
ESTIMATING MEDIAN AND OTHER QUANTILES
IN NONPARAMETRIC MODELS

Ryszard Zieliński

Summary. Though widely accepted, in nonparametric models
admitting asymmetric distributions the sample median, if n = 2k, may
be a poor estimator of the population median. Shortcomings of esti-
mators which are not equivariant are presented.
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1. Results. Let F be the class of all distribution functions such
that if F ∈ F then there exist a and b (−∞ < a < b < +∞) such
that F (a) = 0, F (b) = 1, and F is strictly increasing continuous dif-
ferentiable function on (a, b). We consider F as a group family ob-
tained by subjecting a random variable with a fixed distribution F ∈ F
to the family of all strictly increasing continuous transformations (see
Lehmann (1983), Sec. 1.3, Example 3.4).

In applications F can be considered as a basic nonparametric fami-
ly which is contained in such nonparametric families as the family of all
continuous distributions, the family of all distribution functions which
have a density, the family of distributions which have first moments,
and so on.

Let X1, . . . , X2n, for a fixed n, be a sample from an F ∈ F and let
Mn = 1

2 (Xn:2n + Xn+1:2n) be the sample estimator of the population
median mF . Here X1:2n ≤ X2:2n ≤ . . . ≤ X2n:2n are the order statistics
from the sample X1, . . . , X2n. Let Med(F, T ) denote the median of the
distribution of the statistic T from a sample which comes from the
distribution F .

The statistic Mn is a widely used estimator of the population me-
dian (see e.g. Gross (1985), Brown (1985), Bickel and Doksum (1977),
Lehmann (1983), to mention only a few most important references in
estimation theory).

The aim of the note is to show that Mn is a rather poor estimator
of mF for F ∈ F . It appears that using Mn as a population median
estimator requires some more restrictions on the nonparametric fami-
ly F .

Theorem For every C > 0 there exists F ∈ F such that

Med(F,Mn)−mF > C.

Proof (Construction of F for a given C > 0).
Let F0 be the class of all strictly increasing continuous functions

G on (0, 1) satisfying G(0) = 0, G(1) = 1. Then F is the class of all
functions F satisfying F (x) = G((x − a)/(b − a)) for some a and b
(−∞ < a < b < +∞), and for some G ∈ F0.

For a fixed t ∈ (1
4 , 1

2 ) and a fixed ε ∈ (0, 1
4 ), let Ft,ε ∈ F0 be a

distribution function such that

Ft,ε

(

1
2

)

=
1
2
, Ft,ε(t) =

1
2
− ε,

Ft,ε(t−
1
4
) =

1
2
− 2ε, Ft,ε(t +

1
4
) = 1− 2ε
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Let Y1, Y2, . . . , Y2n be a sample from Ft,ε. We shall prove that for
every t ∈ ( 1

4 , 1
2 ) there exists ε > 0 such that

(1) Med
(

Ft,ε,
1
2
(Yn:2n + Yn+1:2n)

)

≤ t

Consider two random events:

A1 = {0 ≤ Yn:2n ≤ t, 0 ≤ Yn+1:2n ≤ t}

A2 = {0 ≤ Yn:2n ≤ t− 1
4
,

1
2
≤ Yn+1:2n ≤ t +

1
4
}

and observe that A1 ∩A2 = ∅ and

(2) A1 ∪A2 ⊆ {1
2
(Yn:2n + Yn+1:2n) ≤ t}

If the sample comes from a distribution G with a probability den-
sity function g, then the joint probability density function h(x, y) of
Yn:2n, Yn+1,2n is given by the formula

h(x, y) =
Γ(2n + 1)
Γ(n)Γ(n)

Gn−1(x) [1−G(y)]n−1 g(x)g(y), 0 ≤ x ≤ y ≤ 1

and the probability of A1 equals to

PG(A1) =
∫ t

0
dx

∫ t

x
dy h(x, y)

Using the formula

Γ(p + q)
Γ(p)Γ(q)

∫ x

0
tp−1(1− t)q−1dt =

p+q−1
∑

j=p

(

p + q − 1
j

)

xj(1− x)p+q−1−j

we obtain

PG(A1) =
2n
∑

j=n+1

(

2n
j

)

Gj(t) (1−G(t))2n−j
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For PG(A2) we obtain

PG(A2) =
∫ t− 1

4

0
dx

∫ t+ 1
4

1
2

dy h(x, y)

=
(

2n
n

)

Gn(t− 1
4
)
[(

1−G
(

1
2

))n

−
(

1−G(t +
1
4
)
)n]

Denote
C1(ε) = PFt,ε(A1), C2(ε) = PFt,ε(A2)

Then

C1(ε) =
2n
∑

j=n+1

(

2n
j

)

(
1
2
− ε)j(

1
2

+ ε)2n−j

C2(ε) =
(

2n
n

)

(
1
2
− 2ε)n

[(

1
2

)n

− (2ε)n
]

Observe that

C1(ε) ↗
1
2
, as ε ↘ 0

and

C2(ε) ↗
(

2n
n

)(

1
2

)2n

, as ε ↘ 0

Let ε1 > 0 be such that

(∀ε < ε1) C1(ε) >
1
2
− 1

2

(

2n
n

)(

1
2

)2n

and let ε2 be such that

(∀ε < ε2) C2(ε) >
1
2

(

2n
n

)(

1
2

)2n

Then for every ε < ε̄ = min{ε1, ε2} we have

C1(ε) + C2(ε) >
1
2
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and by (2) for every ε < ε̄

PFt,ε{
1
2

(Yn:2n + Yn+1:2n) ≤ t} > C1(ε) + C2(ε) >
1
2

which proves (1).
For a fixed t ∈ ( 1

4 , 1
2 ) and ε < ε̄, let Y, Y1, Y2, . . . , Y2n be i.i.d.

random variables distributed as Ft,ε, and for a given C > 0 define

X = C ·
1
2 − Y
1
2 − t

Xi:2n = C ·
1
2 − Y2n+1−i:2n

1
2 − t

, i = 1, 2, . . . , 2n

Let F denote the distribution function of X. Then

P{X ≤ 0} = P{Y ≥ 1
2
} =

1
2

hence F−1(1
2 ) = 0 and

P{1
2
(Xn:2n + Xn+1:2n) ≤ C} = P{1

2
(Yn:2n + Yn+1:2n) ≥ t} ≤ 1

2

hence Med
(

F, 1
2 (Xn:2n + Xn+1:2n)

)

> C, which proves the Theorem.

2. A comment. It is true that the sample median Mn is asymp-
totically normal with mean equal to mF . The problem is that the
convergence is not uniform in F and for every n the Theorem holds.

3. Two remedies. Let ξ1, . . . , ξN be a sample and let G be
the totality of transformations ξ′i = g(ξi), i = 1, 2, . . . , N , such that g
is continuous and strictly increasing. A statistic T = T (ξ1, . . . , ξN ) is
said to be equivariant with respect to continuous and strictly increasing
transformations or G-equivariant if

(3) T (g(ξ1), g(ξ2), . . . , g(ξN )) = g (T (ξ1, . . . , ξN )) for all g ∈ G

A reason for the above behaviour of Mn is that Mn is not G-equivariant.
Actually the only G-equivariant statistics are those of the form

(4) T (ξ1, . . . , ξN ) = ξJ:N
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where J is a random variable taking on values in the set {1, 2, . . . , N}
(see e.g. Uhlmann (1963)).

Having a sample X1, . . . , X2n, two natural G-equivariant estima-
tors of the population median are available:

1) a randomized estimator

M (p)
n = XJ:2n

where J is a random variable with the distribution

pj = Prob{J = j}, j = 1, 2, . . . , 2n

which is constructed in such a way that

Med(F, M (p)
n ) = mF for all F ∈ F ;

2) the sample median

M (2)
n = Xn:2n−1

from the sample X1, . . . , X2n−1 obtained by removing one of the obser-
vations X1, . . . , X2n, say X2n. Here again

Med(F, M (2)
n ) = mF for all F ∈ F .

A choice between M (p)
n and M (2)

n , and if M (p)
n is chosen, a choice of

the distribution p = (p1, . . . , p2n) depends of course on ”a loss function”
or ”a criterion” adapted.

Mean Square Error criterion. If T is an estimator of the
population median mF then F (T ) should be close to 1

2 whatever F ∈ F .
Uhlmann (1963) considered the risk of T defined as

R1(F, T ) = EF

(

F (T )− 1
2

)2

He has proved that M (p)
n minimizing the risk in the class of all T

satisfying (3), i.e. in the class of T of the form (4), is M (p)
n with

pn = pn+1 = 1
2 , pj = 0 if j /∈ {n, n+1}. This estimator will be denoted

by M (1)
n . He has also shown that

R1(F, M (1)
n ) = R1(F, M (2)

n ) =
1

4(2n + 1)
for all F ∈ F
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It is interesting to observe that the optimal randomized estimator M (1)
n

in the sample X1, . . . , X2n has the same risk as the nonrandomized
estimator M (2)

n from the smaller sample X1, . . . , X2n−1.

Interquartile criterion. Let Qp(F, T ) denote the pth quantile
of the distribution of the statistic F (T ) if the sample comes from the
distribution F . Take

R2(F, T ) = Q3/4(F, T )−Q1/4(F, T )

as a criterion. Now again (see Zielinski (1988))

R2(F,M (1)
n ) ≤ R2(F, T ) for all F ∈ F

for all T satisfying (3). Also

(5) R2(F, M (1)
n ) = R2(F, M (2)

n ) for all F ∈ F

To see this define the function

CT (q) = PF {F (T ) ≤ q}

and denote

C1(q) = CM(1)
n

(q), C2(q) = CM(2)
n

(q)

Then (5) is a consequence of the equality

(6) C1(q) = C2(q) for all q ∈ (0, 1)

To prove (6) observe that

C1(q) =
1
2
PF {F (Xn:2n) ≤ q}+

1
2
PF {F (Xn+1:2n) ≤ q}

=
1
2

2n
∑

j=n

(

2n
j

)

qj(1− q)2n−j +
1
2

2n
∑

j=n+1

(

2n
j

)

qj(1− q)2n−j

=
1
2

Γ(2n + 1)
Γ(n)Γ(n + 1)

∫ q

0

(

tn−1(1− t)n + tn(1− t)n−1) dt
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and similarly

C2(q) =
Γ(2n)

Γ(n)Γ(n)

∫ q

0
tn−1(1− t)n−1 dt

and hence C1(q)− C2(q) = 0 for all q ∈ (0, 1). Now again the optimal
randomized estimator M (1)

n in the sample X1, . . . , X2n has the same
risk as the nonrandomized estimator M (2)

n from the smaller sample
X1, . . . , X2n−1.

4. A generalization Statistics of the form Sλ =
∑n

i=1 λiXi:n,
λi ≥ 0,

∑n
i=1 λi = 1, are frequently used as quantile estimators in

nonparametric models (e.g. Harrell and Davis (1982), and Kaigh and
Lachenbruch (1982)). However, if two or more of coefficients λi are
strictly positive then Sλ is not an equivariant estimator. As a conse-
quence, when estimating qth quantile, for every C > 0 there exists a
distribution F ∈ F with the qth quantile equal to xF (q), such that
Med(F, Sλ)− xF (q) > C. The proof is similar to that of the Theorem
above so we omit it and we confine ourselves to some simulation results.

Consider estimating qth quantile for q = 0.25 of two distributions
from F0: Beta(α, 1) with α = 20 (Fig. 1a) and

H(x) =

{

q
(x

q

)α
, if 0 < x ≤ q

q + (1− q)
(x−q

1−q

)α
, if q < x < 1

for α = 20 (Fig.1b).
Distributions of four estimators from samples of size n = 10 have

been simulated: WU – Uhlmann (1963), RZ – Zieliński (1988), HD –
Harrell–Davis (1982), and KL – Kaigh–Lachenbruch (1982) with the
subsample size m = 3. The empirical distribution functions are given
in Fig. 2a (for parent distribution Beta(20, 1)), and in Fig. 2b (for
parent distribution H). In the figures the value of the quantile to be
estimated is also exhibited.

In the following Table the simulated probabilities of taking on a
value not greater than the estimated qth quantile (q = 0.25) for all four
estimators and for both parent distributions are given; the probability
is equal to 0.5 for every median–unbiased estimator.

8



Parent Estimators

distributions WU RZ HD KL

Beta(20, 1) 0.5416 0.4985 0.6001 0.7486

H 0.5442 0.4953 0.0185 0.0065

All graphical and numerical results presented are based on 10,000
simulations.
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