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Summary

Standard kernel estimators do not converge to the true dis-
tribution uniformly. A consequence is that no inequality like
Dvoretzky-Kiefer-Wolfowitz one can be constructed, and as a
result it is impossible to answer the question how many obser-
vations are needed to guarantee a prescribed level of accuracy
of the estimator. A remedy is to adapt the bandwidth to the
sample at hand.
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Dvoretzky-Kiefer-Wolfowitz inequality (Massart 1990)

P{sup
x∈R

|Fn(x)− F (x)| ≥ ε} ≤ 2e−2nε2

Glivenko-Cantelli theorem

(∀ε)(∀η)(∃N)(∀n ≥ N)(∀F ∈ F) P{sup
x∈R

|Fn(x)−F (x)| ≥ ε} ≤ η

where

Fn(x) =
1
n

n
∑

j=1

1(−∞,x](Xj)

Here N = N(ε, η) does not depend of F ∈ F !
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Standard kernel density estimator

̂fn(x) =
1
n

n
∑

j=1

1
hn

k
(x−Xj

hn

)

Kernel distribution estimator

̂Fn(x) =
1
n

n
∑

j=1

K
(x−Xj

hn

)

, K(x) =
∫ x

−∞
k(t)dt

Glivenko-Cantelli theorem does not hold:

(∃ε)(∃η)(∀N)(∃n ≥ N)(∃F ∈ F) P{sup
x∈R

| ̂Fn(x)−F (x)|≥ε}≥η

It is enough to demonstrate that

(∃ε)(∃η)(∀n)(∃F ∈ F) P{ ̂Fn(0) > F (0) + ε} ≥ η

Concerning the kernel K, only the following assumptions are
relevant:
1) 0 < K(0) < 1 and
2)K−1(t) < 0 for some t ∈ (0, F (0)).
Concerning the sequence (hn, n = 1, 2, . . .) we assume that
hn > 0, n = 1, 2, . . ..
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Proof that

(∃ε)(∃η)(∀n)(∃F ∈ F) P{ ̂Fn(0) > F (0) + ε} ≥ η

Recall the assumption that K−1(t) < 0 for some t ∈ (0, F (0)).
Take ε ∈ (0, t) and η ∈ (t − ε, 1). Given ε, η, and n, take F
such that F (0) = t− ε and F

(

− hnK−1(t)
)

> η1/n. Then

P{Xj < −hnK−1(t)} and P{K
(

−Xj

hn

)

> t} > η1/n

Due to the fact that

n
⋂

j=1

{

K
(

−Xj

hn

)

> t
}

⊂
{ 1

n

n
∑

j=1

K
(

−Xj

hn

)

> t
}

we have

P
{ 1

n

n
∑

j=1

K
(

−Xj

hn

)

> t
}

=P
{ 1

n

n
∑

j=1

K
(

−Xj

hn

)

> F (0)+ε
}

>η

︸ ︷︷ ︸

̂Fn(0)

QED
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RANDOM BANDWIDTH

X1:n ≤ X2:n ≤ . . . ≤ Xn:n - order statistics

Define

Hn = min{Xj:n −Xj−1:n, j = 2, 3, . . . , n}

Define the kernel estimator

˜Fn(x) =
1
n

n
∑

j=1

K
(x−Xj

Hn

)

where for K we assume:

K(t) =























0, for t ≤ −1
2

1
2
, for t = 0

1, for t ≥ 1
2

K(t) continuous and increasing in (−1
2
,
1
2
)
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For a fixed k and j = 1, 2, . . . , n we have

K
(Xk:n −Xj:n

Hn

)

=

=



























0, for
Xk:n−Xj:n

Hn
≤−1

2
⇔ Xj:n >Xk:n+

1
2
Hn ⇔ j >k

1
2
, for t = 0

1, for j < k

It follows that

˜Fn(Xk:n) =
1
n

n
∑

j=1

K
(Xk:n −Xj:n

Hn

)

=
k − 1

n
+

1
2n

= Fn(Xk−1:n) +
1
2n

= Fn(Xk:n)− 1
2n

Hence, for k = 1, 2, . . . , n, we have | ˜Fn(Xk:n)−Fn(Xk:n)| ≤ 1
2n

.
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For k = 1, 2, . . . , n, we have | ˜Fn(Xk:n)− Fn(Xk:n)| ≤ 1
2n

.

Kernel estimator ˜Fn(x) is continuous and increasing, empirical
distribution function Fn(x) is a step function, and in conse-

quence | ˜Fn(x)− Fn(x)| ≤ 1
2n

for all x ∈ (−∞,∞).
By the triangle inequality

| ˜Fn(x)− F (x)| ≤ |Fn(x)− F (x)|+ 1
2n

we obtain

P{sup
x∈R

| ˜Fn(x)−F (x)| ≥ ε} ≤ P{sup
x∈R

|Fn(x)−F (x)|+ 1
2n

≥ ε}

and Dvoretzky-Kiefer-Wolfowitz inequality takes on the form:

P{sup
x∈R

| ˜Fn(x)− F (x)| ≥ ε} ≤ 2e−2n(ε−1/2n)2 , n >
1
2ε

which enables us to calculate N = N(ε, η) that guarantees the
prescribed accuracy of the kernel estimator ˜Fn(x).
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COMMENT.

The smallest N = N(ε, η) that guarantees the prescribed
accuracy is somewhat greater for kernel estimator ˜Fn than that
for crude empirical step function Fn.

For example, N(0.1, 0.1) = 150 for Fn and = 160 for ˜Fn;

N(0.01, 0.01) = 26, 492 for Fn and = 26, 592 for ˜Fn.
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COMMENT

Another disadvantage of kernel smoothing has been discovered
by Hjort and Walker (2001):

”kernel density estimator with optimal bandwidth lies outside
any confidence interval, around the empirical distribution func-
tion, with probability tending to 1 as the sample size increases”.
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Perhaps a reason is that smoothing adds to observations

something which is rather arbitrarily chosen

and which may spoil the inference.
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A GENERALIZATION.

Inequality

P{sup
x∈R

| ˜Fn(x)− F (x)| ≥ ε} ≤ 2e−2n(ε−1/2n)2 , n >
1
2ε

holds for every smoothed nondecreasing distribution function

that satisfies | ˜Fn(Xk:n)− Fn(Xk:n)| ≤ 1
2n

, k = 1, 2, . . . , n.
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