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algebraic aspects.

To quantize S,: Replace S, with the Hopf algebra C(S,), then
“deform” C(S,) to get a genuine quantum group.

Let U : S, — M,(C); U(g) = [uij(g)] € Ma(C) be the “permutation
matrix”’ representation.

Easy to check: The coordinate functions uj; : S, — C generate
C(S,), obviously commute, and satisfy:

uj = uj = u,-2j and U = [ujj] is unitary in M,(C(S,)).

Hopf algebra maps A, k, e on C(S,) encode group structure of S,:

Auy =Y i @ uy, plug) =i, e(uy) = 0y
——— ——

k
co-inverse Kkf(x)=f(x—1) co-unit ef=f(e)

coproduct Af(x,y)=f(xy)



The quantum permutation group S

Definition/Theorem (Wang 1998)
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The quantum permutation group S

Definition/Theorem (Wang 1998)

Consider the universal unital C*-algebra

As(n) = C* ({VU}ZJZI | V = [vy] is unitary & v = v = v,-j-‘),

and endow A,(n) with a Hopf C*-algebra structure just like C(S,):

(coproduct) A : As(n) — As(n) @ As(n); Ay = Z Vik & Vij,
K

(co-inverse) k : As(n) = As(n)°®;  k(vij) = vji,

(co-unit) € : As(n) = C;  €(v;j) = dj.

= S5, :=(As(n), A, K, €) is a compact quantum group, called the
quantum permutation group.

» Note: 3 natural quotient maps Ags(n) - C(S,) = S, < S;F.

» Terminology “quantum permutation group” is justified: S is the
universal quantum automorphism group acting on C(X,).
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5,5 has a unique Haar integral. l.e., a state h: As(n) — C, which
is A-invariant:

(h®id)A(x) = (id ® h)A(x) = h(x)1.
Do the GNS construction:

L2(SF) = L?(As(n), h), A :Aq(N) — B(L*(S})) GNS representation.

Get the reduced C*-algebra and reduced von Neumann algebra:

Cea(S7) = MAs(n) € B(L2(S)),  L(S) = MAs(m))".

Heuristic Model: Aj(N) = Cz(Si), Cea(Si) = Cy(S7) and
L%°(S}) = L(S7), where S;f is the dual discrete quantum group.
We will mainly focus on the structure of L*°(S;").
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Question (Banica+Collins 2008)
What can be said about L*°(S;F) n > 57 Is it a Ih-factor?
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n
In the non-injective regime n > 5:

Theorem (B. 2011)

If n>8, L>°(S;]) is a full type /l;-factor. Moreover, L>(S;") has the
Haagerup property (HP) for all n > 5.

Note:

> A finite vN. algebra (M, 7) has the HP if 3 a net of 7-preserving,
normal, UCP maps ®;: M — M s.t.

1. Vt,®, : (M, 7) — [*(M,T) is compact,
2. ¥x € M, lim; ||[®:x — x| =0.

» A Ih-factor (M, 1) is full (or non-Gamma) if for any sequence

{Xn}n CUM) st | Xy — yXall2 = 0 Vy € M,
= ||x, — 7(xn)1]|2 — O.

> Classical examples of vN. algebras with above properties are L(F,),
n > 2 (or L(I') for any non-amenable i.c.c. hyperbolic group I').

» Factoriality/fullness remains open when 5 < n < 7!
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About the proofs
Our analysis of L>°(S5,[) is based on the representation theory of S, .
Definition
A d-dimensional unitary representation of S is a unitary operator
W = [wy] € My(As(n)) s.t. Awy = 30 wi @ wij Vi, j.
Obvious examples: Trivial representation 14 (ny € As(n), fundamental
representation V = [v;;] € M,(As(n)).
Usual constructions: Direct sum W' @ W?, tensor products
W1 X W? = [W w2] € Ma,4,(As(n)), conjugate representation
= [w;], unitary equivalence ~ and irreducibility.

Theorem (Banica 1999)

3 a maximal family of inequivalent finite dimensional irreducible unitary
reps. {W*}32,, where WX = [wj{] € My, (As(n)), such that

> WO = 1A5(N)' VvV WO (&) Wl,
» WX~ WX, (x >0).
» WK WX ~ W o WX e WXL, (x > 1) “fusion rules”.

Peter-Weyl decomposition of [2:
L2(S7) = Do La(SF), LA(ST) = span{n(wj) : 1 < i,j < di}.
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The Haagerup property

To study the HP, we search for a simple class of NUCP maps on
L>°(5;F): To each ¢ € £>°(Np), associate

My = @ v (x)idpass) € BLX(S))-

x>0
Call ¢ a radial multiplier if M, restricts to a NUCP map on L>=(S;1).

Proposition (B. 2011)

For x € Ny, consider the character x, = (Tr® id)W* € As(n). Then
1 € £°°(Nyg) is a radial multiplier iff 3 a state i) € C* (Xx IX € No)* s.t.

o)
Y= Gimw
» But since
WK WX ~ Wxt1 oW e wx-1 — X1Xx = Xx41 F Xx + Xx—1
= C*(xx : x € Ng) = C*(1, x1) - commutative!
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The Haagerup property

» Write C*(1,x1) = C*(1,x1 + 1) = C(spectrum(1 + x1)). Since
V=[vyl=1e W

n

1+ x: :XV:ZVII-
i—1

» When n > 4, easy to show that

spectrum(z v/;> =[0,n] = C*(1,x1) = C([0, n]),
by considering some quotients of Ag(n). (Ex. Ged(S;1),
» Consequence: Radial multipliers <= Borel probability measures
on [0, n].
» Taking dirac measures d; (4 < t < n) yields a net of radial
multipliers My, s.t. 0 < ¢:(x) < C(t/n)* and lim¢_,, My, = id
pointwise = HP.
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Factoriality and fullness

> Consider the irrep. W' = [wj] ~ V ©1, acting on C"~* with ONB
{ei}/=]'. Observe: L(5) = {\(w})}".
» Study factoriality via the “commutator map”
T:L>®(S7) — C"lg L>®(S5F) @ cr1,

=Y ga(AWy-yrwp)ee (yel (S))
1<ij<n
Proposition (B.)
If n>8,3 C(n) > 0 such that

ITyller—rer2e-: = C(n)lly = h(¥)lll2 (v € L(S7)),

and therefore L>°(S;") is a full factor.
» Studying T <= comparing W' X W* with WX X W1 (x > 1).
This is done by working with concrete models for {W*},>¢:
» Consider tensor powers of fundamental rep. VE* and write W* as
the subrepresentation W* = Q, V®*Q, ¢ V¥, where

Q= @ = @ € Mor(VE* VE) = [§ € M,«(C) | V®*S = SV¥*].
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Temperley-Lieb planar algebra at index /n.

*__ £ 2 £ 1 ¢
Tlo(v/n) = C* (L Ao fo | 70 HtfmG20)

fifi=ff; when |i—j|>2

Pictorially: TL,,(1/n) = planar algebra spanned by non-crossing
pairings of 4x points:

2x points i — 1 points
—_—— A~
1 1)
1=1... o, fi=— |.. .
Vvn
~
———
2x points

» By considering the Jones-Wenzl projection
oo | =1 —sup{fi,..., fox_1} € TLay(v/n) = Mor( V¥ VEX)

can prove WX = pp, V®*p, acting on H, = po,(C")®*.
» Bounding T|(cy1). from below amounts to showing that the flip

p2
maps cHy @ Hy — H, ® Hy are “far from being

intertwiners”.

]Pz\]sz\
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Work in progress

» Can we find other approximation properties for L>°(S,)?
(Complete) metric approximation property? Is Ceq(S;]) exact?

> Is L>°(S;F) a prime factor?

> (joint with B. Collins) Is it possible to construct matrix matrix
models for L>(S5,F)?
~~ Connes’ embedding property, and free entropy dimension
estimates.



