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In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there
exists an invertible matrix P such that P −1AP is a diagonal matrix. If V is a finite-dimensional vector space,
then a linear map T : V → V is called diagonalizable if there exists a basis of V with respect to which T is
represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix
for a diagonalizable matrix or linear map.[1] A square matrix which is not diagonalizable is called defective.

Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle:
their eigenvalues and eigenvectors are known and one can raise a diagonal matrix to a power by simply
raising the diagonal entries to that same power. Geometrically, a diagonalizable matrix is an inhomogeneous
dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different
factor in each direction, determined by the scale factors on each axis (diagonal entries).
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Characterisation

The fundamental fact about diagonalizable maps and matrices is expressed by the following:

An n-by-n matrix A over the field F is diagonalizable if and only if the sum of the dimensions of its
eigenspaces is equal to n, which is the case if and only if there exists a basis of Fn consisting of
eigenvectors of A. If such a basis has been found, one can form the matrix P having these basis vectors
as columns, and P−1AP will be a diagonal matrix. The diagonal entries of this matrix are the
eigenvalues of A.
A linear map T: V → V is diagonalizable if and only if the sum of the dimensions of its eigenspaces is
equal to dim(V), which is the case if and only if there exists a basis of V consisting of eigenvectors of
T. With respect to such a basis, T will be represented by a diagonal matrix. The diagonal entries of this
matrix are the eigenvalues of T.

Another characterization: A matrix or linear map is diagonalizable over the field F if and only if its minimal
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polynomial is a product of distinct linear factors over F. (Put in another way, a matrix is diagonalizable if and
only if all of its elementary divisors are linear.)

The following sufficient (but not necessary) condition is often useful.

An n-by-n matrix A is diagonalizable over the field F if it has n distinct eigenvalues in F, i.e. if its
characteristic polynomial has n distinct roots in F; however, the converse may be false. Let us
consider

which has eigenvalues 1, 2, 2 (not all distinct) and is diagonalizable with diagonal form ( similar to A)

and change of basis matrix P

A linear map T: V → V with n = dim(V) is diagonalizable if it has n distinct eigenvalues, i.e. if its
characteristic polynomial has n distinct roots in F.

Let A be a matrix over F. If A is diagonalizable, then so is any power of it. Conversely, if A is invertible, F is
algebraically closed, and An is diagonalizable for some n that is not an integer multiple of the characteristic
of F, then A is diagonalizable. Proof: If  is diagonalizable, then A is annihilated by some polynomial

, which has no multiple root (since ) and is divided by the minimal
polynomial of A.

As a rule of thumb, over C almost every matrix is diagonalizable. More precisely: the set of complex n-by-n
matrices that are not diagonalizable over C, considered as a subset of Cn×n, has Lebesgue measure zero. One
can also say that the diagonalizable matrices form a dense subset with respect to the Zariski topology: the
complement lies inside the set where the discriminant of the characteristic polynomial vanishes, which is a
hypersurface. From that follows also density in the usual (strong) topology given by a norm. The same is not
true over R.

The Jordan–Chevalley decomposition expresses an operator as the sum of its semisimple (i.e.,
diagonalizable) part and its nilpotent part. Hence, a matrix is diagonalizable if and only if its nilpotent part is
zero. Put in another way, a matrix is diagonalizable if each block in its Jordan form has no nilpotent part; i.e.,
one-by-one matrix.

Diagonalization

If a matrix A can be diagonalized, that is,
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then:

Writing P as a block matrix of its column vectors

the above equation can be rewritten as

So the column vectors of P are right eigenvectors of A, and the corresponding diagonal entry is the
corresponding eigenvalue. The invertibility of P also suggests that the eigenvectors are linearly independent
and form the basis of Fn. This is the necessary and sufficient condition for diagonalizability and the
canonical approach of diagonalization. The row vectors of P-1 are the left eigenvectors of A.

When the matrix A is a Hermitian matrix (resp. symmetric matrix), eigenvectors of A can be chosen to form
an orthonormal basis of Cn (resp. Rn). Under such circumstance P will be a unitary matrix (resp. orthogonal
matrix) and P−1 equals the conjugate transpose (resp. transpose) of P.

Simultaneous diagonalization

See also: Simultaneous triangularisability and Weight (representation theory)

A set of matrices are said to be simultaneously diagonalisable if there exists a single invertible matrix P
such that  is a diagonal matrix for every A in the set. The following theorem characterises
simultaneously diagonalisable matrices: A set of diagonalizable matrices commutes if and only if the set is
simultaneously diagonalisable.[2]

The set of all n-by-n diagonalisable matrices (over C) with n > 1 is not simultaneously diagonalisable. For
instance, the matrices

are diagonalizable but not simultaneously diagonalizable because they do not commute.

A set consists of commuting normal matrices if and only if it is simultaneously diagonalisable by a unitary
matrix; that is, there exists a unitary matrix U such that  is diagonal for every A in the set.

In the language of Lie theory, a set of simultaneously diagonalisable matrices generate a toral Lie algebra.
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Examples

Diagonalizable matrices

Involutions are diagonalisable over the reals (and indeed any field of characteristic not 2), with 1's and
-1's on the diagonal
Finite order endomorphisms are diagonalisable over the complex numbers (or any algebraically closed
field where the characteristic of the field does not divide the order of the endomorphism) with roots of
unity on the diagonal. This follows since the minimal polynomial is separable, because the roots of
unity are distinct.
Projections are diagonalizable, with 0's and 1's on the diagonal.
Real symmetric matrices are diagonalizable by orthogonal matrices; i.e., given a real symmetric matrix

,  is diagonal for some orthogonal matrix . More generally, matrices are diagonalizable by
unitary matrices if and only if they are normal. In the case of the real symmetric matrix, we see that

, so clearly  holds. Examples of normal matrices are real symmetric (or
skew-symmetric) matrices (e.g. covariance matrices) and Hermitian matrices (or skew-Hermitian
matrices). See spectral theorems for generalizations to infinite-dimensional vector spaces.

Matrices that are not diagonalizable

In general, a rotation matrix is not diagonalizable over the reals, but all rotation matrices are diagonalizable
over the complex field.

Some matrices are not diagonalizable over any field, most notably nonzero nilpotent matrices. This happens
more generally if the algebraic and geometric multiplicities of an eigenvalue do not coincide. For instance,
consider

This matrix is not diagonalizable: there is no matrix U such that  is a diagonal matrix. Indeed, C has
one eigenvalue (namely zero) and this eigenvalue has algebraic multiplicity 2 and geometric multiplicity 1.

Some real matrices are not diagonalizable over the reals. Consider for instance the matrix

The matrix B does not have any real eigenvalues, so there is no real matrix Q such that  is a
diagonal matrix. However, we can diagonalize B if we allow complex numbers. Indeed, if we take

then  is diagonal.

Note that the above examples show that the sum of diagonalizable matrices need not be diagonalizable.

How to diagonalize a matrix

Consider a matrix
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This matrix has eigenvalues

A is a 3-by-3 matrix with 3 different eigenvalues; therefore, it is diagonalizable. Note that if there are exactly
n distinct eigenvalues in an n×n matrix then this matrix is diagonalizable.

These eigenvalues are the values that will appear in the diagonalized form of matrix , so by finding the
eigenvalues of  we have diagonalized it. We could stop here, but it is a good check to use the eigenvectors
to diagonalize .

The eigenvectors of A are

One can easily check that 

Now, let P be the matrix with these eigenvectors as its columns:

Note there is no preferred order of the eigenvectors in P; changing the order of the eigenvectors in P just
changes the order of the eigenvalues in the diagonalized form of A.[3]

Then P diagonalizes A, as a simple computation confirms, having calculated P -1 using any suitable method:

Note that the eigenvalues  appear in the diagonal matrix.

Alternative Method

Starting with: , where , and the Diagonalization matrix  is:

Distribute  into the column vectors of .

Diagonalizable matrix - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Matrix_diagonalization

5 of 8 19/04/2013 16:01



Then  can be broken down to its column vectors as follows:

Multiplying  on the left side of the equation gives:

Setting each entry of the matrix to its corresponding entry:

Then the equations can be solved as follows, using the same process for both:

and it solves for , which is the first entry in the diagonal matrix, and also the first eigenvalue.

An application

Diagonalization can be used to compute the powers of a matrix A efficiently, provided the matrix is
diagonalizable. Suppose we have found that

is a diagonal matrix. Then, as the matrix product is associative,

and the latter is easy to calculate since it only involves the powers of a diagonal matrix. This approach can
be generalized to matrix exponential and other matrix functions since they can be defined as power series.

This is particularly useful in finding closed form expressions for terms of linear recursive sequences, such as
the Fibonacci numbers.

Particular application

For example, consider the following matrix:

Calculating the various powers of M reveals a surprising pattern:

The above phenomenon can be explained by diagonalizing M. To accomplish this, we need a basis of R2

Diagonalizable matrix - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Matrix_diagonalization

6 of 8 19/04/2013 16:01



consisting of eigenvectors of M. One such eigenvector basis is given by

where ei denotes the standard basis of Rn. The reverse change of basis is given by

Straightforward calculations show that

Thus, a and b are the eigenvalues corresponding to u and v, respectively. By linearity of matrix
multiplication, we have that

Switching back to the standard basis, we have

The preceding relations, expressed in matrix form, are

thereby explaining the above phenomenon.

Quantum mechanical application

In quantum mechanical and quantum chemical computations matrix diagonalization is one of the most
frequently applied numerical processes. The basic reason is that the time-independent Schrödinger equation
is an eigenvalue equation, albeit in most of the physical situations on an infinite dimensional space (a Hilbert
space). A very common approximation is to truncate Hilbert space to finite dimension, after which the
Schrödinger equation can be formulated as an eigenvalue problem of a real symmetric, or complex
Hermitian, matrix. Formally this approximation is founded on the variational principle, valid for
Hamiltonians that are bounded from below. But also first-order perturbation theory for degenerate states
leads to a matrix eigenvalue problem.

See also

Defective matrix
Scaling (geometry)
Triangular matrix
Semisimple operator
Diagonalizable group
Jordan normal form
Weight module – associative algebra generalization

Notes
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^ Horn & Johnson 19851.
^ Horn & Johnson 1985, pp. 51–532.
^ Anton, H.; Rorres, C. (22 Feb 2000). Elementary Linear Algebra (Applications Version) (8th ed.). John Wiley
& Sons. ISBN 978-0-471-17052-5.
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