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Summary

Standard kernel estimators do not converge to the true dis-
tribution uniformly. A consequence is that no inequality like
Dvoretzky-Kiefer-Wolfowitz one can be constructed, and as a
result it is impossible to answer the question how many obser-
vations are needed to guarantee a prescribed level of accuracy
of the estimator. A remedy is to adapt the bandwidth to the
sample at hand.



Dvoretzky-Kiefer-Wolfowitz inequality (Massart 1990)

P{sup |F(z) — F(z)| > €} < 2¢2¢
zeR

Glivenko-Cantelli theorem

(Ve)(Vn)(3AN)(Vn = N)(VEF € F) P{Sgg\Fn(x)—F(fﬁ)! > €p <7

where

1 n
j=1

Here N = N(e,n) does not depend of F' € F !



Standard kernel density estimator

j=1

Kernel distribution estimator

ﬁn(:c):%iK(x;an>, K(@:/x k()

Glivenko-Cantelli theorem does not hold:

BeE(VN)(En = N)BF € F)  P{sup |Fo(2)-F ()| > €} >

It is enough to demonstrate that

(3e)(3n)(Vn)(IF € F) P{F,(0) > F(0)+ ¢} >n

Concerning the kernel K, only the following assumptions are
relevant:

1) 0 < K(0) <1 and

2)K~1(t) < 0 for some t € (0, F(0)).

Concerning the sequence (h,,n = 1,2,...) we assume that
h,>0n=12,....



Proof that

(3e)(3n)(Vn)(IF € F) P{F,(0) > F(0) + ¢} >n

Recall the assumption that K1 (¢) < 0 for some t € (0, F(0)).
Take € € (0,t) and n € (t —¢,1). Given €, 1, and n, take F
such that F(0) =t — € and F( — h,, K~*(t)) > n*/™. Then

X
P{XJ < —hnK_l(t)} and P{K (—h—‘7> > t} > 77l/n

Due to the fact that

ﬁ{K(—f—j)>t}C{ .

n
J=1 J=

K (—f—i) >t

S|

1

QED



RANDOM BANDWIDTH

X1, < Xo.,, <...<X,,., - order statistics

Define

H, = min{Xj:n - Xj—l:na J = 2,3,... 7”}

Define the kernel estimator

where for K we assume:

0, fort<—=
1
K(t):J 5 fort =0
1, f t>1
L or _5
11

K (t) continuous and increasing in (—=,



For a fixed k£ and 7 = 1,2,...,n we have

X — X
K< ‘n j.n) —
Hy
( Xk:-n_X'-n ]. ]- .
, or Hn =75 j: > A +2 J >
—J 1
R < 57 for t = 0

V1, forj<k

It follows that

. n n 2n
J=1

= F (X )—|— L = F (X ) !

— I'n k—1:n 2n— n k:n m

~ 1
Hence, for k = 1,2,...,n, we have |F,(Xk.n) — Fn(Xin)| < o
n



~ 1
For k =1,2,...,n, we have |F,(Xk.n) — Frn(Xkmn)| < o
n

Kernel estimator F),(z) is continuous and increasing, empirical
distribution function F,(z) is a step function, and in conse-

- 1
quence |F,(z) — F,(x)| < o for all z € (—o0, 0).
n
By the triangle inequality
~ 1
[Fn(2) = Fl2)| < |Fal2) = F2)[ + 5~

we obtain

P{sup |Fo(x) — F(x)| > ¢} < P{sup [Fu(x) — F(x)| + o > ¢}
zeR zeR 2n

and Dvoretzky-Kiefer-Wolfowitz inequality takes on the form:

~ 2 1
P{sup |F,(z) — F(z)| > €} < 2e2n(e=1/20)" =y 5 —

z€R 2€

which enables us to calculate N = N(¢,n) that guarantees the
prescribed accuracy of the kernel estimator F,,(z).



COMMENT.

The smallest N = N(e,7) that guarantees the prescribed
accuracy is somewhat greater for kernel estimator Fj, than that
for crude empirical step function Fi,.

For example, N(0.1,0.1) = 150 for F,, and = 160 for E,:
N(0.01,0.01) = 26,492 for F,, and = 26,592 for F,,.



COMMENT

Another disadvantage of kernel smoothing has been discovered
by Hjort and Walker (2001):

” kernel density estimator with optimal bandwidth lies outside

any confidence interval, around the empirical distribution func-
tion, with probability tending to 1 as the sample size increases” .
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Perhaps a reason is that smoothing adds to observations
something which is rather arbitrarily chosen

and which may spoil the inference.
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A GENERALIZATION.

Inequality
~ 1
P{sup |F,,(x) — F(x)| > e} < e 2nle=1/2n)" 4y —
reR 2€

holds for every smoothed nondecreasing distribution function

~ 1
that satisfies |Fi, (Xgn) — Fr(Xgn)| < o k=1,2,...,n.
n
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