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Lagrange-Bürmann series

>From: edwa...@sunrise.Stanford.EDU (Larry Edwards)
>Date: 7 Nov 91 00:13:58 GMT
>Organization: Stanford University
>Is there any general method for finding the inverse
>of a taylor series?
>That is given some arbitrary taylor series
>(assuming it does have an inverse)
>is there some way of constructing the taylor series
>of its inverse.
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(...) What the guy wanted was something like
the Burmann-Lagrange formula.
On page 150|1 of Louis Comtet ‘Advanced
Combinatorics’
Reidel 1974
one will find the required formulas.

J.W. Nienhuys,
Research Group Discrete Mathematics
Dept. of Mathematics and Computing Science
Eindhoven University of Technology
P.O. BOX 513, 5600 MB Eindhoven
The Netherlands
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Inverting a local univalent analytic map y = f (x), taking at x = x0

a value y0.

F (f −1(y)) = F (x0) +
∞∑

n=1

1

n!

[(
x − x0

f (x)− y0

)n

F (1)(x)

](n−1)

x=x0

(y − y0)
n.

In particular, for F (x) ≡ x one gets the inverse series

f −1(y) = x0 +
∞∑

n=1

1

n!

[(
x − x0

f (x)− y0

)n](n−1)

x=x0

(y − y0)
n.
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Is it a simple formula?

Optical illusion caused by misuse of the symbol [· · · ]x=x0 .

After differentiating one gets expressions not defined at x0.

One can’t substitute x = x0. An additional passage to the
limit necessary.

e.g. for n = 2. [(
x − x0

f (x)− y0

)2

F (1)(x)

](1)

=

= 2

[
x − x0

f (x)− y0

]
·

[
f (x)− y0 − (x − x0)f

(1)(x)

(f (x)− y0)2

]
· F (1)(x)

+

[
x − x0

f (x)− y0

]2

· F (2)(x).
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Using the Taylor expansion

f (x) = f (x0) + f (1)(x0)(x − x0) +
1

2
f (2)(x0)(x − x0)

2 + o(|x − x0|2),
(1)

f (1)(x) = f (1)(x0) + f (2)(x0)(x − x0) + o(|x − x0|), (2)

one gets

lim
x→x0

f (x)− y0 − (x − x0)f
(1)(x)

(f (x)− y0)2
= −1

2

f (2)(x0)

f (1)(x0)2
, (3)

lim
x→x0

f (x)− y0 − (x − x0)f
(1)(x0)

(f (x)− y0)2
= +

1

2

f (2)(x0)

f (1)(x0)2
. (4)

This shows that the substitution x = x0 makes no sense.

Derivatives of higher order appear in effect of passing to the
limit
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The larger n is the more complicated expression one gets,

a compact formula is hard to imagine.

In fact, the problem reduces to division of power series:
one has to find the Taylor expansion
(equivalently: sequence of derivatives at x0) of the function
g(x) = x−x0

f (x)−y0
analytic at x0.

The problem of division of power series was solved by Wronski in
1811, we will show the formula at the end of the talk.
Using only derivatives one gets

g(x) =
x − x0

f (x)− y0
,

g (1)(x) =
f (x)− y0 − (x − x0)f

(1)(x)

(f (x)− y0)2
,

g (2)(x) =
−2f (1)(x)(f (x)− y0 − (x − x0)f

(1)(x))− (f (x)− y0)(x − x0)f
(2)(x)

(f (x)− y0)3
,

...
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Taylor’s expansion allows to compute every particular derivative of
g at x0

g(x0) =
1

f (1)
(x0),

g (1)(x0) =
−1

2 f (2)

f (1)2
(x0),

g (2)(x0) =
−1

3 f (1)f (3) + 1
2 f (2)2

f (1)3
(x0),

...

but it is hard to see from that a general formula in terms of
derivatives of f at x0.
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We can observe that well known 1-cocycles on the group of
diffeomorphisms appear

the affine cocycle

−2g (1)

g
(x0) =

f (2)

f (1)
(x0) (5)

and the projective one (the Schwartz derivative)

−3g (2)

g
(x0) =

f (1)f (3) − 3
2 f (2)2

f (1)2
(x0), (6)

but this relation reflecting geometry of higher jets is still not well
understood.
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To obtain algebraic formula equivalent to that of
Lagrange-Bürmann we first express it algebraically by derivatives of
g(x) = x−x0

f (x)−y0
at x0.

We need the following numbers

Definition

For every natural number m ≥ 0 and a sequence (i1, i2, i3 . . .) of

integers almost all equal to zero we define numbers a
(m)
i1,i2,i3,...

by the
following reccurence

a
(m)
i1,i2,i3...

= 0, if at least one among the indices (i1, i2, i3 . . .) is
negative or i1 + 2i2 + 3i3 . . . 6= m, and

a
(0)
0,0,0,... = 1, (7)

a
(m+1)
i1,i2,i3,...

= a
(m)
i1−1,i2,i3,...

+
∑
k≥1

(ik + 1)a
(m)
i1,...,ik−1,ik+1,ik+1−1,ik+2,...

. (8)
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Immediate: a
(m)
m,0,0,... = 1 for all m.

Next five nonzero groups of terms in this reccurence

a
(1)
1,... = 1,

a
(2)
2,0,... = 1,

a
(2)
0,1,... = 1,

a
(3)
3,0,0,... = 1,

a
(3)
1,1,0,... = 3,

a
(3)
0,0,1,... = 1,

a
(4)
4,0,0,0,... = 1,

a
(4)
2,1,0,0,... = 6,

a
(4)
0,2,0,0,... = 3,

a
(4)
1,0,1,0,... = 4,

a
(4)
0,0,0,1,... = 1,

a
(5)
5,0,0,0,0,... = 1,

a
(5)
3,1,0,0,0,... = 10,

a
(5)
1,2,0,0,0,... = 15,

a
(5)
2,0,1,0,0,... = 10,

a
(5)
0,1,1,0,0,... = 10,

a
(5)
1,0,0,1,0,... = 5,

a
(5)
0,0,0,0,1,... = 1.

Solution in a compact form (Faà di Bruno (1825-1888)),

a
(m)
i1,i2,i3...

=
m!

i1!i2!i3! . . . 1!i12!i23!i3 . . .
. (9)
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They appear in the higher chain rule of Faà di Bruno

(h ◦ g)(m) =
m∑

k=0

(
h(k) ◦ g

)
·

∑
i1+2i2+3i3+...=m,

i1+i2+i3+...=k

a
(m)
i1,i2,i3,...

∏
r≥1

g (r)ir , (10)

where for ir = 0 we put g (r)ir := 1 and summation is restricted to
ir ≥ 0.
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Iterating the Leibniz rule in the higher chain rule with h(z) := zn

n!
in the Lagrange-Bürmann formula we get

1

n!

[
gnF (1)

](n−1)
= (11)

=
n−1∑
m=0

(
n − 1

m

) m∑
k=0

gn−k

(n − k)!

∑
i1+2i2+3i3+...=m,

i1+i2+i3+...=k

a
(m)
i1,i2,i3,...

∏
r≥1

g (r)ir · F (n−m).
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Iterating the Leibniz rule and applying the higher chain rule to the
composition H ◦ G of H(z) := z−n

n! and

G (x) =
f (x)− y0

x − x0
= f (1)(x0) +

1

2
f (2)(x0)(x − x0) +

1

6
f (3)(x0)(x − x0)

2 + · · · ,

(12)

in the Lagrange-Bürmann formula we get
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F (f −1(y)) = F (x0) (13)

+
∞∑

n=1

1

n!

[
n−1∑
m=0

(
n − 1

m

) m∑
k=0

(
k + n − 1

k

)
γ̃m,k · F (n−m)

]
(x0)

(
y − y0

f (1)(x0)

)n

,

where

γ̃m,k = (−1)kk!
∑

i1+2i2+3i3+...=m,

i1+i2+i3+...=k

a
(m)
i1,i2,i3,...

∏
r≥1

(
γr

r + 1

)ir

, (14)

γr :=
f (r+1)

f (1)
. (15)
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Intriguing cancellations

Really a mess because of the double summation in the square
bracket with binomial coefficients.

But, surprisingly, computing succeeding terms of the
expansion one can see that all binomial coefficients cancel.

We are to show that Wronski’s formula, free of these
redundant coefficients, explains this cancellation.
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Wronski’s solution

Wronski considers expansions

F (x) = F (x0) +
∞∑

n=1

cnFn(x),

where

Fn(x) =
1

n!
(f (x)− y0)

n, f (x0) = y0.

The Bürmann-Lagrange formula, at least on the formal level, is an
easy consequence of the fact that functionals Ln, where

Ln(F ) :=

[(
x − x0

f (x)− y0

)n

F (1)(x)

](n−1)

x=x0

, (16)

satisfy

Lm(Fn) = δm,n. (17)
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Not a real solution.
To get an effective formula Wronski uses “loi supréme”

cn =

∣∣∣∣∣∣∣
F

(1)
1 · · · F

(1)
n−1 F (1)

...
...

...

F
(n)
1 · · · F

(n)
n−1 F (n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
F

(1)
1 · · · F

(1)
n−1 F

(1)
n

...
...

...

F
(n)
1 · · · F

(n)
n−1 F

(n)
n

∣∣∣∣∣∣∣
(x0). (18)
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Using the higher chain rule for h(z) := (z−y0)n

n! , g(x) := f (x), and
the identity (

d i

dz i
(

1

k!
(z − y0)

k)

)
z=y0

= δi ,k

one gets

F
(m)
k (x0) =

∑
i1+2i2+3i3+...=m,

i1+i2+i3+...=k

a
(m)
i1,i2,i3,...

∏
r≥1

f (r)ir (x0). (19)

in particular

F
(m)
k (x0) = 0, dla k > m, (20)

F
(m)
m (x0) = f (1)m(x0). (21)
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Substituting to Wronski’s formula we get

cn =

∣∣∣∣∣∣∣
F

(1)
1 · · · F

(1)
n−1 F (1)

...
...

...

F
(n)
1 · · · F

(n)
n−1 F (n)

∣∣∣∣∣∣∣
f (1) n(n+1)

2

(x0), (22)

where in first n− 1 columns of the determinant we substitute (19).
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Using quantities (15), as we did for the Bürmann-Lagrange
formula, it can be simplified as follows

F (f −1(y)) = F (x0) +
∞∑

n=1

1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 F (1)

γ2,1 1
. . .

...
...

...
. . .

. . . 0 F (n−2)

...
. . . 1 F (n−1)

γn,1 · · · · · · γn,n−1 F (n)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(x0)

(
y − y0

f (1)(x0)

)n

,

(23)

where

γm,k :=
∑

i1+2i2+3i3+...=m,

i1+i2+i3+...=k

a
(m)
i1,i2,i3,...

∏
r≥1

γir+1
r , (24)
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Using quantities (15), as we did for the Bürmann-Lagrange
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e.g.

γ2,1 = γ1,
γ3,1 = γ2, γ3,2 = 3γ1,
γ4,1 = γ3, γ4,2 = 3γ2

1 + 4γ2, γ4,3 = 6γ1,
γ5,1 = γ4, γ5,2 = 10γ1γ2 + 5γ3, γ5,3 = 15γ2

1 + 10γ2, γ5,4 = 10γ1,
...

...
...

...
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hence

F (f −1(y)) = F (x0) + F (1)(x0)
y − y0

f (1)(x0)

+
1

2

∣∣∣∣ 1 F (1)

γ1 F (2)

∣∣∣∣ (x0)

(
y − y0

f (1)(x0)

)2

+
1

6

∣∣∣∣∣∣
1 0 F (1)

γ1 1 F (2)

γ2 3γ1 F (3)

∣∣∣∣∣∣ (x0)

(
y − y0

f (1)(x0)

)3

+
1

24

∣∣∣∣∣∣∣∣
1 0 0 F (1)

γ1 1 0 F (2)

γ2 3γ1 1 F (3)

γ3 3γ2
1 + 4γ2 6γ1 F (4)

∣∣∣∣∣∣∣∣ (x0)

(
y − y0

f (1)(x0)

)4

+
1

120

∣∣∣∣∣∣∣∣∣∣

1 0 0 0 F (1)

γ1 1 0 0 F (2)

γ2 3γ1 1 0 F (3)

γ3 3γ2
1 + 4γ2 6γ1 1 F (4)

γ4 10γ1γ2 + 5γ3 15γ2
1 + 10γ2 10γ1 F (5)

∣∣∣∣∣∣∣∣∣∣
(x0)

(
y − y0

f (1)(x0)

)5

+ · · ·
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In particular, for F (x) ≡ x we get

f −1(y) = x0 +
∞∑

n=1

(−1)n−1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ2,1 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
γn,1 · · · · · · · · · γn,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(x0)

(
y − y0

f (1)(x0)

)n

,

i.e.

f −1(y) = x0 +
y − y0

f (1)(x0)
− 1

2
γ1(x0)

(
y − y0

f (1)(x0)

)2

+
1

6

∣∣∣∣ γ1 1
γ2 3γ1

∣∣∣∣ (x0)

(
y − y0

f (1)(x0)

)3

− 1

24

∣∣∣∣∣∣
γ1 1 0
γ2 3γ1 1
γ3 3γ2

1 + 4γ2 6γ1

∣∣∣∣∣∣ (x0)

(
y − y0

f (1)(x0)

)4

+
1

120

∣∣∣∣∣∣∣∣
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Note the systematic way in which the coefficients arise: all the
determinants are obtained by truncating the same matrix.

It appears as an iceberg emerging from the sea.
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Appendix I. Division of power series

Since multiplication of power series is simple (according to
Cauchy’s rule) it is enough to invert the denominator. One can
assume that it doesn’t vanish at x0 = 0.
Wronski’s formula (1811)

1

a0 + a1x + · · ·+ anxn + · · ·
= s0 + s1x + · · ·+ snx

n + · · · , (25)

sn =
(−1)

n(n+1)
2

an+1
0

∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · a0 a1

0 0 · · · a1 a2
...

...
...

...
a0 a1 · · · an−2 an−1

a1 a2 · · · an−1 an

∣∣∣∣∣∣∣∣∣∣∣
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Appendix II. Zeros of analytic functions

In 1868 de Morgan used it to the following asymptotic formula for
the root of an analytic function a0 + a1x + · · ·+ anx

n + · · · . If
that series has exactly one root x1 of minimal absolute value and in
some disc around x0 = 0 containing x1 that series converges

x1 = lim
n→∞

sn−1

sn
.
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