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One binary associative composition law

Let G be a non-empty set. The map G×G 3 (a, b) 7→ ab ∈ G is
called an associative composition law if and only if

∀ a, b, c ∈ G : a(bc) = (ab)c .

Algebraic structures with such a composition law are listed below
from the most to the least general. Each step adds an assumption,
so that each of these structures is a special case of the preceding
structures.

1 Semigroups: no assumptions. Example: the set of all finite
words written with two letters (ab, ba, abba,...).

2 Monoids: ∃ e ∈ G ∀ g ∈ G : eg = g = ge.
Examples: (Map(X,X), ◦, id), (N,+, 0).

3 Groups: ∀ g ∈ G ∃ g−1 ∈ G : g−1g = e = gg−1.
Examples: (Bij(X,X), ◦, id), (Sn, ◦, id).

4 Abelian groups: ∀ g, h ∈ G : gh = hg.
Examples: (Z,+, 0), (Z/nZ,+, 0).
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Two distributive composition laws

Let R be a non-empty set with two binary associative composition
laws satisfying the distributivity condition:

∀ r, s, t ∈ R : (r + s)t = rt+ st, r(s+ t) = rs+ rt .

Algebraic structures with two such composition laws are listed
below the same way as before.

1 Rings: (R,+, 0) is an Abelian group and (R, ·, 1) is a monoid.
Examples: (EndZ(G); ◦, id; poinwise +, 0 function), where
(G,+, 0) is an Abelian group, matrix ring Mn(Z).

2 Commutative rings: ∀ r, s ∈ R : rs = sr.
Examples: (Z/nZ; ·, 1;+, 0), polynomial ring (Z/nZ)[N].

3 Integral domains: rs = 0⇒ (r = 0 or s = 0).
Examples: (Z; ·, 1;+, 0), polynomial ring Z[N].

4 Fields: (R \ {0}, ·, 1) is a group.
Examples: (Z/pZ; ·, 1;+, 0), where p is a prime number.

5 Fields of characteristic 0: contain Q as a subfield.
Examples: Q, R, C.
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Distributive actions on Abelian groups

Let M be an Abelian group and R a ring equipped with an
associative composition law:

R×M 3 (r,m) 7−→ rm ∈M .

Such algebraic structures are listed below the same way as before.

1 Modules: ∀ m,n ∈M, r, s ∈ R :
(r + s)m = rm+ sm, r(m+ n) = rm+ rn, 1m = m.
Examples: EndZ(G)×G 3 (f, g) 7→ f(g) ∈ G
and Zn over the matrix ring Mn(Z).

2 Free modules: there exists a basis of M . Example:
⊕

NR.

3 Vector spaces: R is a field. Example:
⊕

NR.

4 Finite-dimensional vector spaces: there exists a finite basis
of M . Example: Rn.
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Algebras over commutative rings

Let A be a module over a commutative ring k equipped with a
k-bilinear associative multiplication

A×A 3 (a, b) 7−→ ab ∈ A .

Then A is called an algebra over k.

It is called a unital algebra over k if and only if A is a ring with
respect to its Abelian group structure and multiplication. In other
words, a unital algebra is a module with a linear ring structure, or
a ring with a compatible module structure. Every ring is a unital
algebra over the ring Z of all integers.
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Spectrum, eigenvectors and eigenvalues

Let A be a unital algebra over a commutative ring k. The
spectrum of a ∈ A is the following subset of k:

specA(a) := {λ ∈ k | 6 ∃ (a− λ1)−1 ∈ A} .

In particular, when M is a module over k, we can take
A = Endk(M). Then v ∈M is called an eigenvector of
a ∈ Endk(M) corresponding to λ ∈ k if and only if

av = λv.
Note that v 6= 0 ⇒ λ ∈ specA(a). All elements of specA(a)
coming from a non-zero eigenvector of a are called eigenvalues.

If M is a finite-dimensional free module over a non-zero
commutative ring k, then all elements of the spectrum of any
endomorphism a are eigenvalues. They are roots of the
characteristic polynomial

det(a− λ id) .
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