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1 Hardy space, Toeplitz operators

Unit circle: S1, closed unit disc: D, its interior: D̊(= D \ S1). Integers: Z, non-
negative integers: N = {0, 1, . . .}, strictly positive integers: N>0 = {1, 2, . . .}
Definition 1. We consider the Hilbert space L2(S1) with respect to the rotation
invariant Lebesgue measure on S1. The Hardy space H2 is the subspace of L2(S1)
consisting of the holomorphic L2-functions.
The vectors en = e2πint for n ∈ Z is an orthonormal basis of L2(S1); any vector
can be represented by Z-indexed square summable sequence (Fourier decom-
position). The elements of H2 are precisely the ones with support N.
Remark. When f ∈ H2 and λ ∈ D̊, the evaluation of f at λ makes sense: if f =
∑∞

n=0 αne2πint, the value of f at λ = re2πis is given by the absolutely convergent
series ∑n αnrne2πins.
Bounded continuous (or measurable) functions on S1 act as bounded operators
on L2(S1).
Definition 2. Let P be the orthogonal projection L2(S1) → H2. When f is a
continuous function on S1, the associated Toeplitz operator Tf is defined as P f P.
Caution

• The composition of two Toeplitz operators is usually not Toeplitz
• Two Toeplitz operators almost never commute

Facts
• If f is a continuous function on S1, the convolution by the Poisson kernel

defines a (unique) extension ϕ f of f as a harmonic function on D.
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• If f is holomorphic, anti-holomorphic, or real, the spectrum of Tf is equal
to the range of ϕ f . In general, σ(Tf ) is contained in the convex hull of
f (S1). (We will come back to this later)

Observation
• (by Gelfand-Naimark) S1 can be recovered as the object behind the point-

wise multiplication operators C(S1) ⊂ B(L2(S1))

• does the Toeplitz algebra represent something similar, but similar to the
closed disk?

1.1 Unilateral shift operator

Let’s look at the most important function z ∈ C(S1), the complex coordinate
function w.r.t. the embedding S1 ⊂ C as the unit circle. The associated Toeplitz
operator is e2πnt → e2π(n+1)t.
Definition 3. The unilateral shift operator S is the isometry on ℓ2N given by en 7→
en+1.
Under the identification H2 = ℓ2N, the unilateral shift operator is equal to Tz
we don’t distinguish these two from now on.
Exercise. Check that Sn = Tzn and (S∗)n = Tz̄n for n ∈ N. Describe these
operators in terms of the basis (en)n∈N.
Proposition 1. The spectrum of S is equal to D.

Proof. Since ∥S∥ is equal to 1, σ(S) has to be contained in D. Moreover, since
T 7→ T∗ is conjugate linear and reverses the order of multiplication, σ(S) =

σ(S∗). If we show that D̊ is contained in σ(S∗), the compactness of spectrum
implies the assertion.
Suppose ∥λ∥ < 1. Then, ξ = ∑∞

n=0 λnen is in ℓ2N. We have S∗ξ = λξ (use the
exercise), and this shows λ ∈ σ(S∗).

2 Toeplitz algebra
Definition 4 (First definition of the Toeplitz algebra). The Toeplitz algebra T is
the C∗-algebra on ℓ2N generated by S (i.e. the operator norm closure of sums
and products of S and S∗).
Why do we add S∗?
Proposition 2. If f ∈ C(S1), there are sequences of polynomials (Pn(x))n and
(Qn(x))n such that ∥Pn(S) + Qn(S∗)− Tf ∥ → 0 (in operator norm).
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Proof. By the Stone-Weierstrass theorem, we can find sequences of polynomials
(Pn)n, (Qn)n such that Pn(z) + Qn(z̄) → f uniformly. If we represent these
polynomials on L2(S1) and restrict them to H2, Pn(z) (resp. Qn(z̄)) becomes
Pn(S) (resp. Qn(S∗)). Since the operation T 7→ PTP only decreases the operator
norm, we get the assertion.
Definition 5 (Second definition of T). The Toeplitz algebra T is the C∗-algebra
on H2 generated by Tf for f ∈ C(S1) (but still need to consider their products!)
What do we get from the products of S, S∗, etc.? First of all, from the definition,
S∗S = I. But SS∗ ̸= I, and….
Exercises.

1. Show that SS∗ is the orthogonal projection onto ℓ2N>0 = ℓ2N ⊖ C.e0

2. Show that SS∗− S2(S∗)2 = S(I − SS∗)S∗ is the orthogonal projection onto
e1.

3. Show that, when m, n ∈ N, Sn(I − SS∗)(S∗)m is the rank 1 operator send-
ing em to en.

Proposition 3. For f , g ∈ C(S1), the difference Tf Tg −Tf g is a compact operator.
The algebra T contains the ideal K of all the compact operators on ℓ2N.

Proof. (First assertion) When f and g are polynomials in S and S∗, we can re-
duce it to the case of monomials, then use the above exercises and prove the
statement by the induction on the monomial degree (actually, Tf Tg − Tf g is go-
ing to be finite rank in this case). The general case follows from the operator
norm approximation of Tf and Tg by polynomials in S and S∗.
(Second assertion) Again by the last exercise, any matrix unit ‘em 7→ en’ is con-
tained in T. Since we take the operator norm closure, the whole K is contained
in T.
Definition 6 (Third definition of T). The Toeplitz algebra is (the norm closure
of) the linear span of (Tf ) f∈C(S1) and K.
Remark. The compact operators K form an closed bilateral ideal of T (it is al-
ready so in B(ℓ2N).)

2.1 Noncommutative disks
Let 0 < q < 1, and consider the operator Zq: en 7→

√
1 − qnen+1 on ℓ2N.

1. We have I − Z∗
q Zq = q(I − ZqZ∗

q ), which has the ‘classical limit’ at q = 1

2. The C∗-algebra generated by Zq is equal to T (Zq − S is a compact opera-
tor)
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2.2 Gauge action
Consider the 1-parameter unitary Us = e2πnsen on ℓ2N.

• This has period 1.
• It is induced by the rotation action of S1 on L2(S1).

Exercise. Show that UsSm = e2πmsSmUs.
Definition 7. The gauge action γs is the transformation x 7→ UsxU∗

s on T.

3 Toeplitz extension
The Toeplitz operators represent a ‘noncommutative disk’ Dq, (roughly) through
the boundary value problem of harmonic functions. So, what is the boundary
of Dq? It should be an analogue of the algebra homomorphism C(D) → C(S1),
sending each function on D to its restriction on S1.
Proposition 4. The quotient of T by K is isomorphic to C(S1), in a way [Tf ] = f
for f ∈ C(S1).

Proof. Let s be the image of S in the quotient by K. Recall that S∗S − SS∗ is a
compact operator (a rank 1 projection). Thus, in the quotient, we have s∗s =
ss∗ = 1.
By continuous functional calculus, we can identify T/K with C(σ(s)). Since s
is unitary, σ(s) is a subset of S1, and s itself gives the inclusion map σ(s) → S1.
We need to show that this is surjective. The gauge action induces an action of
S1 on σ(s), and the map s is equivariant. Since the rotation action of S1 on S1 is
transitive, this map has to be surjective.

So, we get an extension of the form

0 → K → T → C(S1) → 0,

called the Toeplitz extension. This is the analogue of

0 → C0(D̊) → C(D) → C(S1) → 0.

Remark. We get the essential spectrum of the Toeplitz operators: σe(Tf ) =

f (S1).
Fact. Any operator of the form Tf for f ∈ C(S1) has either trivial kernel or
cokernel. Check this for holomorphic functions as an exercise. (Hint: if f is
holomorphic, Tf on H2 is simply the pointwise multiplication. What can be
said about the evaluation on D̊?)

4



Remark. We can use the above proposition to identify the spectrum of Tf . From
the Fredholm theory, an operator is invertible only if it is Fredholm of index 0
and has the trivial kernel (or equivalently, trivial cokernel). In our setting, Tf is
Fredholm precisely when f is invertible in C(S1), and its Fredholm index is the
winding number of f (which classifies f among the nowhere vanishing com-
plex functions on S1 up to homotopy). The following conditions are equivalent

1. λ ̸∈ σ(Tf ), i.e. Tf − λ = Tf−λ is invertible
2. λ is not in the range of f , and the winding number of f − λ is 0.

4 Universality of Toeplitz algebra
Proposition 5. Let V be an isometry on a Hilbert space H. Then, H decomposes
as a direct sum H0 ⊕ H1 of V-invariant subspaces, such that

1. the restriction of V on H0 is unitarily equivalent to (ℓ2N ⊗ ker V∗, S ⊗
Iker V∗),

2. the restriction of V on H1 is unitary.

Proof. Let ( fi)i∈I be an orthonormal basis of ker V∗. For each n ∈ N, we con-
sider the vector f (n)i = Vn fi. Thus, when n ̸= 0, the vector f (n)i is orthogonal
to f j, for any i, j ∈ I. Since V is isometry, ( f (n)i )n,i is a mutually orthonormal
vectors in H.
We define H0 to be the closed linear span of { f (n)i | n ∈ N, i ∈ I}. Then, the
map en ⊗ fi 7→ f (n)i for n ∈ N and i ∈ I extends to a unitary map U from
ℓ2N ⊗ ker V∗ to H0. We have

U(S ⊗ Iker V∗)(en ⊗ fi) = U(en+1 ⊗ fi) = f (n+1)
i = VU(en ⊗ fi).

We remark that H0 is also V∗-invariant (exercise!).
Next, define H1 to be H ⊖ H0. Since H0 was invariant under both V and V∗, H1
has the same property. By definition of H0, the restriction of V∗ to H1 has trivial
kernel. This means, V∗|H1 is also an isometry, and V|H1 is an unitary.

Recall that, if U is a unitary operator on H, there is a continuous functional
calculus map C(S1) → B(H) sending z to U.
Theorem 1 (Coburn). Let V be an isometry on a Hilbert space H. Then, there
exists a *-homomorphism ϕ: T → B(H) satisfying ϕ(S) = V.

Proof. Take the decomposition H = H0 ⊕ H1 as in the proposition. Then, there
is a *-homomorphism T → B(H0) which sends S to V|H0 . By the remark
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above, we also get C(S1) → B(H1) which sends z to V|H1 . Thus, we get a *-
homomorphism T ⊕ C(S1) → B(H) which sends S ⊕ z to V|H0 ⊕ V|H1 = V.
From the Toeplitz extension, we know that there is a homomorphism T →
T ⊕ C(S1) which sends S to S ⊕ z. Combining these, we get the desired ho-
momorphism.

In other words, T is a universal C∗-algebra generated by an element S subject
to the relation S∗S = 1.
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