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In linear algebra, for a matrix A, there may not always exist a full set of linearly independent eigenvectors
that form a complete basis – a matrix may not be diagonalizable. This happens when the algebraic
multiplicity of at least one eigenvalue λ is greater than its geometric multiplicity (the nullity of the matrix

, or the dimension of its nullspace). In such cases, a generalized eigenvector of A is a nonzero
vector v, which is associated with λ having algebraic multiplicity k ≥1, satisfying

The set of all generalized eigenvectors for a given λ, together with the zero vector, form the generalized
eigenspace for λ.

Ordinary eigenvectors and eigenspaces are obtained for k=1.
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For defective matrices

Generalized eigenvectors are needed to form a complete basis of a defective matrix, which is a matrix in
which there are fewer linearly independent eigenvectors than eigenvalues (counting multiplicity). Over an
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algebraically closed field, the generalized eigenvectors do allow choosing a complete basis, as follows from
the Jordan form of a matrix.

In particular, suppose that an eigenvalue λ of a matrix A has an algebraic multiplicity m but fewer
corresponding eigenvectors. We form a sequence of m eigenvectors and generalized eigenvectors

 that are linearly independent and satisfy

for some coefficients , for . It follows that

The vectors  can always be chosen, but are not uniquely determined by the above
relations. If the geometric multiplicity (dimension of the eigenspace) of λ is p, one can choose the first p
vectors to be eigenvectors, but the remaining m − p vectors are only generalized eigenvectors.

Examples

Example 1

Suppose

Then there is one eigenvalue λ=1 with an algebraic multiplicity m of 2.

There are several ways to see that there will be one generalized eigenvector necessary. Easiest is to notice
that this matrix is in Jordan normal form, but is not diagonal, meaning that this is not a diagonalizable matrix.
Since there is 1 superdiagonal entry, there will be one generalized eigenvector (or you could note that the
vector space is of dimension 2, so there can be only one generalized eigenvector). Alternatively, you could
compute the dimension of the nullspace of  to be p=1, and thus there are m-p=1 generalized
eigenvectors.

Computing the ordinary eigenvector  is left to the reader (see the eigenvector page for examples).

Using this eigenvector, we compute the generalized eigenvector  by solving

Writing out the values:

This simplifies to

This simplifies to
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And  has no restrictions and thus can be any scalar. So the generalized eigenvector is , where

the * indicates that any value is fine. Usually picking 0 is easiest.

Example 2

The matrix

has eigenvalues of  and  with algebraic multiplicities of  and , but geometric multiplicities of  and .

The generalized eigenspaces of  are calculated below.
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This results in a basis for each of the generalized eigenspaces of . Together they span the space of all 5
dimensional column vectors.

The Jordan Canonical Form is obtained.

where

Other meanings of the term

The usage of generalized eigenfunction differs from this; it is part of the theory of rigged Hilbert
spaces, so that for a linear operator on a function space this may be something different.

One can also use the term generalized eigenvector for an eigenvector of the generalized eigenvalue
problem

The Nullity of (A − λ I)k

Introduction

In this section it is shown, when  is an eigenvalue of a matrix  with algebraic multiplicity , then the
null space of  has dimension .

Existence of Eigenvalues

Consider a nxn matrix A. The determinant of A has the fundamental properties of being
n linear and alternating. Additionally det(I) = 1, for I the nxn identity matrix. From the
determinant's definition it can be seen that for a triangular matrix T = (tij) that
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det(T) = ∏(tii).

There are three elementary row operations, scalar multiplication, interchange of two rows,
and the addition of a scalar multiple of one row to another. Multiplication of a row of A by α
results in a new matrix whose determinant is α det(A). Interchange of two rows changes the
sign of the determinant, and the addition of a scalar multiple of one row to another does not
affect the determinant.

The following simple theorem holds, but requires a little proof.

Theorem:
The equation A x = 0 has a solution x ≠ 0, if and only if det(A) = 0.

proof:
Given the equation A x = 0 attempt to solve it using the elementary row operations
of addition of a scalar multiple of one row to another and row interchanges only,
until an equivalent equation U x = 0 has been reached, with U an upper triangular matrix.
Since det(U) = ±det(A) and det(U) = ∏(uii)
we have that det(A) = 0 if and only if at least one uii = 0. The back substitution procedure
as performed after Gaussian Elimination will allow placing at least one non zero element
in x when there is a uii = 0. When all uii ≠ 0 back substitution will require x = 0.

Theorem:
The equation A x = λ x has a solution x ≠ 0, if and only if det( λ I − A) = 0.

proof:
The equation A x = λ x is equivalent to ( λ I − A) x = 0.

Constructive proof of Schur's triangular form

The proof of the main result of this section will rely on the similarity transformation as stated and proven
next.

Theorem: Schur Transformation to Triangular Form Theorem

For any n×n matrix A, there exists a triangular matrix T and a unitary matrix Q, such that A Q  =  Q T.
 (The transformations are not unique, but are related.)

Proof:

Let  λ1,  be an eigenvalue of the n×n matrix A and x be an associated eigenvector, so that A x = λ1 x.
Normalize the length of x so that  |x|  =  1.

Q should have x as its first column and have its columns an orthonormal basis for Cn.
Now, A Q = Q U1 , with  U1  of the form:
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Let the induction hypothesis be that the theorem holds for all (n-1)×(n-1) matrices.
From the construction, so far, it holds for n = 2.

Choose a unitary Q0, so that U0 Q0 = Q0 U2 , with  U2  of the upper triangular form:

Define Q1 by:

Now:
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Summarizing,

U1
 

Q1
 

 =  
 

Q1
 

U3
 

with:

Now,  A Q = Q U1  and  U1 Q1 = Q1 U3 , where  Q and  Q1  are unitary
and  U3  is upper triangular.  Thus  A Q Q1 =  Q Q1 U3.  Since the product
of two unitary matrices is unitary, the proof is done.

Nullity Theorem's Proof

Since from A Q  =  Q U, one gets A  =  Q U QT. It is easy to see
(x I − A)  =  Q (x I − U) QT and hence det(x I − A)  =  det(x I − U).
So the characteristic polynomial of A is the same as that for U and is
given by p(x)  =  (x − λ1)(x − λ2) · ... · (x − λn).     (Q unitary)

Observe, the construction used in the proof above, allows choosing any order for
the eigenvalues of A that will end up as the diagonal elements of the upper triangular
matrix U obtained. The algebraic mutiplicity of an eigenvalue is the count of the
number of times it occurs on the diagonal.
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Now. it can be supposed for a given eigenvalue λ, of algebraic multiplicity k, that U
has been contrived so that λ occurs as the first k diagonal elements.

Place  (U − λ I)  in block form as below.

The lower left block has only elements of zero.
The  βi = λi − λ ≠ 0  for i = k+1, ..., n.  It is easy to verify the following.
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Where B is the kxk sub triangular matrix, with all elements on or below the diagonal
equal to 0, and T is the (n-k)x(n-k) upper triangular matrix, taken from the blocks of
(U − λ I), as shown below.

Now, almost trivially!

That is Bk has only elements of 0 and Tk is triangular with all non zero diagonal elements.

Just observe that if a column vector v = <v1, v2, ..., vk>T, is mutiplied by B, then after the

first multiplication the last, k'th, component is zero. After the second multiplication the

second to last, k-1'th component is zero, also, and so on.

The conclusion that (U − λ I)k has rank n-k and nullity k follows.

It is only left to observe, since (A − λ I)k  = Q (U − λ I)k QT,
that (A − λ I)k has rank n-k and nullity k, also. A unitary, or any
other similarity transformation by a non-singular matrix preserves rank.

The main result is now proven.

Theorem:
If λ is an eigenvalue of a matrix A with algebraic multiplicity k,
then the null space of (A − λ I)k has dimension k.

An important observation is that raising the power of (A − λ I) above k
will not affect the rank and nullity any further.
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Motivation of the Procedure

Introduction

In the section Existence of Eigenvalues it was shown that when
a nxn matrix A, has an eigenvalue λ, of algebraic multiplicity k,
then the null space of (A − λ I)k, has dimension k.

The Generalized Eigenspace of A, λ will be defined to be the null space
of (A − λ I)k. Many authors prefer to call this the kernel of (A − λ I)k.

Notice that if a nxn matrix has eigenvalues λ1, λ2, ..., λr with
algebraic multiplicities k1, k2, ..., kr, then k1 + k2 + ... + kr = n.

It will turn out that any two generalized eigenspaces of A, associated with
different eigenvalues, will have a trivial intersection of {0}. From this it
follows that the generalized eigenspaces of A combined span Cn,
the set of all n dimensional column vectors of complex numbers.

The motivation for using a recursive procedure starting with the
eigenvectors of A and solving for a basis of the generalized eigenspace
of A, λ using the matix (A − λ I), will be expounded on.

Notation

Some notation is introduced to help abbreviate statements.

Cn is the vector space of all n dimensional column vectors of complex numbers.
The Null Space of A, N(A) = {x: A x = 0}.
V ⊆ W will mean V is a subset of W.
V ⊂ W will mean V is a proper subset of W.
A(V) = {y: y = A x, for some x ∈ V}.
W \ V will mean { x: x ∈ W and x is not in V}.
The Range of A is A(Cn) and will be denoted by R(A).
dim(V) will stand for the dimension of V.
{0} will stand for the trivial subspace of Cn.

Preliminary Observations

Throughout this discussion it is assumed that A is a nxn matrix of complex numbers.

Since  Am x = A (Am-1 x),  the inclusions

 N(A) ⊆ N(A2) ⊆ ... ⊆  N(Am-1) ⊆ N(Am),

are obvious. Since  Am x = Am-1(A x),  the inclusions

R(A) ⊇ R(A2) ⊇ ... ⊇  R(Am-1) ⊇ R(Am),

are clear too.
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Theorem:
When the more trivial case N(A2) = N(A), does not hold,
there exists k ≥ 2, such that the inclusions,
N(A) ⊂ N(A2) ⊂ ... ⊂  N(Ak-1) ⊂ N(Ak) = N(Ak+1) = ...,
and
R(A) ⊃ R(A2) ⊃ ... ⊃  R(Ak-1) ⊃ R(Ak) = R(Ak+1) = ...,
are proper.

proof:

0 ≤ dim(R(Am+1)) ≤ dim(R(Am)) so eventually dim(R(Am+1)) = dim(R(Am)),
for some m. From the inclusion R(Am+1) ⊆ R(Am) it is seen that a basis for
R(Am+1) is a basis for R(Am) too. That is R(Am+1) = R(Am).
Since R(Am+1) = A(R(Am)), when R(Am+1) = R(Am), it will be
R(Am+2) = A(R(Am+1)) = A(R(Am)) = R(Am+1).
By the rank nullity theorem, it will also be the case that
dim(N(Am+2)) = dim(N(Am+1)) = dim(N(Am)), for the same m.
From the inclusions N(Am+2) ⊆ N(Am+1) ⊆ N(Am),
it is clear that a basis for N(Am+2) is also a basis for N(Am+1) and N(Am).
So N(Am+2) = N(Am+1) = N(Am).
Now, k is the first m for which this happens.

Since certain expressions will occur many times in the following,
some more notation will be introduced.

Aλ, k = (A − λ I)k

Nλ, k = N((A − λ I)k)  = N(Aλ, k)
Rλ, k = R((A − λ I)k)  = R(Aλ, k)

From the inclusions Nλ, 1 ⊂  Nλ, 2 ⊂ ... ⊂  Nλ, k-1 ⊂ Nλ, k  = Nλ, k+1 = ...,
 Nλ, k \ {0} = ∪  (Nλ, m \ Nλ, m-1), for m = 1, ..., k and  Nλ, 0 = {0},  follows.

When λ is an eigenvalue of A, in the statement above, k will not exceed the
algebraic multiplicity of λ, and can be less. In fact when k would only be 1 is
when there is a full set of linearly independent eigenvectors. Let's consider when k ≥ 2 .

Now, x ∈ Nλ, m \ Nλ, m-1,  if and only if  Aλ, m x = 0,  and Aλ, m-1 x ≠ 0 . Make the observation
that  Aλ, m x = 0,  and Aλ, m-1 x ≠ 0 ,
if and only if  Aλ, m-1 Aλ, 1 x = 0,  and Aλ, m-2 Aλ, 1 x ≠ 0 .

So, x ∈ Nλ, m \ Nλ, m-1,  if and only if  Aλ, 1 x ∈ Nλ, m-1 \ Nλ, m-2.

Recursive Procedure

Consider a matrix A, with an eigenvalue λ of algebraic multiplicity  k ≥ 2,
such that there are not k linearly independent eigenvectors associated with λ.

It is desired to extend the eigenvectors to a basis for  Nλ, k. That is a basis for
the generalized eigenvectors associated with λ.
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There exists some  2 ≤ r ≤ k , such that

Nλ, 1 ⊂  Nλ, 2 ⊂ ... ⊂  Nλ, r-1 ⊂ Nλ, r  = Nλ, r+1 = ...,
 Nλ, r \ {0} = ∪  (Nλ, m \ Nλ, m-1), for m = 1, ..., r and  Nλ, 0 = {0},  .

The eigenvectors are Nλ, 1 \ {0},  so let  x1, ..., xr1  be a basis for  Nλ, 1 \ {0}.

Note that each  Nλ, m  is a subspace and so a basis for  Nλ, m-1
can be extended to a basis for  Nλ, m .

Because of this we can expect to find some  r2 = dim(Nλ, 2) − dim(Nλ, 1) 

linearly independent vectors

 xr1+ 1, ..., xr1+ r2  such that  x1, ..., xr1 ,  xr1+ 1, ..., xr1+ r2 

is a basis for  Nλ, 2 

Now, x ∈ Nλ, 2 \ Nλ, 1,  if and only if  Aλ, 1 x ∈ Nλ, 1 \ {0}.

Thus we can expect that for each x ∈ {xr1+ 1, ..., xr1+ r2} ,
Aλ, 1 x  =  α1 x1 + ... + αr1 xr1 ,
for some  α1, ..., αr1 , depending on x.

Suppose we have reached the stage in the construction so that m-1 sets,

 {x1, ..., xr1} ,  {xr1+ 1, ..., xr1+ r2} ,   ...,   {xr1+ ... + rm-2+ 1, ..., xr1+ ... + rm-1} 

such that

 x1, ..., xr1 ,  xr1+ 1, ..., xr1+ r2  , ...,   xr1+ ... + rm-2 + 1, ..., xr1+ ... + rm-1 

is a basis for  Nλ, m-1 ,  have been found.

We can expect to find some  rm = dim(Nλ, m) − dim(Nλ, m-1) 

linearly independent vectors

 xr1+ ... + rm-1+ 1, ..., xr1+ ... + rm  such that

 x1, ..., xr1 ,  xr1+ 1, ..., xr1+ r2  , ...,   xr1+ ... + rm-1 + 1, ..., xr1+ ... + rm 

is a basis for  Nλ, m 

Again, x ∈ Nλ, m \ Nλ, m-1,  if and only if  Aλ, 1 x ∈ Nλ, m-1 \ Nλ, m-2.

Thus we can expect that for each x ∈ {xr1+ ... + rm-1 + 1, ..., xr1+ .... + rm} ,

Aλ, 1 x  =  α1 x1 + ... + αr1+ ... + rm-1 xr1+ ... + rm-1 ,

for some  α1, ..., αr1+ ... + rm-1 , depending on x.

Some of the {αr1+ ... + rm-2 + 1, ..., αr1+ .... + rm-1} , will be non zero,

since  Aλ, 1 x  must lie in  Nλ, m-1 \ Nλ, m-2.

The procedure is continued until m = r.
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The αi are not truly arbitrary and must be chosen, accordingly,
so that sums  α1 x1 + α2 x2 + ...  are in the range of Aλ, 1 .

Generalized Eigenspace Decomposition

As was stated in the Introduction, if a nxn matrix has eigenvalues λ1, λ2, ..., λr
with algebraic multiplicities k1, k2, ..., kr, then k1 + k2 + ... + kr = n.

When  V1  and  V2  are two subspaces, satisfying  V1  ∩  V2 = {0} ,

their direct sum,  ⊕ , is defined and notated by

 V1 ⊕ V2  = {v1 + v2 : v1 ∈ V1 and v2 ∈ V2}.

 V1 ⊕ V2  is also a subspace and  dim(V1 ⊕ V2)  = dim(V1) + dim(V2).

Since dim(Nλi, ki) = ki,  for i = 1, 2, ..., r,  after it is shown that

Nλi, ki ∩ Nλj, kj = {0},  for i ≠ j,

we have the main result.

Theorem: Generalized Eigenspace Decomposition Theorem

Cn  =  Nλ1, k1 ⊕  Nλ2, k2 ⊕  ... ⊕  Nλr, kr .

This follows easily after we prove the theorem below.

Theorem:
Let λ be an eigenvalue of A and β ≠ λ. Then
Aβ, r(Nλ, m \ Nλ, m-1)  =  Nλ, m \ Nλ, m-1 , 
for any positive integers m and r.

proof:
If  x ∈ Nλ, 1 \ {0},   Aλ, 1 x = (A − λ I)x = 0,  
then   A x = λ x  and   Aβ, 1 x =  (A − β I)x = (λ − β)x.   
So  Aβ, 1 x  ∈ Nλ, 1 \ {0} and Aβ, 1 (λ − β)−1x = x.
It holds  Aβ, 1 (Nλ, 1 \ {0}) = Nλ, 1 \ {0}. Now, x ∈ Nλ, m \ Nλ, m-1,  if and only if  
Aλ, m x = (A − λ I)Aλ, m-1 x = 0,  and Aλ, m-1 x ≠ 0 .  
In the case,  x ∈ Nλ, m \ Nλ, m-1 ,  
Aλ, m-1 x ∈  Nλ, 1 \ 0,   and   Aβ, 1 Aλ, m-1x = (λ − β) Aλ, m-1 x ≠ 0.
The operators  Aβ, 1 and  Aλ, m-1 commute.
Thus Aλ, m(Aβ, 1x) = 0  and  Aλ, m-1(Aβ, 1x) ≠ 0,
which means Aβ, 1x  ∈ Nλ, m \ Nλ, m-1.

Now, let our induction hypothesis be,  
Aβ, 1(Nλ, m \ Nλ, m-1)  =  Nλ, m \ Nλ, m-1 , .
The relation  Aβ, 1 x  =  (λ − β) x + Aλ, 1 x  holds.
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For  y ∈ Nλ, m+1 \ Nλ, m,  let  x = (λ − β)-1 y + z.  
Then  Aβ, 1 x  =  y  + (λ − β)-1Aλ, 1 y  + (λ − β) z + Aλ, 1 z
=  y  + (λ − β)-1Aλ, 1 y  + Aβ, 1 z.  
Now,  Aλ, 1 y  ∈ Nλ, m \ Nλ, m-1 and, by the
induction hypothesis, there exists  z ∈ Nλ, m \ Nλ, m-1  that solves
 Aβ, 1 z  =  −(λ − β)-1Aλ, 1 y.  
It follows  x ∈ Nλ, m+1 \ Nλ, m  and solves   Aβ, 1 x  = y.
So   Aβ, 1(Nλ, m+1 \ Nλ, m)  =  Nλ, m+1 \ Nλ, m , .

Repeatedly applying  Aβ, r = Aβ, 1Aβ, r-1  finishes the proof.

¶

In fact, from the theorem just proved,  for  i ≠ j,

Aλi, ki(Nλj, kj)  =  Nλj,  kj,.

Now, suppose that Nλi, ki ∩ Nλj, kj ≠ {0},  for some i ≠ j.

Choose x ∈  Nλi, ki ∩ Nλj, kj ≠ 0.

Since  x ∈  Nλi, ki , it follows  Aλi, ki x = 0.

Since  x ∈  Nλj, kj , it follows  Aλi, ki x ≠ 0,

because Aλi, ki  preserves dimension on Nλj, kj.

So it must be  Nλi, ki ∩ Nλj, kj = {0},  for i ≠ j.

This concludes the proof of the Generalized Eigenspace Decomposition Theorem.

Powers of a Matrix

using generalized eigenvectors

Assume A is a nxn matrix with eigenvalues λ1, λ2, ..., λr
of algebraic multiplicities k1, k2, ..., kr.

For notational convenience  Aλ, 0  =  I.

Note that  Aβ, 1  =   (λ − β)I + Aλ, 1 . and apply the binomial theorem.

Aβ, s  =   ((λ − β)I + Aλ, 1)s  = 

s

∑
m = 0

( s
m ) (λ − β)s − mAλ, m

When λ is an eigenvalue of algebraic multiplicity  k, and  x ∈ Nλ, k,
 then  Aλ, m x = 0,  for  m ≥ k,  so in this case:
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Aβ, s x  = 

min(s, k−1)

∑
m = 0

( s
m ) (λ − β)s − mAλ, m x

Since   Cn  =  Nλ1, k1 ⊕  Nλ2, k2 ⊕  ... ⊕  Nλr, kr,

any x in  Cn  can be expressed as  x = x1 + x2 + ... + xr ,

with each  xi ∈ Nλi, ki.   Hence:

Aβ, s x  = 

r

∑
i = 1

min(s, ki−1)

∑
m = 0

( s
m ) (λi − β)s − mAλi, m xi.

The columns of  Aβ, s  are obtained by letting  x  vary across the standard basis vectors.

The case  A0, s  is the power  As  of  A.

the minimal polynomial of a matrix

Assume A is a nxn matrix with eigenvalues λ1, λ2, ..., λr
of algebraic multiplicities k1, k2, ..., kr.

For each  i  define  α(λi), the null index of  λi,  to be the
smallest positive integer  α  such that  Nλi, α  =  Nλi, ki.

It is often the case that  α(λi) < ki.

Then  p(x) = ∏ (x − λi)α(λi)  is the minimal polynomial for A.

To see this note  p(A) = ∏ A λi,α(λi)  and the factors can be commuted in any order.

So  p(A) (Nλj, kj ) = {0},  because  A λj,α(λj)  (Nλj, kj ) = {0}.  Being that

Cn  =  Nλ1, k1 ⊕  Nλ2, k2 ⊕  ... ⊕  Nλr, kr,  it is clear  p(A) = 0.

Now p(x) can not be of less degree because  A β, 1 (Nλj, kj ) =  Nλj, kj ,

when  β ≠ λj, and so A λj,α(λj)  must be a factor of  p(A),  for each  j.

using confluent Vandermonde matrices

An alternative strategy is to use the characteristic polynomial of matrix A.

Let   p(x) = a0 + a1 x + a2 x2 + ... + an-1 xn-1 + xn

be the characteristic polynomial of A.

The minimal polynomial of A can be substituted for p(x) in this discussion, if it is known,
and different, to reduce the degree n and the multiplicities of the eigenvalues.
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Then  p(A) = 0  and  An  =  −(a0 I + a1 A + a2 A2 + ... + an-1 An-1).

So   An+m  =  bm, 0 I + bm, 1 A + bm, 2 A2 + ... + bm, n-1 An-1,

where the   bm, 0, bm, 1, bm, 2, ..., bm, n-1,   satisfy the recurrence relation

bm, 0 = −a0 bm-1, n-1, 
bm, 1 = bm-1, 0 − a1 bm-1, n-1, 
bm, 2 = bm-1, 1 − a2 bm-1, n-1, 
...,
bm, n-1 = bm-1, n-2 − an-1 bm-1, n-1

with   b0, 0 = b0, 1 = b0, 2 = ... = b0, n-2 = 0,  and  b0, n-1 = 1.

This alone will reduce the number of multiplications needed to calculate a higher
power of A by a factor of n2, as compared to simply multiplying An+m by A.

In fact the   bm, 0, bm, 1, bm, 2, ..., bm, n-1,   can be calculated by a formula.

Consider first when A has distinct eigenvalues   λ1, λ2, ..., λn.
Since p(λi) = 0,  for each  i,  the  λi  satisfy the recurrence relation also. So:

The matrix  V  in the equation is the well studied Vandermonde's,
for which formulas for it's determinant and inverse are known.

In the case that  λ2 = λ1 , consider instead when  λ1  is near  λ2 , and
subtract row  1  from row  2, which does not affect the determinant.
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After dividing the second row by  (λ2 − λ1)  the determinant will be affected by
the removal of this factor and still be non-zero.

Taking the limit as  λ1→ λ2, the new system has the second row differentiated.

The new system has determinant:

In the case that  λ3 = λ2 , also, consider like before when  λ2  is near  λ3 , and
subtract row  1  from row  3, which does not affect the determinant. Next divide
row three by  (λ3 − λ2)  and then subtract row  2  from the new row  3  and
follow by dividing the resulting row  3  by  (λ3 − λ2)  again. This will affect the
determinant by removing a factor of  (λ3 − λ2)2. 

Each element of row  3  is now of the form
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The effect is to differentiate twice and multiply by one half.

The new system has determinant:

If it were that the multiplicity of the eigenvalue was even higher, then the next row would
be differentiated three times and mutiplied by  1/3!.  The progression is 1/s! f(s), with the
constant coming from the coefficients of the derivatives in the Taylor expansion. This
being done for each eigenvalue of algebraic multiplicity greater than 1.

example

The matrix

has characteristic polynomial  p(x) = (x − 1)2(x − 2)3.

The   bm, 0, bm, 1, bm, 2,  bm, 3, bm, 4,    for which

A5+m  =  bm, 0 I + bm, 1 A + bm, 2 A2 + bm, 3 A3 + bm, 4 A4,
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satisfy the confluent Vandermonde system next.

using difference equations

Returning to the recurrence relation for  bm, 0, bm, 1, bm, 2, ..., bm, n-1,
bm, 0 = −a0 bm-1, n-1, 
bm, 1 = bm-1, 0 − a1 bm-1, n-1, 
bm, 2 = bm-1, 1 − a2 bm-1, n-1, 
...,
bm, n-1 = bm-1, n-2 − an-1 bm-1, n-1

with   b0, 0 = b0, 1 = b0, 2 = ... = b0, n-2 = 0,  and  b0, n-1 = 1.

Upon substituting the first relation into the second,
bm, 1 =  −a0 bm-2, n-1 − a1 bm-1, n-1, 
and now this one into the next   bm, 2 = bm-1, 1 − a2 bm-1, n-1, 
bm, 2 =  −a0 bm-3, n-1 − a1 bm-2, n-1 − a2 bm-1, n-1, 
...,  and so on, the following difference equation is found.
bm, n-1 =
 −a0 bm-n, n-1 − a1 bm-n+1, n-1 − a2 bm-n+2, n-1  − ... − an-2 bm-2, n-1 − an-1 bm-1, n-1

with   b0, n-1 = b1, n-1 = b2, n-1 = ... = bn-2, n-1 = 0,  and  bn-1, n-1 = 1.

See the subsection on linear difference equations for more explanation.

Chains of generalized eigenvectors

Some notation and results from previous sections are restated.

A is a nxn matrix of complex numbers.
Aλ, k = (A − λ I)k

Nλ, k = N((A − λ I)k)  = N(Aλ, k)

For  V1 ∩ V2 = {0},   V1 ⊕ V2  = {v1 + v2 : v1 ∈ V1 and v2 ∈ V2}.
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Assume A has eigenvalues λ1, λ2, ..., λr
of algebraic multiplicities k1, k2, ..., kr.

For each  i  define  α(λi), the null index of  λi,  to be the
smallest positive integer  α  such that  Nλi, α  =  Nλi, ki.

It is always the case that  α(λi) ≤ ki.

When  α(λ) ≥ 2 ,

Nλ, 1 ⊂  Nλ, 2 ⊂ ... ⊂  Nλ,  α-1 ⊂ Nλ, α  = Nλ, α+1 = ...,

 Nλ, α \ {0} = ∪  (Nλ, m \ Nλ, m-1), for m = 1, ..., α and  Nλ, 0 = {0}.

x ∈ Nλ, m \ Nλ, m-1,  if and only if  Aλ, 1 x ∈ Nλ, m-1 \ Nλ, m-2

Define a  chain of generalized eigenvectors to be a set
{ x1, x2, ...,  xm }  such that  x1 ∈ Nλ, m \ Nλ, m-1,  and  xi+1 = Aλ, 1 xi.

Then  xm ≠ 0  and  Aλ, 1 xm = 0.

When  x1 ∈ Nλ, 1 \ {0},  {x1}  can be, for the sake of not requiring extra
terminology, considered trivially a chain.

When a disjoint collection of chains combined form a basis set for Nλ, α(λ) ,
they are often referred to as Jordan chains and are the vectors used for
the columns of a transformation matrix in the Jordan canonical form.

When a disjoint collection of chains that combined form a basis set,
is needed that satisfy  βi+1xi+1 = Aλ, 1 xi, for some scalars  βi, chains
as already defined can be scaled for this purpose.

What will be proven here is that such a disjoint collection of chains
can always be constructed.

Before the proof is started, recall a few facts about direct sums.

When the notation V1 ⊕ V2  is used, it is assumed V1 ∩ V2 = {0}.

For  x = v1 + v2  with v1 ∈ V1 and v2 ∈ V2 ,  then  x = 0,

if and only if  v1 = v2 = 0.

In the discussion below
δi  =  dim(Nλ, i)  −  dim(Nλ, i−1),  with  δ1  =  dim(Nλ, 1).

First consider when  Nλ, 2 \ Nλ, 1 ≠ {0} , Then a basis for  Nλ, 1  can be

extended to a basis for  Nλ, 2.  If  δ2  = 1, then there exists x1 ∈ Nλ, 2 \ Nλ, 1,

such that  Nλ, 2 =  Nλ, 1 ⊕ span{x1}.  Let  x2 = Aλ, 1 x1.  Then

x2 ∈ Nλ, 1 \ {0},  with x1 and x2 linearly independent. If dim(Nλ, 2) = 2,

since {x1, x2}  is a chain we are through. Otherwise x1, x2  can be extended

to a basis x1, x2, ..., xδ1 for  Nλ, 2.  The sets {x1, x2}, {x3}, ..., {xδ1}

form a disjoint collection of chains. In the case that δ2  > 1, then there exist
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linearly independent  x1, x2, ..., xδ2 ∈ Nλ, 2 \ Nλ, 1,  such that

 Nλ, 2 =  Nλ, 1 ⊕ span{x1, x2, ..., xδ2}.  Let  yi = Aλ, 1 xi.

Then   yi ∈ Nλ, 1 \ {0},  for  i = 1, 2, ..., δ2.  To see the  y1, y2, ..., yδ2

are linearly independent, assume that for some  β1, β2, ..., βδ2,

that  β1y1 + β2y2 + ... + βδ2yδ2 = 0, Then for  x = β1x1 + β2x2 + ... + βδ2xδ2,

x ∈ Nλ, 1 ,  and x ∈ span{x1, x2, ..., xδ2}, which implies that x = 0,  and

 β1= β2= ... = βδ2 = 0.  Since span{y1, y2, ..., yδ2} ⊆ Nλ, 1, the vectors

x1, x2, ..., xδ2 , y1, y2, ..., yδ2  are a linearly independent set.

If  δ2 = δ1,  then the sets {x1, y1}, {x2, y2}, ..., {xδ2, yδ2}  form a

disjoint collection of chains that when combined are a basis set for  Nλ, 2.

If  δ1 > δ2,  then  x1, x2, ..., xδ2 , y1, y2, ..., yδ2  can be extended to a basis

for  Nλ, 2  by some vectors xδ2+1, ..., xδ1  in  Nλ, 1,  so that

{x1, y1}, {x2, y2}, ..., {xδ2, yδ2} , {xδ2+1}, ..., {xδ1}

forms a disjoint collection of chains.

To reduce redundancy, in the next paragraph, when  δ = 1  the notation
x1, x2, ..., xδ will be understood simply to mean just x1 and when  δ = 2 
to mean  x1, x2.

So far it has been shown that, if linearly independent

x1, x2, ..., xδ2 ∈ Nλ, 2 \ Nλ, 1,  are chosen, such that

 Nλ, 2 =  Nλ, 1 ⊕ span{x1, x2, ..., xδ2},  then there exists a disjoint

collection of chains with each of the x1, x2, ..., xδ2  being the first member or top

of one of the chains. Furthermore, this collection of vectors, when combined,

forms a basis for  Nλ, 2.

Now, let the induction hypothesis be that, if linearly independent

x1, x2, ..., xδm ∈ Nλ, m \ Nλ, m−1,  are chosen, such that

 Nλ, m =  Nλ, m−1 ⊕ span{x1, x2, ..., xδm},  then there exists a disjoint

collection of chains with each of the x1, x2, ..., xδm  being the first member or top

of one of the chains. Furthermore, this collection of vectors, when combined,

forms a basis for  Nλ, m.

Consider  m < α(λ).  A basis for  Nλ, m can always be extended to a basis for

 Nλ, m+1. So linearly independent  x1, x2, ..., xδm+1 ∈ Nλ, m+1 \ Nλ, m,  such that

 Nλ, m+1 =  Nλ, m ⊕ span{x1, x2, ..., xδm+1},  can be chosen.  Let  yi = Aλ, 1 xi.

Then   yi ∈ Nλ, m \ Nλ, m−1,  for  i = 1, 2, ..., δm+1.  To see the  y1, y2, ..., yδm+1

are linearly independent, assume that for some  β1, β2, ..., βδm+1,
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that  β1y1 + β2y2 + ... + βδm+1yδm+1 = 0, Then for

 x = β1x1 + β2x2 + ... + βδm+1xδm+1,   x ∈ Nλ, 1 ,  and

x ∈ span{x1, x2, ..., xδm+1}, which implies that x = 0,  and

 β1= β2= ... = βδm+1 = 0.  In addition,  span{y1, y2, ..., yδm+1} ∩ Nλ, m−1 = {0}.

To see this assume that for some  β1, β2, ..., βδm+1,

that  β1y1 + β2y2 + ... + βδm+1yδm+1 ∈  Nλ, m−1  Then for

 x = β1x1 + β2x2 + ... + βδm+1xδm+1,   x ∈ Nλ, m ,  and

x ∈ span{x1, x2, ..., xδm+1}, which implies that x = 0,  and

 β1= β2= ... = βδm+1 = 0.  The proof is nearly done.

At this point suppose that  b1, b2, ..., bdm−1  is any basis for Nλ, m−1.

Then  B =  span{b1, b2, ..., bdm−1} ⊕ span{y1, y2, ..., yδm+1}

is a subspace of Nλ, m.  If  B ≠ Nλ, m,  then

b1, b2, ..., bdm−1,  y1, y2, ..., yδm+1 can be extended to a basis for Nλ, m,

by some set of vectors  z1, z2, ..., z(δm− δm+1) , in which case

Nλ, m =  Nλ, m−1 ⊕ span{y1, y2, ..., yδm+1} ⊕ span{z1, z2, ..., z(δm− δm+1)}.

If  δm = δm+1,  then

 Nλ, m =  Nλ, m−1 ⊕ span{y1, y2, ..., yδm+1}

or if  δm > δm+1,  then

 Nλ, m =  Nλ, m−1 ⊕ span{z1, z2, ..., z(δm− δm+1) , y1, y2, ..., yδm+1}

In either case apply the induction hypothesis to get that there exists a disjoint

collection of chains with each of the y1, y2, ..., yδm+1  being the first member or top

of one of the chains. Furthermore, this collection of vectors, when combined,

forms a basis for  Nλ, m. Now,  yi = Aλ, 1 xi,  for  i = 1, 2, ..., δm+1,  so each of the

chains beginning with  yi  can be extended upwards into  Nλ, m+1 \ Nλ, m to a chain

beginning with  xi.  Since  Nλ, m+1 =  Nλ, m ⊕ span{x1, x2, ..., xδm+1},

the combined vectors of the new chains form a basis for  Nλ, m+1.

Differential equations y′= Ay

Let  A  be a n×n matrix of complex numbers and  λ  an eigenvalue of  A , with

associated eigenvector  x . Suppose  y(t)  is a  n dimensional vector valued

function, sufficiently smooth, so that  y′(t)  is continuous. The restriction that  y(t)

be smooth can be relaxed somewhat, but is not the main focus of this discussion.

The solutions to the equation  y′(t) = Ay(t)  are sought. The first observation is that
 y(t) = eλtx  will be a solution. When  A  does not have  n  linearly independent
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eigenvectors, solutions of this kind will not provide the total of  n  needed for a
fundamental basis set.

In view of the existence of chains of generalized eigenvectors seek a solution of

the form  'y(t) = eλtx1 + t'eλtx2 , then

 y′(t) =' λ eλtx1 + eλtx2 + λ t eλtx2 =' eλt(λ x1 + x2)''''  + t eλt(λx 2) 

and

 Ay(t) = eλtA x1 + t eλtA x2 .

In view of this,  y(t)  will be a solution to  y′(t) = Ay(t) , when  'A x1 = λ x1 + x2'  and

 A x2 = λ x2 . That is when  (A − λ I)x1 = x2  and  (A − λ I)x2 = 0 . Equivalently,

when  {x1, x2}  is a chain of generalized eigenvectors.

Continuing with this reasoning seek a solution of the form

 y(t) = eλtx1 + t eλtx2 + t2 eλtx3 , then

 y′(t) = λ eλtx1 + eλtx2 + λ t eλtx2 + 2 t eλtx3 + λ t2 eλtx3

= eλt(λ x1 + x2) + t eλt(λ x2 + 2 x3) + t2 eλt(λ x3)'  and

 Ay(t) = eλtA x1 + t eλtA x2 + t2 eλtA x3 .

Like before,  y(t)  will be a solution to  y′(t) = Ay(t) , when  'A x1 = λ x1 + x2' ,
 'A x2 = λ x2 + 2 x3' , and  A x3 = λ x3 . That is when (A − λ I)x1 = x2 ,
 (A − λ I)x2 = 2 x3 , and  (A − λ I)x3 = 0 . Since it will hold  (A − λ I)(2 x3) = 0 ,
also, equivalently, when  {x1, x2, 2 x3}  is a chain of generalized eigenvectors.

More generally, to find the progression, seek a solution of the form

 y(t) = eλtx1 + t eλtx2 + t2 eλtx3 + t3 eλtx4 + ... + tm−2 eλtxm−1 + tm−1 eλtxm ,

then

 y′(t) = λ eλtx1 + eλtx2 + λ t eλtx2' + 2 t eλtx3' + λ t2 eλtx3' + 3 t2 eλtx4' + λ t3 eλtx4'

+ ...' + (m−2)tm−3eλtxm−1' + λ tm−2 eλtxm−1' + (m−1)tm−2 eλtxm' + λ tm−1 eλtxm

=' eλt(λ x1 + x2) + t eλt(λ x2 + 2 x3) + t2 eλt(λ x3 + 3 x4) + t3 eλt(λ x4 + 4 x5)

+ ...

+ tm−3 eλt(λ xm−2 + (m−2) xm−1) + tm−2 eλt(λ xm−1 + (m−1) xm) + tm−1 eλt(λ xm)' 

and

Ay(t) =

  eλtA x1 + t eλtA x2 + t2 eλtA x3 + t3 eλtA x4 + ... + tm−2 eλtA xm−1 + tm−1 eλtA xm .

Again,  y(t)  will be a solution to  y′(t) = Ay(t) , when

 'A x1 = λ x1 + x2' ,  A x2 = λ x2 + 2 x3 ,  A x3 = λ x3 + 3 x4 ,  A x4 = λ x4 + 4 x5 ,

 A xm−2 = λ xm−2 + (m−2) xm−1 ,  A xm−1 = λ xm−1 + (m−1) xm ,
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and  A xm = λ xm .

That is when

 (A − λ I)x1 = x2 ,  (A − λ I)x2 = 2 x3 ,  (A − λ I)x3 = 3 x4 ,  (A − λ I)x4 = 4 x5 ,

 ..., 

 (A − λ I)xm−2 = (m−2) xm−1 ,  (A − λ I)xm−1 = (m−1) xm , and

 (A − λ I)xm = 0 .

Since it will hold  (A − λ I)((m−1)! x3) = 0 , also, equivalently, when

 {x1, 1! x2, 2! x3, 3! x4, ..., (m−2)! xm−1, (m−1)! xm} 

is a chain of generalized eigenvectors.

Now, the basis set for all solutions will be found through a disjoint collection
of chains of generalized eigenvectors of the matrix A.

Assume A has eigenvalues λ1, λ2, ..., λr

of algebraic multiplicities k1, k2, ..., kr.

For a given eigenvalue λi there is a collection of s, with s depending on i,

disjoint chains of generalized eigenvectors

Ci,1 = {1z1, 1z2, ...,1zj1}, Ci,2 = {2z1, 2z2, ...,2zj2}, ..., Ci,js(i) = {sz1, sz2, ...,szjs},

that when combined form a basis set for Nλi, ki. The total number of vectors

in this set will be j1 + j2 + ... + js = ki. Sets in this collection may have only one

or two members so in this discussion understand the notation {βz1, βz2, ...,βzjβ}

will mean {βz1} when jβ = 1, and {βz1, βz2} when jβ = 2, and so forth.

Being that this notation is cumbersome with many indices, in the next paragraphs
any particular Ci,β, when more explanation is not needed, may just be notated as
C = {z1, z2, ..., zj}.

For each such of these chain sets, C = {z1, z2, ..., zj}
the sets {xj}, {xj−1, xj}, {xj−2, xj−1, xj}, ..., {z2, z3, ..., zj}, {z1, z2, ..., zj}
are also chains. This notation being understood to mean when
C = {z1} just {z1}, when C = {z1, z2} just {z2}, {z1, z2} and when
C = {z1, z2, z2} just {z3}, {z2, z3}, {z1, z2, z3}, and so on.

The conclusion of the top of the discussion was that

y(t) = eλtx1, is a solution when {x1} is a chain.

y(t) = eλtx1 + t eλtx2, is a solution when {x1, 1! x2} is a chain.

y(t) = eλtx1 + t eλtx2 + t2 eλtx3, is a solution when {x1, 1! x2, , 2! x3} is a chain.

The progression continues to

y(t) = eλtx1 + t eλtx2 + t2 eλtx3 + t3 eλtx4 + ... + tm−2 eλtxm−1 + tm−1 eλtxm,

Generalized eigenvector - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Generalized_eigenvector

24 of 30 18/03/2013 20:00



is a solution when {x1, 1! x2, 2! x3, 3! x4, ..., (m−2)! xm−1, (m−1)! xm},

is a chain of generalized eigenvectors.

In light of the preceding calculations, all that must be done is to provide the proper

scaling for each of the chains arising from the set C = {z1, z2, ..., zj}.

The progression for the solutions is given by

y(t) = eλtzj, for chain {zj}

y(t) = eλtzj−1 + (1 ⁄ 1!) t eλtzj, for chain {zj−1, 1!(1 ⁄ 1!) zj}

y(t) = eλtzj−2 + (1 ⁄ 1!) t eλtzj−1 + (1 ⁄ 2!) t2 eλtzj,

for chain {zj−2, 1!(1 ⁄ 1!) zj−1, 2!(1 ⁄ 2!) zj}

y(t) = eλtzj−3 + (1 ⁄ 1!) t eλtzj−2 + (1 ⁄ 2!) t2 eλtzj−1 + (1 ⁄ 3!) t3 eλtzj,

for chain {zj−3, 1!(1 ⁄ 1!) zj−2, 2!(1 ⁄ 2!) zj−1, 3!(1 ⁄ 3!) zj},

and so on until,

y(t) = eλtz1 + (1 ⁄ 1!) t eλtz2 + (1 ⁄ 2!) t2 eλtz3 + ... + (1 ⁄ (j−1)!) t j−1 eλtzj,

for the chain of generalized eigenvectors,

{z1, 1!(1 ⁄ 1!) z2, 2!(1 ⁄ 2!) z3, ..., (j−2)!(1 ⁄ (j−2)!) xj−1, (j−1)!(1 ⁄ (j−1)!) zj}.

What is left to show is that when all the solutions constructed from the chain sets,
as described, are considered, they form a fundamental set of solutions.
To do this it has to be shown that there are n of them and that they are
linearly independent.

Reiterating, for a given eigenvalue λi there is a collection of s, with s depending on i,

disjoint chains of generalized eigenvectors

Ci,1 = {1z1, 1z2, ...,1zj1(i)}, Ci,2 = {2z1, 2z2, ...,2zj2(i)},

..., Ci,js(i) = {s(i)z1, s(i)z2, ...,s(i)zjs(i)},

that when combined form a basis set for Nλi, ki. The total number of vectors

in this set will be j1(i) + j2(i) + ... + js(i) = ki.

Thus the total number of all such basis vectors and so solutions is
k1 + k2 + ... + kr = n.

Each solution is one of the forms y(t) = eλtx1, y(t) = eλtx1 + t eλtx2,

y(t) = eλtx1 + t eλtx2 + t2 eλtx3, y(t) = eλtx1 + t eλtx2 + t2 eλtx3 + ....

Now each basis vector vj, for j = 1, 2, ..., n; of the combined set of

generalized eigenvectors, occurs as x1 in one of the expressions immediately

above precisely once. That is, for each j, there is one yj(t) = eλtvj + ...

Since yj(0) = eλ0vj = vj, the set of solutions are linearly independent at t = 0.

Revisiting the powers of a matrix
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As a notational convenience  Aλ, 0 = I.

Note that  A  =   λ I + Aλ, 1 . and apply the binomial theorem.

As  =   (λ I + Aλ, 1)s  = 

s

∑
r = 0

( s
r ) λs − rAλ, r

Assume λ is an eigenvalue of  A,  and let  { x1, x2, ...,  xm }

be a  chain of generalized eigenvectors such that  x1 ∈ Nλ, m \ Nλ, m-1 ,

 xi+1 = Aλ, 1 xi ,.  xm ≠ 0 ,  and  Aλ, 1 xm = 0.

Then  xr+1 = Aλ, r x1,   for  r = 0, 1, ..., m-1.

As x1  = 

s

∑
r = 0

( s
r ) λs − rAλ, r x1  = 

s

∑
r = 0

( s
r ) λs − r xr+1

So for s ≤ m − 1

As x1  = 

s

∑
r = 0

( s
r ) λs − r xr+1

and for s ≥ m − 1,  since  Aλ, m x1 = 0,

As x1  = 

m −1

∑
r = 0

( s
r ) λs − r xr+1 .

Ordinary linear difference equations

Ordinary linear difference equations are equations of the sort:
yn = a yn−1 +  b
yn = a yn−1 + b yn−2  +  c
or more generally,
yn = amyn−1 + am−1yn−2 + ... +  a2yn−m + 1 + a1yn−m + a0

with initial conditions
y0,  y1,  y2,  ...,  ym−2,  ym−1.

A case with  a1 = 0  can be excluded, since it represents an equation of less degree.

They have a characteristic polynomial

p(x) =  xm − amxm−1 − am−1xm−2 − ... − a2x − a1.

Generalized eigenvector - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Generalized_eigenvector

26 of 30 18/03/2013 20:00



To solve a difference equation it is first observed, if  yn  and  zn  are both solutions,

then  (yn − zn)  is a solution of the homogeneous equation:

yn = amyn−1 + am−1yn−2 + ... +  a2yn−m + 1 + a1yn−m.

So a particular solution to the difference equation must be found together with
all solutions of the homogeneous equation to get the general solution for the
difference equation. Another observation to make is that, if  yn  is a solution to
the inhomogeneous equation, then
zn = yn+1 − yn
is also a solution to the homogeneous equation.
So all solutions of the homogeneous equation will be found first.

When  β  is a root of  p(x) = 0,  then it is easily seen

yn = βn  is a solution to the homogeneous equation since

yn − amyn−1 − am−1yn−2 − ... −  a2yn−m + 1 − a1yn−m,

becomes upon the substitution  yn = βn,

βn − amβn−1 − am−1βn−2 − ... − a2βn−m + 1 − a1βn−m

= βn−m(βm − amβm−1 − am−1βm−2 − ... − a2β − a1)

 = βn−mp(β) = 0.

When  β  is a repeated root of  p(x) = 0,  then

yn = nβn−1  is a solution to the homogeneous equation since

nβn−1 − am(n−1)βn−2 − am−1(n−2)βn−3 − ... − a2(n−m + 1)βn−m − a1(n−m)βn−m − 1

= (n−m)βn−m − 1(βm − amβm−1 − am−1βm−2 − ... − a2β − a1)

+ βn−m − 1(mβm−1 − (m−1)amβm−2 − (m−2)am−1βm−3 − ... − 2a3β − a2)

== (n−m)βn−m − 1p(β) + βn−m − 1p′(β) == 0.

After reaching this point in the calculation the mystery is solved. Just notice when

β  is a root of  p(x) = 0 with mutiplicity  k,  then for  s = 1, 2, ..., k−1

ds(βn−mp(β))/dβs = 0.

Referring this back to the original equation

βn − amβn−1 − am−1βn−2 − ... − a2βn−m + 1 − a1βn−m

it is seen that

yn = ds(βn)/dβs

are solutions to the homogeneous equation. For example, if  β  is a root of

multiplicity  3,  then  yn = n(n−1)βn−2  is a solution. In any case this gives  m

linearly independent solutions to the homogeneous equation.

To look for a particular solution first consider the simpliest equation.
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yn = a yn−1 +  b.

It has a particular solution  yp,n  given by

yp,0 = 0, yp,1 = b, yp,2 = (1 + a)b, ..., yp,n = (1 + a + a2 + ... + an−1)b, ..., .

It's homogeneous equation  yn = a yn−1  has solutions  yn = any0.

So  zn = yn+1 − yn = anb

can be telescoped to get

yn = (yn − yn−1) + (yn−1 − yn−2) + ... + (y2 − y1) + (y1 − y0) + y0

= zn−1 + zn−2 + ... + z1 + z0 + y0

= (1 + a + a2 + ... + an−1)b ,

the particular solution with  y0 = 0.

Now, returning to the general problem, the equation
yn = amyn−1 + am−1yn−2 + ... +  a2yn−m + 1 + a1yn−m + a0.
When  yp,n  is a particular solution with yp,0 = 0,  then
 zn = yp,n+1 − yp,n 
is a solution to the homogeneous equation with  z0 = yp,1 .
So  zn = yp,n+1 − yp,n 
can be telescoped to get
yp,n = (yp,n − yp,n−1) + (yp,n−1 − yp,n−2) + ... + (yp,2 − yp,1) + (yp,1 − yp,0) + yp,0
= zn−1 + zn−2 + ... + z1 + z0 
Considering
yp,m = amyp,m−1 + am−1yp,m−2 + ... +  a2yp,1 + a1yp,0 + a0.
and rewriting the equation in the  zi
zm−1 + zm−2 + ... + z1 + z0 
 =  (am) ( zm−2 + zm−3 + ... + z1 + z0)   +  (am−1) ( zm−3 + zm−4 + ... + z1 + z0) 
 +  (am−2) ( zm−4 + zm−5 + ... + z1 + z0) 
 +  · · ·
 +  (a3) ( z1 + z0)  +  (a2) ( z0)  +  (a0)
and
zm−1

 =  (am − 1) zm−2  +  (am + am−1 − 1) zm−3  +  (am + am−1 + am−2 − 1) zm−4

 +  · · ·
 +  (am + am−1 + ... + a4 + a3 − 1) z1  +  (am + am−1 + ... + a3 + a2 − 1) z0

 +  (a0).

Since a solution of the homogeneous equation can be found for any initial conditions
z0,  z1,  z2,  ...,  zm−2,  zm−1.
reasoning conversely find such  zi  satisfying the equation,
just before and define  yp,n  by the relation
 yp,0 = 0,  yp,n  = zn−1 + zn−2 + ... + z1 + z0 
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One choice is, for example,  zm−1 = a0,   z0  =  z1  =  z2  = ... =  zm−2  =  0.
This solution solves the problem for all initial values equal to zero.

The general solution to the inhomogeneous equation is given by
yn = yp,n + γ1 w(1)n + γ2 w(2)n + ... + γm−1 w(m−1)n + γm w(m)n
where
w(1)n,  w(2)n,  ...,  w(m−1)n, w(m)n
are a basis for the homogeneous equation, and
γ1,  γ2,  ...,  γm−1,  γm
are scalars.

example

yn = 8 yn−1 − 25 yn−2 + 38 yn−3 − 28 yn−4  + 8 yn−5 +  1
with initial conditions
y0 = 0,  y1 = 0,  y2 = 0,   y3 = 0,  and  y4 = 0.

The characteristic polynomial for the equation is

p(x) =  x5 − 8x4 + 25x3 − 38x2 + 28x − 8   =  (x − 1)2(x − 2)3.

The homogeneous equation has independent solutions

w1n  =  1n = 1,   w2n  =  n·1n−1 = n,   and

w3n  =  2n,   w4n  =  n·2n−1,   w5n  =  n(n−1)·2n−2.

The solution to the homogeneous equation

zn = −3 w1n − w2n +  3 w3n − 2 w4n + ½ w5n  

satisfies the initial conditions

z4 = 1,   z0  =  z1  =  z2  =  z3  =  0.

A particular solution can be found by

yp,0 = 0,   yp,n  = zn−1 + zn−2 + ... + z1 + z0 .

Calculating sums:

∑w1  =  w1n−1 + w1n−2 + ... + w11 + w10   =  n .

∑w2  =  w2n−1 + w2n−2 + ... + w21 + w20   =  (n−1)n / 2 .

∑w3  =  w3n−1 + w3n−2 + ... + w31 + w30   =  2n − 1 .

Sums of these kinds are found by differentiating  (xn − 1) / (x − 1).

∑w4  =  w4n−1 + w4n−2 + ... + w41 + w40   =  (n−2)2n−1 + 1 .

∑w5  =  w5n−1 + w5n−2 + ... + w51 + w50   =  (n2 − 5n + 8)2n−2 − 2 .

Now,

yp,n = −3 ∑w1n − ∑w2n +  3 ∑w3n − 2 ∑w4n + ½ ∑w5n

solves the initial value problem of this example.

Generalized eigenvector - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Generalized_eigenvector

29 of 30 18/03/2013 20:00



At this point it is worthwhile to notice that all the terms that are combinations of

scalar multiples of basis elements can be removed. These are any multiples of

1,  n,  2n,  n·2n−1,  and  n2·2n−2.

So instead the particular solution next, may be preferred.

yp,n  =  −½ n2 .

This solution has non zero initial values, which must be taken into account.

y0 = 0,  y1 = −1 ⁄ 2,  y2 = −2,   y3 = −9 ⁄ 2,  and  y4 = −8.
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