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Let G be a non-empty set. The map G X G 3 (a,b) — ab € G is
called an associative composition law if and only if

Va,b,ce G: albc) = (ab)c|.

Algebraic structures with such a composition law are listed below
from the most to the least general. Each step adds an assumption,
so that each of these structures is a special case of the preceding
structures.

@ Semigroups: no assumptions. Example: the set of all finite
words written with two letters (ab, ba, abba,...).
@ Monoids: de e GV g e G: eg =g = ge.
Examples: (Map(X, X),o,id), (N, +,0).
© Groups: VgeGIgleG:glg=e=gg L.
Examples: (Bij(X, X),o,id), (Sp,o,id).
@ Abelian groups: ¥V g,h € G: gh = hg.
Examples: (Z,+,0), (Z/nZ,+,0).
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Rings: (R,+,0) is an Abelian group and (R,-,1) is a monoid.
Examples: (Endz(G);o,id; poinwise +, 0 function), where

(G,+,0) is an Abelian group, matrix ring M,,(Z).

Commutative rings: Vr,s € R: rs = sr.

Examples: (Z/nZ;-,1;+,0), polynomial ring (Z/nZ)|N].

Integral domains: 7s =0 = (r =0o0r s =0).

Examples: (Z;-, 1;+,0), polynomial ring Z[N].

Fields: (R\ {0},-,1) is a group.

Examples: (Z/pZ;-,1;+,0), where p is a prime number.

Fields of characteristic 0: contain Q as a subfield.

Examples: Q, R, C.
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Distributive actions on Abelian groups

Let M be an Abelian group and R a ring equipped with an
associative composition law:

RxM> (r,m)—rmeéeM|.

Such algebraic structures are listed below the same way as before.
@ Modules: Vm,n € M,r,s € R:
(r+sym=rm+sm, r(m+n)=rm+rn, lm=m.
Examples: Endz(G) x G > (f,9) — f(g9) € G
and Z" over the matrix ring M,,(Z).

@ Free modules: there exists a basis of M. Example: Py R.
© Vector spaces: R is a field. Example: Py R.

@ Finite-dimensional vector spaces: there exists a finite basis
of M. Example: R".
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Let A be a module over a commutative ring k equipped with a
k-bilinear associative multiplication

[Ax A5 (a,b)—abe Al.

Then A is called an algebra over k.

It is called a unital algebra over k if and only if A is a ring with
respect to its Abelian group structure and multiplication. In other
words, a unital algebra is a module with a linear ring structure, or
a ring with a compatible module structure. Every ring is a unital
algebra over the ring Z of all integers.
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In particular, when M is a module over k, we can take
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If M is a finite-dimensional free module over a non-zero
commutative ring k, then all elements of the spectrum of any
endomorphism a are eigenvalues. They are roots of the
characteristic polynomial

det(a — Aid) | .




