$, $A_s(n) \cong C(S_n)$. I.e., $S_n = S_n^+$.
- ▶ (Wang 1998) If $n \ge 4$, $A_s(n)$, $C_{red}(S_n^+)$, and $L^{\infty}(S_n^+)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\implies L^{\infty}(S_n^+)$ is a finite vN. algebra

- ▶ (Wang 1998) If $1 \le n \le 3$, $A_s(n) \cong C(S_n)$. I.e., $S_n = S_n^+$.
- (Wang 1998) If $n \ge 4$, $A_s(n)$, $C_{red}(S_n^+)$, and $L^{\infty}(S_n^+)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\implies L^{\infty}(S_n^+)$ is a finite vN. algebra

▶ (Banica 1999) $L^{\infty}(S_n^+)/C_{red}(S_n^+)$ injective/nuclear iff $n \leq 4$.

- ▶ (Wang 1998) If $1 \le n \le 3$, $A_s(n) \cong C(S_n)$. I.e., $S_n = S_n^+$.
- (Wang 1998) If $n \ge 4$, $A_s(n)$, $C_{red}(S_n^+)$, and $L^{\infty}(S_n^+)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\implies L^{\infty}(S_n^+)$ is a finite vN. algebra
- ▶ (Banica 1999) $L^{\infty}(S_n^+)/C_{\text{red}}(S_n^+)$ injective/nuclear iff $n \leq 4$.
- ▶ (Banica+Collins 2008) At n = 4, \exists explicit embedding

$$L^{\infty}(S_4^+) \hookrightarrow M_4(\mathbb{C})\overline{\otimes}L^{\infty}(SU_2).$$

- ▶ (Wang 1998) If $1 \le n \le 3$, $A_s(n) \cong C(S_n)$. I.e., $S_n = S_n^+$.
- (Wang 1998) If $n \ge 4$, $A_s(n)$, $C_{red}(S_n^+)$, and $L^{\infty}(S_n^+)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\implies L^{\infty}(S_n^+)$ is a finite vN. algebra
- ▶ (Banica 1999) $L^{\infty}(S_n^+)/C_{\text{red}}(S_n^+)$ injective/nuclear iff $n \leq 4$.
- ▶ (Banica+Collins 2008) At n = 4, \exists explicit embedding

$$L^{\infty}(S_4^+) \hookrightarrow M_4(\mathbb{C})\overline{\otimes}L^{\infty}(SU_2).$$

▶ (Banica+Collins 2007, Curran 2009) The projections $\{\lambda(v_{ij})\}_{i,j=1}^n \subset L^{\infty}(S_n^+)$ are asymptotically free as $n \to \infty$.

- ▶ (Wang 1998) If $1 \le n \le 3$, $A_s(n) \cong C(S_n)$. I.e., $S_n = S_n^+$.
- (Wang 1998) If $n \ge 4$, $A_s(n)$, $C_{red}(S_n^+)$, and $L^{\infty}(S_n^+)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\implies L^{\infty}(S_n^+)$ is a finite vN. algebra
- ▶ (Banica 1999) $L^{\infty}(S_n^+)/C_{\text{red}}(S_n^+)$ injective/nuclear iff $n \leq 4$.
- ▶ (Banica+Collins 2008) At n = 4, \exists explicit embedding

$$L^{\infty}(S_4^+) \hookrightarrow M_4(\mathbb{C})\overline{\otimes}L^{\infty}(SU_2).$$

- ▶ (Banica+Collins 2007, Curran 2009) The projections $\{\lambda(v_{ij})\}_{i,j=1}^n \subset L^{\infty}(S_n^+)$ are asymptotically free as $n \to \infty$.
- (Köstler+Speicher 2008) Free independence (with amalgamation) is characterized by invariance under quantum permutations by S⁺_n.

- ▶ (Wang 1998) If $1 \le n \le 3$, $A_s(n) \cong C(S_n)$. I.e., $S_n = S_n^+$.
- ▶ (Wang 1998) If $n \ge 4$, $A_s(n)$, $C_{red}(S_n^+)$, and $L^{\infty}(S_n^+)$) are non-commutative and infinite dimensional.
- (Wang 1998) The Haar state h is always a trace $\implies L^{\infty}(S_n^+)$ is a finite vN. algebra
- ▶ (Banica 1999) $L^{\infty}(S_n^+)/C_{\text{red}}(S_n^+)$ injective/nuclear iff $n \leq 4$.
- ▶ (Banica+Collins 2008) At n = 4, \exists explicit embedding

$$L^{\infty}(S_4^+) \hookrightarrow M_4(\mathbb{C})\overline{\otimes}L^{\infty}(SU_2).$$

- ▶ (Banica+Collins 2007, Curran 2009) The projections $\{\lambda(v_{ij})\}_{i,j=1}^n \subset L^{\infty}(S_n^+)$ are asymptotically free as $n \to \infty$.
- (Köstler+Speicher 2008) Free independence (with amalgamation) is characterized by invariance under quantum permutations by S⁺_n.

Question (Banica+Collins 2008)

What can be said about $L^{\infty}(S_n^+)$ $n \ge 5$? Is it a I_1 -factor?

In the non-injective regime $n \ge 5$:

Theorem (B. 2011)

If $n \ge 8$, $L^{\infty}(S_n^+)$ is a full type II_1 -factor. Moreover, $L^{\infty}(S_n^+)$ has the Haagerup property (HP) for all $n \ge 5$.

In the non-injective regime $n \ge 5$:

Theorem (B. 2011)

If $n \ge 8$, $L^{\infty}(S_n^+)$ is a full type II_1 -factor. Moreover, $L^{\infty}(S_n^+)$ has the Haagerup property (HP) for all $n \ge 5$.

Note:

A finite vN. algebra (M, τ) has the HP if ∃ a net of τ-preserving, normal, UCP maps Φ_t : M → M s.t.

1. $\forall t, \Phi_t : L^2(M, \tau) \rightarrow L^2(M, \tau)$ is compact,

2.
$$\forall x \in M$$
, $\lim_t \|\Phi_t x - x\|_2 = 0$.

In the non-injective regime $n \ge 5$:

Theorem (B. 2011)

If $n \ge 8$, $L^{\infty}(S_n^+)$ is a full type II_1 -factor. Moreover, $L^{\infty}(S_n^+)$ has the Haagerup property (HP) for all $n \ge 5$.

Note:

- A finite vN. algebra (M, τ) has the HP if ∃ a net of τ-preserving, normal, UCP maps Φ_t : M → M s.t.
 - 1. $\forall t, \Phi_t : L^2(M, \tau) \rightarrow L^2(M, \tau)$ is compact,

2.
$$\forall x \in M$$
, $\lim_t \|\Phi_t x - x\|_2 = 0$.

• A II_1 -factor (M, τ) is **full (or non-Gamma)** if for any sequence

$$\{x_n\}_n \subset \mathcal{U}(M) \quad \text{s.t.} \quad \|x_n y - y x_n\|_2 \to 0 \ \forall y \in M, \\ \implies \|x_n - \tau(x_n)\mathbf{1}\|_2 \to 0.$$

In the non-injective regime $n \ge 5$:

Theorem (B. 2011)

If $n \ge 8$, $L^{\infty}(S_n^+)$ is a full type II_1 -factor. Moreover, $L^{\infty}(S_n^+)$ has the Haagerup property (HP) for all $n \ge 5$.

Note:

- A finite vN. algebra (M, τ) has the HP if ∃ a net of τ-preserving, normal, UCP maps Φ_t : M → M s.t.
 - 1. $\forall t, \Phi_t : L^2(M, \tau) \to L^2(M, \tau)$ is compact,

2.
$$\forall x \in M$$
, $\lim_t \|\Phi_t x - x\|_2 = 0$.

A II_1 -factor (M, τ) is full (or non-Gamma) if for any sequence

$$\{x_n\}_n \subset \mathcal{U}(M) \quad \text{s.t.} \quad \|x_n y - y x_n\|_2 \to 0 \ \forall y \in M, \\ \implies \|x_n - \tau(x_n) 1\|_2 \to 0.$$

 Classical examples of vN. algebras with above properties are L(F_n), n ≥ 2 (or L(Γ) for any non-amenable i.c.c. hyperbolic group Γ).

► Factoriality/fullness remains open when $5 \le n \le 7!$

Our analysis of $L^{\infty}(S_n^+)$ is based on the **representation theory** of S_n^+ .

Our analysis of $L^{\infty}(S_n^+)$ is based on the **representation theory** of S_n^+ . Definition

A *d*-dimensional unitary representation of S_n^+ is a unitary operator $W = [w_{ij}] \in M_d(A_S(n))$ s.t. $\Delta w_{ij} = \sum_{k=1}^d w_{ik} \otimes w_{kj} \ \forall i, j.$

Our analysis of $L^{\infty}(S_n^+)$ is based on the **representation theory** of S_n^+ . Definition

A *d*-dimensional unitary representation of S_n^+ is a unitary operator $W = [w_{ij}] \in M_d(A_S(n))$ s.t. $\Delta w_{ij} = \sum_{k=1}^d w_{ik} \otimes w_{kj} \ \forall i, j$.

Obvious examples: Trivial representation $1_{A_s(n)} \in A_s(n)$, fundamental representation $V = [v_{ij}] \in M_n(A_s(n))$.

(日) (同) (三) (三) (三) (○) (○)

Our analysis of $L^{\infty}(S_n^+)$ is based on the **representation theory** of S_n^+ . Definition

A *d*-dimensional unitary representation of S_n^+ is a unitary operator $W = [w_{ij}] \in M_d(A_S(n))$ s.t. $\Delta w_{ij} = \sum_{k=1}^d w_{ik} \otimes w_{kj} \ \forall i, j$.

Obvious examples: Trivial representation $1_{A_s(n)} \in A_s(n)$, fundamental representation $V = [v_{ij}] \in M_n(A_s(n))$.

Usual constructions: Direct sum $W^1 \oplus W^2$, tensor products $W^1 \boxtimes W^2 = [w_{ij}^1 w_{kl}^2] \in M_{d_1 d_2}(A_s(n))$, conjugate representation $\overline{W} = [w_{ii}^*]$, unitary equivalence \sim and irreducibility.

Our analysis of $L^{\infty}(S_n^+)$ is based on the **representation theory** of S_n^+ . Definition

A *d*-dimensional unitary representation of S_n^+ is a unitary operator $W = [w_{ij}] \in M_d(A_S(n))$ s.t. $\Delta w_{ij} = \sum_{k=1}^d w_{ik} \otimes w_{kj} \ \forall i, j.$

Obvious examples: Trivial representation $1_{A_s(n)} \in A_s(n)$, fundamental representation $V = [v_{ij}] \in M_n(A_s(n))$. **Usual constructions:** Direct sum $W^1 \oplus W^2$, tensor products $W^1 \boxtimes W^2 = [w_{ij}^1 w_{kl}^2] \in M_{d_1d_2}(A_s(n))$, conjugate representation

 $\overline{W} = [w_{ii}^*]$, unitary equivalence \sim and irreducibility.

Theorem (Banica 1999)

 \exists a maximal family of inequivalent finite dimensional irreducible unitary reps. $\{W^x\}_{x=0}^{\infty}$, where $W^x = [w_{ij}^x] \in M_{d_x}(A_s(n))$, such that

•
$$W^0 = \mathbb{1}_{\mathcal{A}_s(\mathcal{N})}, \ \mathcal{V} \cong W^0 \oplus W^1,$$

•
$$W^x \sim \overline{W^x}$$
, $(x \ge 0)$.

▶ $W^1 \boxtimes W^x \sim W^{x+1} \oplus W^x \oplus W^{x-1}$, $(x \ge 1)$ "fusion rules".

Our analysis of $L^{\infty}(S_n^+)$ is based on the **representation theory** of S_n^+ . Definition

A *d*-dimensional unitary representation of S_n^+ is a unitary operator $W = [w_{ij}] \in M_d(A_S(n))$ s.t. $\Delta w_{ij} = \sum_{k=1}^d w_{ik} \otimes w_{kj} \ \forall i, j.$

Obvious examples: Trivial representation $1_{A_s(n)} \in A_s(n)$, fundamental representation $V = [v_{ij}] \in M_n(A_s(n))$. **Usual constructions:** Direct sum $W^1 \oplus W^2$, tensor products $W^1 \boxtimes W^2 = [w_{ij}^1 w_{kl}^2] \in M_{d_1d_2}(A_s(n))$, conjugate representation

 $\overline{W} = [w_{ii}^*]$, unitary equivalence \sim and irreducibility.

Theorem (Banica 1999)

 \exists a maximal family of inequivalent finite dimensional irreducible unitary reps. $\{W^x\}_{x=0}^{\infty}$, where $W^x = [w_{ij}^x] \in M_{d_x}(A_s(n))$, such that

•
$$W^0 = \mathbb{1}_{\mathcal{A}_s(N)}$$
, $V \cong W^0 \oplus W^1$,

•
$$W^x \sim \overline{W^x}$$
, $(x \ge 0)$.

• $W^1 \boxtimes W^x \sim W^{x+1} \oplus W^x \oplus W^{x-1}$, $(x \ge 1)$ "fusion rules".

Peter-Weyl decomposition of L^2 : $L^2(S_n^+) = \bigoplus_{x \ge 0} L_x^2(S_n^+), \quad L_x^2(S_n^+) = span\{\Lambda_h(w_{ij}^x) : 1 \le i, j \le d_x\}.$

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}(S_n^+)$: To each $\psi \in \ell^{\infty}(\mathbb{N}_0)$, associate

$$M_{\psi} = \bigoplus_{x \ge 0} \psi(x) \mathrm{id}_{L^2(S_n^+)} \in \mathcal{B}(L^2(S_n^+)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}(S_n^+)$: To each $\psi \in \ell^{\infty}(\mathbb{N}_0)$, associate

$$M_{\psi} = \bigoplus_{x \ge 0} \psi(x) \mathrm{id}_{L^2(S_n^+)} \in \mathcal{B}(L^2(S_n^+)).$$

Call ψ a radial multiplier if M_{ψ} restricts to a NUCP map on $L^{\infty}(S_n^+)$.

(日) (日) (日) (日) (日) (日) (日) (日)

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}(S_n^+)$: To each $\psi \in \ell^{\infty}(\mathbb{N}_0)$, associate

$$M_{\psi} = \bigoplus_{x \ge 0} \psi(x) \mathrm{id}_{L^2(S_n^+)} \in \mathcal{B}(L^2(S_n^+)).$$

Call ψ a **radial multiplier** if M_{ψ} restricts to a NUCP map on $L^{\infty}(S_n^+)$. Proposition (B. 2011)

For $x \in \mathbb{N}_0$, consider the character $\chi_x = (Tr \otimes id)W^x \in A_s(n)$. Then $\psi \in \ell^{\infty}(\mathbb{N}_0)$ is a radial multiplier iff \exists a state $\psi \in C^*(\chi_x : x \in \mathbb{N}_0)^*$ s.t.

$$\psi(x) = rac{\varphi(\chi_x)}{\dim W^x}.$$

To study the HP, we search for a simple class of NUCP maps on $L^{\infty}(S_n^+)$: To each $\psi \in \ell^{\infty}(\mathbb{N}_0)$, associate

$$M_{\psi} = \bigoplus_{x \ge 0} \psi(x) \mathrm{id}_{L^2(S_n^+)} \in \mathcal{B}(L^2(S_n^+)).$$

Call ψ a **radial multiplier** if M_{ψ} restricts to a NUCP map on $L^{\infty}(S_n^+)$. Proposition (B. 2011)

For $x \in \mathbb{N}_0$, consider the character $\chi_x = (Tr \otimes id)W^x \in A_s(n)$. Then $\psi \in \ell^{\infty}(\mathbb{N}_0)$ is a radial multiplier iff \exists a state $\psi \in C^*(\chi_x : x \in \mathbb{N}_0)^*$ s.t.

$$\psi(x) = rac{\varphi(\chi_x)}{\dim W^x}$$

► But since $W^1 \boxtimes W^x \sim W^{x+1} \oplus W^x \oplus W^{x-1} \implies \chi_1 \chi_x = \chi_{x+1} + \chi_x + \chi_{x-1}$ $\implies C^*(\chi_x : x \in \mathbb{N}_0) = C^*(1, \chi_1) - \text{commutative}!$

▶ Write $C^*(1, \chi_1) = C^*(1, \chi_1 + 1) \cong C(\operatorname{spectrum}(1 + \chi_1))$. Since $V = [v_{ij}] \cong 1 \oplus W^1$,

$$1 + \chi_1 = \chi_V = \sum_{i=1}^n v_{ii}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Write $C^*(1, \chi_1) = C^*(1, \chi_1 + 1) \cong C(\operatorname{spectrum}(1 + \chi_1))$. Since $V = [v_{ij}] \cong 1 \oplus W^1$,

$$1 + \chi_1 = \chi_V = \sum_{i=1}^n v_{ii}.$$

• When $n \ge 4$, easy to show that

spectrum
$$\left(\sum_{i} v_{ii}\right) = [0, n] \implies C^*(1, \chi_1) \cong C([0, n]),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

by considering some quotients of $A_s(n)$. (Ex. $C_{red}(S_n^+)$, $C^*(\mathbb{Z}_2^{*[n/2]})$).

▶ Write $C^*(1, \chi_1) = C^*(1, \chi_1 + 1) \cong C(\operatorname{spectrum}(1 + \chi_1))$. Since $V = [v_{ij}] \cong 1 \oplus W^1$,

$$1 + \chi_1 = \chi_V = \sum_{i=1}^n v_{ii}.$$

• When $n \ge 4$, easy to show that

spectrum
$$\left(\sum_{i} v_{ii}\right) = [0, n] \implies C^*(1, \chi_1) \cong C([0, n]),$$

by considering some quotients of $A_s(n)$. (Ex. $C_{red}(S_n^+)$, $C^*(\mathbb{Z}_2^{*[n/2]})$).

► Consequence: Radial multipliers ⇔ Borel probability measures on [0, n].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Write $C^*(1, \chi_1) = C^*(1, \chi_1 + 1) \cong C(\operatorname{spectrum}(1 + \chi_1))$. Since $V = [v_{ij}] \cong 1 \oplus W^1$,

$$1 + \chi_1 = \chi_V = \sum_{i=1}^n v_{ii}.$$

• When $n \ge 4$, easy to show that

spectrum
$$\left(\sum_{i} v_{ii}\right) = [0, n] \implies C^*(1, \chi_1) \cong C([0, n]),$$

by considering some quotients of $A_s(n)$. (Ex. $C_{red}(S_n^+)$, $C^*(\mathbb{Z}_2^{*[n/2]})$).

- ► Consequence: Radial multipliers ⇔ Borel probability measures on [0, n].
- ► Taking dirac measures δ_t (4 < t < n) yields a net of radial multipliers M_{ψ_t} s.t. $0 < \psi_t(x) \le C(t/n)^x$ and $\lim_{t\to n} M_{\psi_t} = \text{id}$ pointwise \implies HP.

• Consider the irrep. $W^1 = [w_{ij}^1] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\{e_i\}_{i=1}^{n-1}$. Observe: $L^{\infty}(S_n^+) = \{\lambda(w_{ij}^1)\}''$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the irrep. W¹ = [w¹_{ij}] ~ V ⊖ 1, acting on Cⁿ⁻¹ with ONB {e_i}ⁿ⁻¹_{i=1}. Observe: L[∞](S¹_n) = {λ(w¹_{ij})}".
 Study factoriality via the "commutator map"

$$T: L^{\infty}(S_n^+) \to \mathbb{C}^{n-1} \otimes L^{\infty}(S_n^+) \otimes \mathbb{C}^{n-1},$$

$$Ty = \sum_{1 \le i,j \le n} e_j \otimes \left(\lambda(w_{ij}^1)y - y\lambda(w_{ij}^1)\right) \otimes e_i \qquad (y \in L^{\infty}(S_n^+)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Consider the irrep. $W^1 = [w_{ij}^1] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\{e_i\}_{i=1}^{n-1}$. **Observe:** $L^{\infty}(S_n^+) = \{\lambda(w_{ij}^1)\}''$.

Study factoriality via the "commutator map"

$$T: L^{\infty}(S_n^+) \to \mathbb{C}^{n-1} \otimes L^{\infty}(S_n^+) \otimes \mathbb{C}^{n-1},$$

$$Ty = \sum_{1 \le i,j \le n} e_j \otimes \left(\lambda(w_{ij}^1)y - y\lambda(w_{ij}^1)\right) \otimes e_i \qquad (y \in L^{\infty}(S_n^+)).$$

Proposition (B.) If $n \ge 8$, $\exists C(n) > 0$ such that

$$\|Ty\|_{\mathbb{C}^{n-1}\otimes L^2\otimes\mathbb{C}^{n-1}}\geq C(n)\|y-h(y)1\|_2 \qquad (y\in L^\infty(S_n^+)),$$

and therefore $L^{\infty}(S_n^+)$ is a full factor.

► Consider the irrep. $W^1 = [w_{ij}^1] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\{e_i\}_{i=1}^{n-1}$. **Observe:** $L^{\infty}(S_n^+) = \{\lambda(w_{ij}^1)\}''$.

Study factoriality via the "commutator map"

$$T: L^{\infty}(S_n^+) \to \mathbb{C}^{n-1} \otimes L^{\infty}(S_n^+) \otimes \mathbb{C}^{n-1},$$

$$Ty = \sum_{1 \le i, j \le n} e_j \otimes \left(\lambda(w_{ij}^1)y - y\lambda(w_{ij}^1)\right) \otimes e_i \qquad (y \in L^{\infty}(S_n^+)).$$

Proposition (B.) If $n \ge 8$, $\exists C(n) > 0$ such that

$$\|Ty\|_{\mathbb{C}^{n-1}\otimes L^2\otimes \mathbb{C}^{n-1}} \geq C(n)\|y-h(y)1\|_2 \qquad (y\in L^\infty(S_n^+)),$$

and therefore $L^{\infty}(S_n^+)$ is a full factor.

Studying T ⇐⇒ comparing W¹ ⊠ W^x with W^x ⊠ W¹ (x ≥ 1). This is done by working with concrete models for {W^x}_{x>0}:

• Consider the irrep. $W^1 = [w_{ij}^1] \sim V \ominus 1$, acting on \mathbb{C}^{n-1} with ONB $\{e_i\}_{i=1}^{n-1}$. **Observe:** $L^{\infty}(S_n^+) = \{\lambda(w_{ij}^1)\}''$.

Study factoriality via the "commutator map"

$$T: L^{\infty}(S_n^+) \to \mathbb{C}^{n-1} \otimes L^{\infty}(S_n^+) \otimes \mathbb{C}^{n-1},$$

$$Ty = \sum_{1 \le i,j \le n} e_j \otimes \left(\lambda(w_{ij}^1)y - y\lambda(w_{ij}^1)\right) \otimes e_i \qquad (y \in L^{\infty}(S_n^+)).$$

Proposition (B.) If $n \ge 8$, $\exists C(n) > 0$ such that

$$\|Ty\|_{\mathbb{C}^{n-1}\otimes L^2\otimes \mathbb{C}^{n-1}} \geq C(n)\|y-h(y)1\|_2 \qquad (y\in L^\infty(S_n^+)),$$

and therefore $L^{\infty}(S_n^+)$ is a full factor.

- Studying T ⇐⇒ comparing W¹ ⊠ W^x with W^x ⊠ W¹ (x ≥ 1). This is done by working with concrete models for {W^x}_{x>0}:
- ► Consider tensor powers of fundamental rep. $V^{\boxtimes x}$ and write W^x as the subrepresentation $W^x = Q_x V^{\boxtimes x} Q_x \subset V^{\boxtimes x}$, where

$$Q_x = Q_x^* = Q_x^2 \in \mathsf{Mor}(V^{\boxtimes x}, V^{\boxtimes x}) = \{S \in M_{n^x}(\mathbb{C}) \mid V^{\boxtimes x}S = SV^{\boxtimes x}\}.$$

$$TL_{2x}(\sqrt{n}) = C^* \left(1, f_1, \dots, f_{2x-1} \mid egin{array}{c} f_i^* = f_i = f_i^2, \; f_i f_{i\pm 1} f_i = \frac{1}{\sqrt{n}} f_i, \ f_i f_j = f_j = f_i \; \text{when} \; |i-j| \ge 2 \end{array}
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$TL_{2x}(\sqrt{n}) = C^* \left(1, f_1, \dots, f_{2x-1} \mid egin{array}{c} f_i^* = f_i = f_i^2, \ f_i f_{i\pm 1} f_i = \frac{1}{\sqrt{n}} f_i, \ f_i f_j = f_j f_i \ ext{when} \ |i-j| \ge 2 \end{array}
ight)$$

Pictorially: $TL_{2x}(\sqrt{n}) =$ planar algebra spanned by non-crossing pairings of 4x points:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$TL_{2x}(\sqrt{n}) = C^* \left(1, f_1, \dots, f_{2x-1} \mid egin{array}{c} f_i^* = f_i = f_i^2, \ f_i f_{i\pm 1} f_i = \frac{1}{\sqrt{n}} f_i, \ f_i f_j = f_j f_i \ ext{when} \ |i-j| \ge 2 \end{array}
ight)$$

Pictorially: $TL_{2x}(\sqrt{n}) =$ planar algebra spanned by non-crossing pairings of 4x points:

By considering the Jones-Wenzl projection

$$\boxed{p_{2x}} := 1 - \sup\{f_1, \dots, f_{2x-1}\} \in TL_{2x}(\sqrt{n}) \cong \mathsf{Mor}(V^{\boxtimes x}, V^{\boxtimes x})$$

can prove $W^{\times} = p_{2x} V^{\boxtimes x} p_{2x}$ acting on $H_x = p_{2x} (\mathbb{C}^n)^{\otimes x}$.

$$TL_{2x}(\sqrt{n}) = C^* \left(1, f_1, \dots, f_{2x-1} \mid egin{array}{c} f_i^* = f_i = f_i^2, \ f_i f_{i\pm 1} f_i = \frac{1}{\sqrt{n}} f_i, \ f_i f_j = f_j = f_i \ \text{when } |i-j| \ge 2 \end{array}
ight)$$

Pictorially: $TL_{2x}(\sqrt{n}) =$ planar algebra spanned by non-crossing pairings of 4x points:

By considering the Jones-Wenzl projection

$$\boxed{p_{2x}} := 1 - \sup\{f_1, \dots, f_{2x-1}\} \in TL_{2x}(\sqrt{n}) \cong \operatorname{Mor}(V^{\boxtimes x}, V^{\boxtimes x})$$

Work in progress

 Can we find other approximation properties for L[∞](S⁺_n)? (Complete) metric approximation property? Is C_{red}(S⁺_n) exact?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Work in progress

► Can we find other approximation properties for L[∞](S⁺_n)? (Complete) metric approximation property? Is C_{red}(S⁺_n) exact?

▶ Is $L^{\infty}(S_n^+)$ a prime factor?

Work in progress

- ► Can we find other approximation properties for L[∞](S⁺_n)? (Complete) metric approximation property? Is C_{red}(S⁺_n) exact?
- ▶ Is $L^{\infty}(S_n^+)$ a **prime** factor?
- ► (joint with B. Collins) Is it possible to construct matrix matrix models for L[∞](S⁺_n)?

 \rightsquigarrow Connes' embedding property, and free entropy dimension estimates.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <