A sharp inequality for medians of L-statistics in a nonparametric statistical model

Ryszard Zieliński

Institute of Mathematics, Polish Acad.Sc. POBox 21, Warszawa 10, Poland *e-mail:* R.Zielinski@impan.gov.pl

Key Words: quantiles, quantile estimators, Harrell-Davis estimator, Kaigh-Cheng estimator; *L*-statistics.

Summary

Sharp bounds for medians of L-statistics in the nonparametric statistical model with all continuous and strictly increasing distribution functions are given. As a corollary we conclude that L-statistics are very poor nonparametric quantile estimators.

Results

Let X_1, \ldots, X_n be a sample from a distribution $F \in \mathcal{F}$, where \mathcal{F} is the class of all continuous and strictly increasing distribution functions. Let $X_{1:n}, \ldots, X_{n:n}$ be the order statistic, let $T = \sum_{j=1}^{n} \lambda_j X_{j:n}$; $\lambda_j \ge 0$, $j = 1, 2, \ldots, n$; $\sum_{j=1}^{n} \lambda_j = 1$, be a nontrivial *L*-statistic (at least two λ 's are positive). Let $S = S(X_1, \ldots, X_n)$ be any function of observations X_1, \ldots, X_n and let Med(F, S) denote a median (of the distribution) of S if the sample comes from the distribution F. Our primary interest are functions of the form S(.) = F(T(.)).

Theorem. If $T = \sum_{j=k}^{m} \lambda_j X_{j:n}$ is an L-statistic such that $\lambda_k > 0$, $\lambda_m > 0$, k < m, and $\lambda_k + \lambda_{k+1} + \ldots + \lambda_m = 1$, then

(*)
$$m(U_{k:n}) \le Med(F, F(T)) \le m(U_{m:n}),$$

where $m(U_{k:n})$ and $m(U_{m:n})$ are medians of order statistics $U_{k:n}$ and $U_{m:n}$ from a sample of size *n* from the uniform U(0,1) parent distribution. The bounds are sharp in the sense that for every $\varepsilon > 0$ there exists $F \in \mathcal{F}$ such that $Med(F, F(T)) > m(U_{m:n}) - \varepsilon$ and for every $\eta > 0$ there exists $G \in \mathcal{F}$ such that $Med(G, G(T)) < m(U_{k:n}) + \eta$. **Proof.** The first statement follows easily from the fact that $X_{k:n} < T < X_{m:n}$ and hence for every $F \in \mathcal{F}$ we have $U_{k:n} = F(X_{k:n}) < F(T) < F(X_{m:n}) = U_{m:n}$. To prove the second part of the theorem it is enough to construct families of distributions $F_{\alpha}, \alpha > 0$, and $G_{\alpha}, \alpha > 0$, such that $Med(F_{\alpha}, F_{\alpha}(T)) \to m(U_{m:n})$ and $Med(G_{\alpha}, G_{\alpha}(T)) \to m(U_{k:n})$, as $\alpha \to 0$.

Consider the family of power distributions $F_{\alpha}(x) = x^{\alpha}$, 0 < x < 1, $\alpha > 0$. Then $X_{j:n} = F_{\alpha}^{-1}(U_{j:n}) = U_{j:n}^{1/\alpha}$ and

$$F_{\alpha}(T) = \left(\lambda_{k}U_{k:n}^{1/\alpha} + \lambda_{k+1}U_{k+1:n}^{1/\alpha} + \dots + \lambda_{m-1}U_{m-1:n}^{1/\alpha} + \lambda_{m}U_{m:n}^{1/\alpha}\right)^{\alpha}$$

= $U_{m:n}\left[\lambda_{k}\left(\frac{U_{k:n}}{U_{m:n}}\right)^{1/\alpha} + \lambda_{k+1}\left(\frac{U_{k+1:n}}{U_{m:n}}\right)^{1/\alpha} + \dots + \lambda_{m-1}\left(\frac{U_{m-1:n}}{U_{m:n}}\right)^{1/\alpha} + \lambda_{m}\right]^{\alpha}$

If $\alpha \to 0$ then $F_{\alpha}(T) \to U_{m:n}$ and $Med(F_{\alpha}, F_{\alpha}(T)) \to m(U_{m:n})$.

Now consider the family G_{α} with $G_{\alpha}(x) = 1 - (1 - x)^{\alpha}$; in full analogy to the above we conclude that then $G_{\alpha}(T) \to U_{k:n}$ and $Med(G_{\alpha}, G_{\alpha}(T)) \to m(U_{k:n})$ as $\alpha \to 0$.

Corollary. If an L-statistic $T = \sum_{j=k}^{m} \lambda_j X_{j:n}, \lambda_k > 0, \lambda_m > 0, \lambda_k + \lambda_{k+1} + \ldots + \lambda_m = 1, k < m, and <math>\lambda_j = \lambda_j(q), j = k, \ldots, m$, is considered as a nonparametric estimator of the q-th quantile $x_q(F)$ of an unknown distribution $F \in \mathcal{F}$, then the error of estimation may be arbitrarily large in the sense that for every C > 0 there exists a distribution $F \in \mathcal{F}$ such that $|Med(F,T) - x_q(F)| > C$.

Proof. By (*) and the obvious equality $Med(F, F(T)) = F(Med(F, T)), F \in \mathcal{F}$, we have

$$F^{-1}(m(U_{k:n})) \le Med(F,T) \le F^{-1}(m(U_{m:n}))$$

and

$$F^{-1}(m(U_{k:n})) - x_q(F) \le Med(F,T) - x_q(F) \le F^{-1}(m(U_{m:n})) - x_q(F).$$

For k < m we have $m(U_{k:n}) < m(U_{m:n})$ so that $F^{-1}(m(U_{k:n})) - x_q(F)$ may be arbitrarily small and $F^{-1}(m(U_{m:n})) - x_q(F)$ may be arbitrarily large. By the Theorem bounds are sharp and in consequence $|Med(F,T) - x_q(F)|$ may be arbitrarily large.

Numerical illustrations (simulations)

To demonstrate that L-statistics may produce very large errors in estimating quantiles in the nonparametric model \mathcal{F} with all continuous and strictly increasing distribution functions we decided to present the problem of estimating the median of an unknown $F \in \mathcal{F}$ with the following well known estimators:

Davis and Steinberg (1986)

$$X_{(n+1)/2:n}$$
, if *n* is odd; $(X_{n/2:n} + X_{n/2+1:n})/2$, if *n* is even,

Harrell and Davis (1982)

$$HD = \frac{n!}{[(\frac{n-1}{2})!]^2} \sum_{j=1}^n \left[\int_{(j-1)/2}^{j/n} [u(1-u)]^{(n-1)/2} du \right] X_{j:n},$$

Kaigh and Cheng (1991) for n odd

$$KC = \frac{1}{\binom{2n-1}{n}} \sum_{j=1}^{n} \binom{\frac{n-3}{2}+j}{\frac{n-1}{2}} \binom{\frac{3n-1}{2}-j}{\frac{n-1}{2}} X_{j:n}.$$

As the distributions for studying our problem we have chosen Pareto with cdf

$$1 - \frac{1}{x^{\alpha}}, \quad x > 1,$$
 heavy tails, no moments of order $k \ge \alpha$,

Power (special case of Beta) with cdf

 $x^{\alpha}, \quad x \in (0,1), \quad \text{no tails, all moments },$

Exponential with cdf

$$1 - Exp\{-\alpha x\}, \quad x > 0, \quad \text{very regular},$$

all distributions for $\alpha = 1/2, 1/4$, and 1/8.

Results of our numerical investigations for samples of size n = 9 (Harrell-Davis and Kaigh-Cheng) or for samples of size n = 10 (Davis-Steinberg statistic $(X_{5:10} + X_{6:10})/2$) are presented in the Table below. The number of simulated samples, and consequently the number of simulated values of the estimator under consideration, was N = 9,999, and the median from the sample of size N = 9,999 has been taken as an estimator of the median of the distribution of the estimator under consideration. Observe that $m(U_{n:n}) - m(U_{1:n})$ increases with n so that errors of estimators with k = 1 and m = n (e.g. HD and KC) increase with n.

Distribution	Median	HD	KC	$\frac{X_{5:10} + X_{6:10}}{2}$
Pareto $\alpha = 1/2$ $\alpha = 1/4$ $\alpha = 1/8$	$\begin{array}{c} 4\\ 16\\ 256 \end{array}$	7.72 255 $3.3 imes 10^{6}$	$13.71 \\ 1107 \\ 2.8 imes 10^7$	$4.13 \\18.45 \\383$
Power $\alpha = 1/2$ $\alpha = 1/4$ $\alpha = 1/8$	0.25 0.0625 0.0039	$0.2780 \\ 0.1055 \\ 0.0241$	0.2919 0.1286 0.0432	$0.2535 \\ 0.0692 \\ 0.0053$
Exponential $\alpha = 1/2$ $\alpha = 1/4$ $\alpha = 1/8$	$ 1.3863 \\ 2.7726 \\ 5.5452 $	1.5138 3.0571 6.0595	1.6235 3.2731 6.4897	$1.4079 \\ 2.8036 \\ 5.6143$

Simulated medians of estimators

A remark

A reason for the bad behavior of nontrivial *L*-statistics as quantile estimators is that they are not equivariant under monotonic transformation of data while the class \mathcal{F} of all continuous and strictly increasing distribution functions allows such transformations. In location-scale parametric families of distributions L-statistics may perform excellently. The problem is discussed thoroughly in a Technical Report (Zieliński 2005) and in a review paper (Zieliński 2006).

References

Davis, C.E. and Steinberg, S.M. (1986), Quantile estimation, In *Encyclopedia of Statistical Sciences*, Vol. 7, Wiley, New York

Harrell, F.E. and Davis, C.E. (1982), A new distribution-free quantile estimator, *Biometrika* 69, 635-640

Kaigh, W.D. and Cheng, C. (1991): Subsampling quantile estimators and uniformity criteria. *Commun. Statist. Theor. Meth.* 20, 539-560

Zieliński, R. (2005), L-statistics as nonparametric quantile estimators. *IMPAN, Preprint* 657, June 2005. Available at www.impan.gov.pl/~rziel

Zieliński, R. (2006), Nonparametric quantile estimators based on order statistics. In *Recent developments in ordered random variables*. Ed's *M.Ahansullah and M.Raqab*, Nova Publishers. To appear.