Gelfand representation

From Wikipedia, the free encyclopedia (Redirected from Gelfand isomorphism)

In mathematics, the **Gelfand representation** in functional analysis (named after I. M. Gelfand) has two related meanings:

- a way of representing commutative Banach algebras as algebras of continuous functions;
- the fact that for commutative C*-algebras, this representation is an isometric isomorphism.

In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function. In the latter case, the Gelfand-Naimark representation theorem is one avenue in the development of spectral theory for normal operators, and generalizes the notion of diagonalizing a normal matrix.

Historical remarks

One of Gelfand's original applications (and one which historically motivated much of the study of Banach algebras^[citation needed]) was to give a much shorter and more conceptual proof of a celebrated lemma of Norbert Wiener (see the citation below), characterizing the elements of the group algebras $L^1(\mathbf{R})$ and $\ell^1(\mathbf{Z})$ whose translates span dense subspaces in the respective algebras.

The model algebra

For any locally compact Hausdorff topological space X, the space $C_0(X)$ of continuous complex-valued functions on X which vanish at infinity is in a natural way a commutative C*-algebra:

- The structure of algebra over the complex numbers is obtained by considering the pointwise operations of addition and multiplication.
- The involution is pointwise complex conjugation.
- The norm is the uniform norm on functions.

Note that *A* is unital if and only if *X* is compact, in which case $C_0(X)$ is equal to C(X), the algebra of all continuous complex-valued functions on *X*.

Gelfand representation of a commutative Banach algebra

Let *A* be a commutative Banach algebra, defined over the field **C** of complex numbers. A non-zero algebra homomorphism $\varphi: A \to \mathbf{C}$ is called a *character* of *A*; the set of all characters of *A* is denoted by Φ_A .

It can be shown that every character on *A* is automatically continuous, and hence Φ_A is a subset of the space A^* of continuous linear functionals on *A*; moreover, when equipped with the relative weak-* topology, Φ_A turns out to be locally compact and Hausdorff. (This follows from the Banach–Alaoglu theorem.) The space Φ_A is compact (in the topology just defined) if ^[citation needed] and only if the algebra *A* has an identity element.

Given $a \in A$, one defines the function $\hat{a} : \Phi_A \to \mathbf{C}$ by $\hat{a}(\phi) = \phi(a)$. The definition of Φ_A and the topology on it ensure that \hat{a} is continuous and vanishes at infinity^[citation needed], and that the map $a \mapsto \hat{a}$ defines a norm-decreasing, unit-preserving algebra homomorphism from A to $C_0(\Phi_A)$. This homomorphism is the *Gelfand representation of A*, and \hat{a} is the *Gelfand transform* of the element *a*. In general, the representation is neither injective nor surjective.

In the case where *A* has an identity element, there is a bijection between Φ_A and the set of maximal proper ideals in *A* (this relies on the Gelfand–Mazur theorem). As a consequence, the kernel of the Gelfand representation $A \rightarrow C_0(\Phi_A)$ may be identified with the Jacobson radical of *A*. Thus the Gelfand representation is injective if and only if *A* is (Jacobson) semisimple.

Examples

In the case where $A = L^1(\mathbf{R})$, the group algebra of \mathbf{R} , then Φ_A is homeomorphic to \mathbf{R} and the Gelfand transform of $f \in L^1(\mathbf{R})$ is the Fourier transform \tilde{f} .

In the case where $A = L^1(\mathbf{R}_+)$, the L¹-convolution algebra of the real half-line, then Φ_A is homeomorphic to $\{z \in \mathbf{C}: \operatorname{Re}(z) \ge 0\}$, and the Gelfand transform of an element $f \in L^1(\mathbf{R})$ is the Laplace transform $\mathcal{L}f$.

The C*-algebra case

As motivation, consider the special case $A = C_0(X)$. Given x in X, let $\varphi_x \in A^*$ be pointwise evaluation at x, i.e. $\varphi_x(f) = f(x)$. Then φ_x is a character on A, and it can be shown that all characters of A are of this form; a more precise analysis shows that we may identify Φ_A with X, not just as sets but as topological spaces. The Gelfand representation is then an isomorphism

$$C_0(X) \to C_0(\Phi_A).$$

The spectrum of a commutative C*-algebra

See also: Spectrum of a C*-algebra

The **spectrum** or **Gelfand space** of a commutative C*-algebra *A*, denoted \hat{A} , consists of the set of *non-zero* *-homomorphisms from *A* to the complex numbers. Elements of the spectrum are called **characters** on *A*. (It can be shown that every algebra homomorphism from *A* to the complex numbers is automatically a *-homomorphism, so that this definition of the term 'character' agrees with the one above.)

In particular, the spectrum of a commutative C*-algebra is a locally compact Hausdorff space: In the unital case, i.e. where the C*-algebra has a multiplicative unit element 1, all characters *f* must be unital, i.e. *f*(1) is the complex number one. This excludes the zero homomorphism. So \hat{A} is closed under weak-* convergence and the spectrum is actually *compact*. In the non-unital case, the weak-* closure of \hat{A} is $\hat{A} \cup \{0\}$, where 0 is the zero homomorphism, and the removal of a single point from a compact Hausdorff space yields a locally compact Hausdorff space.

Note that *spectrum* is an overloaded word. It also refers to the spectrum $\sigma(x)$ of an element x of an algebra with unit 1, that is the set of complex numbers r for which x - r 1 is not invertible in A. For unital C*-algebras, the two notions are connected in the following way: $\sigma(x)$ is the set of complex numbers f(x) where f ranges over Gelfand space of A. Together with the spectral radius formula, this shows that \hat{A} is a subset of the unit ball of A^* and as such can be given the relative weak-* topology. This is the topology of pointwise convergence. A net $\{f_k\}_k$ of elements of the spectrum of A converges to f if and only if for each x in A, the net of complex numbers $\{f_k(x)\}_k$ converges to f(x).

If A is a separable C*-algebra, the weak-* topology is metrizable on bounded subsets. Thus the spectrum of a separable commutative C*-algebra A can be regarded as a metric space. So the topology can be characterized via convergence of sequences.

Equivalently, $\sigma(x)$ is the range of $\gamma(x)$, where γ is the Gelfand representation.

Statement of the commutative Gelfand-Naimark theorem

Let *A* be a commutative C*-algebra and let *X* be the spectrum of *A*. Let

 $\gamma: A \to C_0(X)$

be the Gelfand representation defined above.

Theorem. The Gelfand map γ is an isometric *-isomorphism from *A* onto $C_0(X)$.

See the Arveson reference below.

The spectrum of a commutative C*-algebra can also be viewed as the set of all maximal ideals m of A, with the hull-kernel topology. (See the earlier remarks for the general, commutative Banach algebra case.) For any such m the quotient algebra A/m is one-dimensional (by the Gelfand-Mazur theorem), and therefore any a in A gives rise to a complex-valued function on Y.

In the case of C*-algebras with unit, the spectrum map gives rise to a contravariant functor from the category of C*-algebras with unit and unit-preserving continuous *-homomorphisms, to the category of compact Hausdorff spaces and continuous maps. This functor is one half of a contravariant equivalence between these two categories (its adjoint being the functor that assigns to each compact Hausdorff space *X* the C*-algebra $C_0(X)$). In particular, given compact Hausdorff spaces *X* and *Y*, then C(X) is isomorphic to C(Y) (as a C*-algebra) if and only if *X* is homeomorphic to *Y*.

The 'full' Gelfand–Naimark theorem is a result for arbitrary (abstract) noncommutative C*-algebras A, which though not quite analogous to the Gelfand representation, does provide a concrete representation of A as an algebra of operators.

Applications

One of the most significant applications is the existence of a continuous *functional calculus* for normal elements in C*-algebra A: An element x is normal if and only if x commutes with its adjoint x^* , or equivalently if and only if it generates a commutative C*-algebra C*(x). By the Gelfand isomorphism applied to C*(x) this is *-isomorphic to an algebra of continuous functions on a locally compact space. This observation leads almost immediately to:

Theorem. Let *A* be a C*-algebra with identity and *x* an element of *A*. Then there is a *-morphism $f \rightarrow f(x)$ from the algebra of continuous functions on the spectrum $\sigma(x)$ into *A* such that

• It maps 1 to the multiplicative identity of *A*;

• It maps the identity function on the spectrum to *x*.

This allows us to apply continuous functions to bounded normal operators on Hilbert space.

References

- W. Arveson (1981). An Invitation to C*-Algebras. Springer-Verlag. ISBN 0-387-90176 Check |isbn= value (help).
- Frank F. Bonsall, John Duncan (1973). *Complete Normed Algebras*. Springer-Verlag, New York. ISBN 0-387-06386-2.
- N. Wiener (1932). "Tauberian theorems". Ann. Of Math. (2) (Annals of Mathematics) 33 (1): 1–100. doi:10.2307/1968102 (http://dx.doi.org/10.2307%2F1968102). JSTOR 1968102 (http://www.jstor.org /stable/1968102). More than one of |number= and |issue= specified (help)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Gelfand_representation&oldid=554115589" Categories: Functional analysis | Banach algebras | C*-algebras

- This page was last modified on 8 May 2013 at 11:16.
- Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.
 Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.