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From permutations to quantum permutations
I Consider a finite set of n points Xn = {1, 2, . . . , n}. Recall that

Aut(Xn) ∼= Aut(C (Xn)) ∼= Sn, the permutation group.

I Today’s Goal: To study the analogue of Sn within the framework of
compact quantum groups, and discuss some of their operator
algebraic aspects.

I To quantize Sn: Replace Sn with the Hopf algebra C (Sn), then
“deform” C (Sn) to get a genuine quantum group.

I Let U : Sn ↪→ Mn(C); U(g) = [uij(g)] ∈ Mn(C) be the “permutation
matrix” representation.

I Easy to check: The coordinate functions uij : Sn → C generate
C (Sn), obviously commute, and satisfy:

uij = u∗ij = u2
ij and U = [uij ] is unitary in Mn(C (Sn)).

Hopf algebra maps ∆, κ, ε on C (Sn) encode group structure of Sn:

∆uij =
∑
k

uik ⊗ ukj︸ ︷︷ ︸
coproduct ∆f (x,y)=f (xy)

, κ(uij) = uji︸ ︷︷ ︸
co-inverse κf (x)=f (x−1)

, ε(uij) = δij︸ ︷︷ ︸
co-unit εf =f (e)
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The quantum permutation group S+
n

Definition/Theorem (Wang 1998)
Consider the universal unital C∗-algebra

As(n) = C∗
(
{vij}ni,j=1 | V = [vij ] is unitary & vij = v 2

ij = v∗ij

)
,

and endow As(n) with a Hopf C∗-algebra structure just like C (Sn):

(coproduct) ∆ : As(n)→ As(n)⊗ As(n); ∆vij =
∑
k

vik ⊗ vkj ,

(co-inverse) κ : As(n)→ As(n)op; κ(vij) = vji ,

(co-unit) ε : As(n)→ C; ε(vij) = δij .

=⇒ S+
n := (As(n),∆, κ, ε) is a compact quantum group, called the

quantum permutation group.

I Note: ∃ natural quotient maps As(n)� C (Sn) =⇒ Sn < S+
n .

I Terminology “quantum permutation group” is justified: S+
n is the

universal quantum automorphism group acting on C (Xn).
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The reduced operator algebras on S+
n

I S+
n has a unique Haar integral. I.e., a state h : As(n)→ C, which

is ∆-invariant:

(h ⊗ id)∆(x) = (id⊗ h)∆(x) = h(x)1.

I Do the GNS construction:

L2(S+
n ) = L2(AS(n), h), λ : As(N)→ B(L2(S+

n )) GNS representation.

I Get the reduced C∗-algebra and reduced von Neumann algebra:

Cred(S+
n ) = λ(As(n)) ⊂ B(L2(S+

n )), L∞(S+
n ) := λ(As(n))′′.

I Heuristic Model: As(N) = C∗full(Ŝ+
n ), Cred(S+

n ) = C∗red(Ŝ+
n ) and

L∞(S+
n ) = L(Ŝ+

n ), where Ŝ+
n is the dual discrete quantum group.

I We will mainly focus on the structure of L∞(S+
n ).
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Some known results on S+
n and L∞(S+

n )

I (Wang 1998) If 1 ≤ n ≤ 3, As(n) ∼= C (Sn). I.e., Sn = S+
n .

I (Wang 1998) If n ≥ 4, As(n),Cred(S+
n ), and L∞(S+

n )) are
non-commutative and infinite dimensional.

I (Wang 1998) The Haar state h is always a trace =⇒ L∞(S+
n ) is a

finite vN. algebra

I (Banica 1999) L∞(S+
n )/Cred(S+

n ) injective/nuclear iff n ≤ 4.

I (Banica+Collins 2008) At n = 4, ∃ explicit embedding

L∞(S+
4 ) ↪→ M4(C)⊗L∞(SU2).

I (Banica+Collins 2007, Curran 2009) The projections
{λ(vij)}ni,j=1 ⊂ L∞(S+

n ) are asymptotically free as n→∞.

I (Köstler+Speicher 2008) Free independence (with amalgamation) is
characterized by invariance under quantum permutations by S+

n .

Question (Banica+Collins 2008)
What can be said about L∞(S+

n ) n ≥ 5? Is it a II1-factor?
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Approximation, factoriality and fullness for L∞(S+
n )

In the non-injective regime n ≥ 5:

Theorem (B. 2011)
If n ≥ 8, L∞(S+

n ) is a full type II1-factor. Moreover, L∞(S+
n ) has the

Haagerup property (HP) for all n ≥ 5.

Note:
I A finite vN. algebra (M, τ) has the HP if ∃ a net of τ -preserving,

normal, UCP maps Φt : M → M s.t.

1. ∀t,Φt : L2(M, τ)→ L2(M, τ) is compact,
2. ∀x ∈ M, limt ‖Φtx − x‖2 = 0.

I A II1-factor (M, τ) is full (or non-Gamma) if for any sequence

{xn}n ⊂ U(M) s.t. ‖xny − yxn‖2 → 0 ∀y ∈ M,

=⇒ ‖xn − τ(xn)1‖2 → 0.

I Classical examples of vN. algebras with above properties are L(Fn),
n ≥ 2 (or L(Γ) for any non-amenable i.c.c. hyperbolic group Γ).

I Factoriality/fullness remains open when 5 ≤ n ≤ 7!
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About the proofs
Our analysis of L∞(S+

n ) is based on the representation theory of S+
n .

Definition
A d-dimensional unitary representation of S+

n is a unitary operator

W = [wij ] ∈ Md(AS(n)) s.t. ∆wij =
∑d

k=1 wik ⊗ wkj ∀i , j .

Obvious examples: Trivial representation 1As (n) ∈ As(n), fundamental
representation V = [vij ] ∈ Mn(As(n)).
Usual constructions: Direct sum W 1 ⊕W 2, tensor products
W 1 �W 2 = [w 1

ij w
2
kl ] ∈ Md1d2 (As(n)), conjugate representation

W = [w∗ij ], unitary equivalence ∼ and irreducibility.

Theorem (Banica 1999)
∃ a maximal family of inequivalent finite dimensional irreducible unitary
reps. {W x}∞x=0, where W x = [w x

ij ] ∈ Mdx (As(n)), such that

I W 0 = 1As (N), V ∼= W 0 ⊕W 1,

I W x ∼W x , (x ≥ 0).

I W 1 �W x ∼W x+1 ⊕W x ⊕W x−1, (x ≥ 1) “fusion rules”.

Peter-Weyl decomposition of L2:
L2(S+

n ) =
⊕

x≥0 L2
x(S+

n ), L2
x(S+

n ) = span{Λh(w x
ij ) : 1 ≤ i , j ≤ dx}.
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The Haagerup property

To study the HP, we search for a simple class of NUCP maps on
L∞(S+

n ): To each ψ ∈ `∞(N0), associate

Mψ =
⊕
x≥0

ψ(x)idL2(S+
n ) ∈ B(L2(S+

n )).

Call ψ a radial multiplier if Mψ restricts to a NUCP map on L∞(S+
n ).

Proposition (B. 2011)
For x ∈ N0, consider the character χx = (Tr⊗ id)W x ∈ As(n). Then
ψ ∈ `∞(N0) is a radial multiplier iff ∃ a state ψ ∈ C∗

(
χx : x ∈ N0

)∗
s.t.

ψ(x) =
ϕ(χx)

dim W x
.

I But since
W 1 �W x ∼W x+1 ⊕W x ⊕W x−1 =⇒ χ1χx = χx+1 + χx + χx−1

=⇒ C∗(χx : x ∈ N0) = C∗(1, χ1) - commutative!
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The Haagerup property

I Write C∗(1, χ1) = C∗(1, χ1 + 1) ∼= C
(
spectrum(1 + χ1)

)
. Since

V = [vij ] ∼= 1⊕W 1,

1 + χ1 = χV =
n∑

i=1

vii .

I When n ≥ 4, easy to show that

spectrum
(∑

i

vii
)

= [0, n] =⇒ C∗(1, χ1) ∼= C ([0, n]),

by considering some quotients of As(n). (Ex. Cred(S+
n ),

C∗(Z∗[n/2]
2 )).

I Consequence: Radial multipliers ⇐⇒ Borel probability measures
on [0, n].

I Taking dirac measures δt (4 < t < n) yields a net of radial
multipliers Mψt s.t. 0 < ψt(x) ≤ C (t/n)x and limt→n Mψt = id
pointwise =⇒ HP.



The Haagerup property

I Write C∗(1, χ1) = C∗(1, χ1 + 1) ∼= C
(
spectrum(1 + χ1)

)
. Since

V = [vij ] ∼= 1⊕W 1,

1 + χ1 = χV =
n∑

i=1

vii .

I When n ≥ 4, easy to show that

spectrum
(∑

i

vii
)

= [0, n] =⇒ C∗(1, χ1) ∼= C ([0, n]),

by considering some quotients of As(n). (Ex. Cred(S+
n ),

C∗(Z∗[n/2]
2 )).

I Consequence: Radial multipliers ⇐⇒ Borel probability measures
on [0, n].

I Taking dirac measures δt (4 < t < n) yields a net of radial
multipliers Mψt s.t. 0 < ψt(x) ≤ C (t/n)x and limt→n Mψt = id
pointwise =⇒ HP.



The Haagerup property

I Write C∗(1, χ1) = C∗(1, χ1 + 1) ∼= C
(
spectrum(1 + χ1)

)
. Since

V = [vij ] ∼= 1⊕W 1,

1 + χ1 = χV =
n∑

i=1

vii .

I When n ≥ 4, easy to show that

spectrum
(∑

i

vii
)

= [0, n] =⇒ C∗(1, χ1) ∼= C ([0, n]),

by considering some quotients of As(n). (Ex. Cred(S+
n ),

C∗(Z∗[n/2]
2 )).

I Consequence: Radial multipliers ⇐⇒ Borel probability measures
on [0, n].

I Taking dirac measures δt (4 < t < n) yields a net of radial
multipliers Mψt s.t. 0 < ψt(x) ≤ C (t/n)x and limt→n Mψt = id
pointwise =⇒ HP.



The Haagerup property

I Write C∗(1, χ1) = C∗(1, χ1 + 1) ∼= C
(
spectrum(1 + χ1)

)
. Since

V = [vij ] ∼= 1⊕W 1,

1 + χ1 = χV =
n∑

i=1

vii .

I When n ≥ 4, easy to show that

spectrum
(∑

i

vii
)

= [0, n] =⇒ C∗(1, χ1) ∼= C ([0, n]),

by considering some quotients of As(n). (Ex. Cred(S+
n ),

C∗(Z∗[n/2]
2 )).

I Consequence: Radial multipliers ⇐⇒ Borel probability measures
on [0, n].

I Taking dirac measures δt (4 < t < n) yields a net of radial
multipliers Mψt s.t. 0 < ψt(x) ≤ C (t/n)x and limt→n Mψt = id
pointwise =⇒ HP.



Factoriality and fullness
I Consider the irrep. W 1 = [w 1

ij ] ∼ V 	 1, acting on Cn−1 with ONB

{ei}n−1
i=1 . Observe: L∞(S+

n ) = {λ(w 1
ij )}′′.

I Study factoriality via the “commutator map”

T : L∞(S+
n )→ Cn−1 ⊗ L∞(S+

n )⊗ Cn−1,

Ty =
∑

1≤i,j≤n

ej ⊗
(
λ(w 1

ij )y − yλ(w 1
ij )
)
⊗ ei (y ∈ L∞(S+

n )).

Proposition (B.)
If n ≥ 8, ∃ C (n) > 0 such that

‖Ty‖Cn−1⊗L2⊗Cn−1 ≥ C (n)‖y − h(y)1‖2 (y ∈ L∞(S+
n )),

and therefore L∞(S+
n ) is a full factor.

I Studying T ⇐⇒ comparing W 1 �W x with W x �W 1 (x ≥ 1).
This is done by working with concrete models for {W x}x≥0:

I Consider tensor powers of fundamental rep. V�x and write W x as
the subrepresentation W x = QxV�xQx ⊂ V�x , where

Qx = Q∗x = Q2
x ∈ Mor(V�x ,V�x) =

{
S ∈ Mnx (C) | V�xS = SV�x

}
.
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I (Banica 1999) If n ≥ 4, Mor(V�x ,V�x) ∼= TL2x(
√

n), the
Temperley-Lieb planar algebra at index

√
n.

TL2x(
√

n) = C∗
(

1, f1, . . . , f2x−1 |
f ∗i =fi=f 2

i , fi fi±1fi=
1√
n
fi ,

fi fj=fj fi when |i−j|≥2

)

Pictorially: TL2x(
√

n) = planar algebra spanned by non-crossing
pairings of 4x points:

1 =

2x points︷ ︸︸ ︷
· · · · · ·︸ ︷︷ ︸

2x points

, fi =
1√
n

i − 1 points︷︸︸︷
· · · · · ·

I By considering the Jones-Wenzl projection

p2x := 1− sup{f1, . . . , f2x−1} ∈ TL2x(
√

n) ∼= Mor(V�x ,V�x)

can prove W x = p2xV�xp2x acting on Hx = p2x(Cn)⊗x .
I Bounding T |(C1)⊥ from below amounts to showing that the flip

maps

p2x p2

p2 p2x

: H1 ⊗ Hx → Hx ⊗ H1 are “far from being
intertwiners”.
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Work in progress

I Can we find other approximation properties for L∞(S+
n )?

(Complete) metric approximation property? Is Cred(S+
n ) exact?

I Is L∞(S+
n ) a prime factor?

I (joint with B. Collins) Is it possible to construct matrix matrix
models for L∞(S+

n )?
 Connes’ embedding property, and free entropy dimension
estimates.
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