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Summary

Sharp bounds for medians of L-statistics in the nonparametric statistical model with

all continuous and strictly increasing distribution functions are given. As a corollary we

conclude that L-statistics are very poor nonparametric quantile estimators.

Results

Let X1, . . . , Xn be a sample from a distribution F ∈ F , where F is the class of all

continuous and strictly increasing distribution functions. Let X1:n, . . . , Xn:n be the order

statistic, let T =
∑n

j=1 λjXj:n; λj ≥ 0, j = 1, 2, . . . , n;
∑n

j=1 λj = 1, be a nontrivial

L-statistic (at least two λ’s are positive). Let S = S(X1, . . . , Xn) be any function of

observations X1, . . . , Xn and let Med(F, S) denote a median (of the distribution) of S if

the sample comes from the distribution F . Our primary interest are functions of the form

S(.) = F (T (.)).

Theorem. If T =
∑m

j=k λjXj:n is an L-statistic such that λk > 0, λm > 0, k < m,

and λk + λk+1 + . . . + λm = 1, then

(∗) m(Uk:n) ≤ Med
(

F, F (T )
)

≤ m(Um:n),

where m(Uk:n) and m(Um:n) are medians of order statistics Uk:n and Um:n from a sample

of size n from the uniform U(0, 1) parent distribution. The bounds are sharp in the sense

that for every ε > 0 there exists F ∈ F such that Med(F, F (T )) > m(Um:n) − ε and for

every η > 0 there exists G ∈ F such that Med(G,G(T )) < m(Uk:n) + η.
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Proof. The first statement follows easily from the fact that Xk:n < T < Xm:n and

hence for every F ∈ F we have Uk:n = F (Xk:n) < F (T ) < F (Xm:n) = Um:n. To prove the

second part of the theorem it is enough to construct families of distributions Fα, α > 0,

and Gα, α > 0, such that Med(Fα, Fα(T )) → m(Um:n) and Med(Gα, Gα(T )) → m(Uk:n),

as α → 0.

Consider the family of power distributions Fα(x) = xα, 0 < x < 1, α > 0. Then

Xj:n = F−1
α (Uj:n) = U1/α

j:n and

Fα(T ) =
(

λkU1/α
k:n + λk+1U

1/α
k+1:n + . . . + λm−1U

1/α
m−1:n + λmU1/α

m:n

)α

= Um:n

[

λk

( Uk:n

Um:n

)1/α
+ λk+1

(Uk+1:n

Um:n

)1/α
+ . . . + λm−1

(Um−1:n

Um:n

)1/α
+ λm

]α

If α → 0 then Fα(T ) → Um:n and Med(Fα, Fα(T )) → m(Um:n).

Now consider the family Gα with Gα(x) = 1− (1− x)α; in full analogy to the above

we conclude that then Gα(T ) → Uk:n and Med(Gα, Gα(T )) → m(Uk:n) as α → 0.

Corollary. If an L-statistic T =
∑m

j=k λjXj:n, λk > 0, λm > 0, λk+λk+1+. . .+λm =

1, k < m, and λj = λj(q), j = k, . . . ,m, is considered as a nonparametric estimator of the

q-th quantile xq(F ) of an unknown distribution F ∈ F , then the error of estimation may

be arbitrarily large in the sense that for every C > 0 there exists a distribution F ∈ F
such that |Med(F, T )− xq(F )| > C.

Proof. By (∗) and the obvious equality Med(F, F (T )) = F (Med(F, T )), F ∈ F , we

have

F−1(m(Uk:n)
)

≤ Med(F, T ) ≤ F−1(m(Um:n)
)

and

F−1(m(Uk:n)
)

− xq(F ) ≤ Med(F, T )− xq(F ) ≤ F−1(m(Um:n)
)

− xq(F ).

For k < m we have m(Uk:n) < m(Um:n) so that F−1
(

m(Uk:n)
)

−xq(F ) may be arbitrarily

small and F−1
(

m(Um:n)
)

− xq(F ) may be arbitrarily large. By the Theorem bounds are

sharp and in consequence |Med(F, T )− xq(F )| may be arbitrarily large.

Numerical illustrations (simulations)

To demonstrate that L-statistics may produce very large errors in estimating quantiles

in the nonparametric model F with all continuous and strictly increasing distribution
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functions we decided to present the problem of estimating the median of an unknown

F ∈ F with the following well known estimators:

Davis and Steinberg (1986)

X(n+1)/2:n, if n is odd;
(

Xn/2:n + Xn/2+1:n
)

/2, if n is even,

Harrell and Davis (1982)

HD =
n!

[(n−1
2 )!]2

n
∑

j=1

[

∫ j/n

(j−1)/2
[u(1− u)](n−1)/2du

]

Xj:n,

Kaigh and Cheng (1991) for n odd

KC =
1

(2n−1
n

)

n
∑

j=1

(n−3
2 + j
n−1

2

)( 3n−1
2 − j
n−1

2

)

Xj:n.

As the distributions for studying our problem we have chosen Pareto with cdf

1− 1
xα , x > 1, heavy tails, no moments of order k ≥ α,

Power (special case of Beta) with cdf

xα, x ∈ (0, 1), no tails, all moments ,

Exponential with cdf

1−Exp{−αx}, x > 0, very regular ,

all distributions for α = 1/2, 1/4, and 1/8.

Results of our numerical investigations for samples of size n = 9 (Harrell-Davis and

Kaigh-Cheng) or for samples of size n = 10 (Davis-Steinberg statistic (X5:10 + X6:10)/2)

are presented in the Table below. The number of simulated samples, and consequently the

number of simulated values of the estimator under consideration, was N = 9, 999, and the

median from the sample of size N = 9, 999 has been taken as an estimator of the median

of the distribution of the estimator under consideration. Observe that m(Un:n)−m(U1:n)

increases with n so that errors of estimators with k = 1 and m = n (e.g. HD and KC)

increase with n.
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Simulated medians of estimators

Distribution Median HD KC
X5:10 + X6:10

2

Pareto

α = 1/2 4 7.72 13.71 4.13
α = 1/4 16 255 1107 18.45
α = 1/8 256 3.3× 106 2.8× 107 383

Power

α = 1/2 0.25 0.2780 0.2919 0.2535
α = 1/4 0.0625 0.1055 0.1286 0.0692
α = 1/8 0.0039 0.0241 0.0432 0.0053

Exponential

α = 1/2 1.3863 1.5138 1.6235 1.4079
α = 1/4 2.7726 3.0571 3.2731 2.8036
α = 1/8 5.5452 6.0595 6.4897 5.6143

A remark

A reason for the bad behavior of nontrivial L-statistics as quantile estimators is that

they are not equivariant under monotonic transformation of data while the class F of

all continuous and strictly increasing distribution functions allows such transformations.

In location-scale parametric families of distributions L-statistics may perform excellently.

The problem is discussed thoroughly in a Technical Report (Zieliński 2005) and in a review

paper (Zieliński 2006).
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