Jacobi's formula

From Wikipedia, the free encyclopedia
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of $A .{ }^{[1]}$ If A is a differentiable map from the real numbers to $n \times n$ matrices,

$$
\frac{d}{d t} \operatorname{det} A(t)=\operatorname{tr}\left(\operatorname{adj}(A(t)) \frac{d A(t)}{d t}\right)
$$

Equivalently, if $d A$ stands for the differential of A, the formula is

$$
d \operatorname{det}(A)=\operatorname{tr}(\operatorname{adj}(A) d A) .
$$

It is named after the mathematician C.G.J. Jacobi.

Contents

- 1 Derivation
- 2 Corollary
- 3 Notes
- 4 References

Derivation

We first prove a preliminary lemma:
Lemma. Let A and B be a pair of square matrices of the same dimension n. Then

$$
\sum_{i} \sum_{j} A_{i j} B_{i j}=\operatorname{tr}\left(A^{\mathrm{T}} B\right)
$$

Proof. The product $A B$ of the pair of matrices has components

$$
(A B)_{j k}=\sum_{i} A_{j i} B_{i k}
$$

Replacing the matrix A by its transpose A^{T} is equivalent to permuting the indices of its components:

$$
\left(A^{\mathrm{T}} B\right)_{j k}=\sum_{i} A_{i j} B_{i k} .
$$

The result follows by taking the trace of both sides:

$$
\operatorname{tr}\left(A^{\mathrm{T}} B\right)=\sum_{j}\left(A^{\mathrm{T}} B\right)_{j j}=\sum_{j} \sum_{i} A_{i j} B_{i j}=\sum_{i} \sum_{j} A_{i j} B_{i j}
$$

Theorem. (Jacobi's formula) For any differentiable map A from the real numbers to $n \times n$ matrices,

$$
d \operatorname{det}(A)=\operatorname{tr}(\operatorname{adj}(A) d A)
$$

Proof. Laplace's formula for the determinant of a matrix A can be stated as

$$
\operatorname{det}(A)=\sum_{j} A_{i j} \operatorname{adj}^{\mathrm{T}}(A)_{i j} .
$$

Notice that the summation is performed over some arbitrary row i of the matrix.
The determinant of A can be considered to be a function of the elements of A :

$$
\operatorname{det}(A)=F\left(A_{11}, A_{12}, \ldots, A_{21}, A_{22}, \ldots, A_{n n}\right)
$$

so that, by the chain rule, its differential is

$$
d \operatorname{det}(A)=\sum_{i} \sum_{j} \frac{\partial F}{\partial A_{i j}} d A_{i j} .
$$

This summation is performed over all $n \times n$ elements of the matrix.
To find $\partial F / \partial A_{i j}$ consider that on the right hand side of Laplace's formula, the index i can be chosen at will. (In order to optimize calculations: Any other choice would eventually yield the same result, but it could be much harder). In particular, it can be chosen to match the first index of $\partial / \partial A_{i j}$:

$$
\frac{\partial \operatorname{det}(A)}{\partial A_{i j}}=\frac{\partial \sum_{k} A_{i k} \mathrm{adj}^{\mathrm{T}}(A)_{i k}}{\partial A_{i j}}=\sum_{k} \frac{\partial\left(A_{i k} \mathrm{adj}^{\mathrm{T}}(A)_{i k}\right)}{\partial A_{i j}}
$$

Thus, by the product rule,

$$
\frac{\partial \operatorname{det}(A)}{\partial A_{i j}}=\sum_{k} \frac{\partial A_{i k}}{\partial A_{i j}} \operatorname{adj}^{\mathrm{T}}(A)_{i k}+\sum_{k} A_{i k} \frac{\partial \operatorname{adj}^{\mathrm{T}}(A)_{i k}}{\partial A_{i j}} .
$$

Now, if an element of a matrix $A_{i j}$ and a cofactor $\operatorname{adj}^{\mathrm{T}}(A)_{i k}$ of element $A_{i k}$ lie on the same row (or column), then the cofactor will not be a function of $A_{i j}$, because the cofactor of $A_{i k}$ is expressed in terms of elements not in its own row (nor column). Thus,

$$
\frac{\partial \operatorname{adj}^{\mathrm{T}}(A)_{i k}}{\partial A_{i j}}=0,
$$

so

$$
\frac{\partial \operatorname{det}(A)}{\partial A_{i j}}=\sum_{k} \operatorname{adj}^{\mathrm{T}}(A)_{i k} \frac{\partial A_{i k}}{\partial A_{i j}} .
$$

All the elements of A are independent of each other, i.e.

$$
\frac{\partial A_{i k}}{\partial A_{i j}}=\delta_{j k},
$$

where δ is the Kronecker delta, so

$$
\frac{\partial \operatorname{det}(A)}{\partial A_{i j}}=\sum_{k} \operatorname{adj}^{\mathrm{T}}(A)_{i k} \delta_{j k}=\operatorname{adj}^{\mathrm{T}}(A)_{i j}
$$

Therefore,

$$
d(\operatorname{det}(A))=\sum_{i} \sum_{j} \operatorname{adj}^{\mathrm{T}}(A)_{i j} d A_{i j},
$$

and applying the Lemma yields

$$
d(\operatorname{det}(A))=\operatorname{tr}(\operatorname{adj}(A) d A)
$$

Corollary

For any invertible matrix A, the inverse A^{-1} is related to the adjugate by $A^{-1}=(\operatorname{det} A)^{-1} \operatorname{adj} A$. It follows that if $A(t)$ is invertible for all t, then

$$
\frac{d}{d t} \operatorname{det} A(t)=(\operatorname{det} A(t)) \operatorname{tr}\left(A(t)^{-1} \frac{d}{d t} A(t)\right)
$$

Furthermore, taking $A(t)=\exp (t B)$, this reduces to

$$
\frac{d}{d t} \operatorname{det} e^{t B}=(\operatorname{Tr} B) \operatorname{det} e^{t B}
$$

solved by

$$
\operatorname{det} e^{t B}=e^{\operatorname{Tr} t B}
$$

a useful relation connecting the trace to the determinant of the associated matrix exponential.

Notes

1. ^ Magnus \& Neudecker (1999), Part Three, Section 8.3

References

- Magnus, Jan R.; Neudecker, Heinz (1999), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley, ISBN 0-471-98633-X
- Bellmann, Richard (1987), Introduction to Matrix Analysis, SIAM, ISBN 0898713994

Retrieved from "http://en.wikipedia.org/w/index.php?title=Jacobi\'s_formula\&oldid=544079496"
Categories: Determinants Matrix theory

- This page was last modified on 14 March 2013 at 12:19.
- Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia ${ }^{\circledR}$ is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Jacobi's formula - Wikipedia, the free encyclopedia

