PMC-Optimal NONPARAMETRIC QUANTILE ESTIMATOR

Ryszard Zieliński
Institute of Mathematics Polish Academy of Sciences

According to Pitman's Measure of Closeness, if T_{1} and T_{2} are two estimators of a real parameter θ, then T_{1} is better than T_{2} if $P_{\theta}\left\{\left|T_{1}-\theta\right|<\left|T_{2}-\theta\right|\right\}>1 / 2$ for all θ. It may however happen that while T_{1} is better than T_{2} and T_{2} is better than T_{3}, T_{3} is better than T_{1}. Given $q \in(0,1)$ and a sample $X_{1}, X_{2}, \ldots, X_{n}$ from an unknown $F \in \mathcal{F}$, an estimator $T^{*}=T^{*}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of the q-th quantile of the distribution F is constructed such that $P_{F}\left\{\left|F\left(T^{*}\right)-q\right| \leq\right.$ $|F(T)-q|\} \geq 1 / 2$ for all $F \in \mathcal{F}$ and for all $T \in \mathcal{T}$, where \mathcal{F} is a nonparametric family of distributions and \mathcal{T} is a class of estimators. It is shown that $T^{*}=X_{j: n}$ for a suitably chosen j th order statistic.

AMS 1991 subject classification: Primary 62G05; secondary 62G30
Key words and phrases: quantile estimators, nonparametric model, optimal estimation, equivariant estimators, PMC (Pitman's Measure of Closeness)

Address: Institute of Mathematics PAN, P.O.Box 137, 00-950 Warsaw, Poland E-mail: rziel@impan.gov.pl

Pitman's Measure of Closeness If T and S are two estimators of a real parameter θ we define T as better than S if $P_{\theta}\{|T-\theta| \leq|S-\theta|\} \geq 1 / 2$ for all θ (Keating et al. 1991, 1993). A rationale behind that criterion is that the absolute error of estimator T is more often smaller than that of S. A restricted applicability of the idea is a consequence of the fact that while T_{1} is better than T_{2} and T_{2} is better than T_{3} it may happen that T_{3} is better than T_{1}. It may however happen that in a given statistical model and in a given class of estimators there exists one which is better than any other. We define such estimator as PMC-optimal . In what follows we construct a PMC-optimal estimator of a q th quantile of an unknown continuous and strictly increasing distribution function.

Statistical model. Let \mathcal{F} be the family of all continuous and strictly increasing distribution functions on the real line: $F \in \mathcal{F}$ if and only if $F(a)=0, F(b)=1$, and F is strictly increasing on (a, b) for some a and $b,-\infty \leq a<b \leq+\infty$. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sample from an unknown $F \in \mathcal{F}$ and let $X_{1: n}, X_{2: n}, \ldots$ $\ldots, X_{n: n}\left(X_{1: n} \leq X_{2: n} \leq \ldots \leq X_{n: n}\right)$ be the order statistic from the sample. The sample size n is assumed to be fixed (nonasymptotic approach). Let $q \in(0,1)$ be a given number and let $x_{q}(F)$ denote the q th quantile (the quantile of order q) of the distribution $F \in \mathcal{F}$. The problem is to estimate $x_{q}(F)$.

Due to the fact that $\left(X_{1: n}, X_{2: n}, \ldots, X_{n: n}\right)$ is a minimal sufficient and complete statistic for \mathcal{F} (Lehmann 1983) we confine ourselves to estimators $T=$ $T\left(X_{1: n}, X_{2: n}, \ldots, X_{n: n}\right)$.

Observe that if X is a random variable with a distribution $F \in \mathcal{F}$ with the q th quantile equal to x then, for every strictly increasing fucntion φ, the random variable $\varphi(X)$ has a distribution from \mathcal{F} with the q th quantile equal to $\varphi(x)$. According to that property we confine ourselves to the class \mathcal{T} of equivariant estimators: $T \in \mathcal{T}$ iff

$$
T\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right), \ldots, \varphi\left(x_{n}\right)\right)=\varphi\left(T\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

$$
\text { for all strictly increasing functions } \varphi \text { and for all } x_{1} \leq x_{2} \leq \ldots \leq x_{n}
$$

It follows that $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{k}$ for any fixed k (Uhlmann (1963)). Allowing randomization (Zieliński 1999) we conclude that the class \mathcal{T} of equivariant
estimators (1) is identical with the class of estimators

$$
T=X_{J(\lambda): n}
$$

where $J(\lambda)$ is a random variable independent of the sample $X_{1}, X_{2}, \ldots, X_{n}$, such that

$$
P\{J(\lambda)=j\}=\lambda_{j}, \quad \lambda_{j} \geq 0, \quad j=1,2, \ldots, n, \quad \sum_{j=1}^{n} \lambda_{j}=1
$$

This gives us an explicit and easily tractable characterization of the class \mathcal{T} of estimators under consideration.

Observe that if T is to be a good estimator of the q th quantile $x_{q}(F)$ of an unknown distribution $F \in \mathcal{F}$, then $F(T)$ should be close to q. Hence we shall measure the error of estimation in terms of differences $\left|F\left(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)-q\right|$ rather than in terms of differences $\left.\mid T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)-x_{q}(F) \mid$. According to the Pitman's Measure of Closeness an estimator T is better than S if

$$
\begin{equation*}
P_{F}\{|F(T)-q| \leq|F(S)-q|\} \geq 1 / 2 \text { for all } F \in \mathcal{F} \tag{1}
\end{equation*}
$$

(for more fine definitions see Keating et al. 1993).
Definition. An estimator T^{*} which satisfies

$$
\begin{equation*}
P_{F}\left\{\left|F\left(T^{*}\right)-q\right| \leq|F(S)-q|\right\} \geq 1 / 2 \text { for all } F \in \mathcal{F} \text { and for all } S \in \mathcal{T} \tag{2}
\end{equation*}
$$

is said to be PMC-optimal .
We use \leq in the first inequality in the above definition because for $T=S$ we prefer to have LHS of (1) to be equal to one rather than to zero; otherwise the part " for all $T \in \mathcal{T}$ " in (2) would not be true. For example two different estimators $X_{[n q]: n}$ and $X_{[(n+1) q]: n}$ are identical for $n=7$ when estimating q th quantile for $q=0.2$.

One can easily conclude from the proof of the Theorem below that the second inequality $\geq 1 / 2$ may be strengthened in the following sense: if there are two optimal estimators T_{1}^{*} and T_{2}^{*} (we can see from the proof of the Theorem that it may happen), then $P_{F}\left\{\left|F\left(T_{1}^{*}\right)-q\right| \leq\left|F\left(T_{2}^{*}\right)-q\right|\right\}=\frac{1}{2}$ and $P_{F}\left\{\left|F\left(T_{1}^{*}\right)-q\right| \leq|F(T)-q|\right\}>\frac{1}{2}$ for all other estimators $T \in \mathcal{T}$.

Denote LHS of (1) by $p(T, S)$ and observe that to construct T^{*} it is enough to find T^{\prime} such that

$$
\min _{S \in \mathcal{T}} p\left(T^{\prime}, S\right)=\max _{T \in \mathcal{T}} \min _{S \in \mathcal{T}} p(T, S) \text { for all } F \in \mathcal{F}
$$

and take $T^{*}=T^{\prime}$ if $\min _{S \in \mathcal{T}} p\left(T^{*}, S\right) \geq \frac{1}{2}$ for all $F \in \mathcal{F}$. If the inequality does not hold then the optimal estimator T^{*} does not exist. In what follows we construct the estimator T^{*}.

The optimal estimator T^{*}. Let $T=X_{J(\lambda): n}$ and $S=X_{J(\mu): n}$. If the sample $X_{1}, X_{2}, \ldots, X_{n}$ comes from a distribution function F then $F(T)=U_{J(\lambda): n}$ and $F(S)=U_{J(\mu): n}$, respectively, where $U_{1: n}, U_{2: n}, \ldots, U_{n: n}$ are the order statistics from a sample $U_{1}, U_{2}, \ldots, U_{n}$ drawn from the uniform distribution $U(0,1)$. Denote

$$
w_{q}(i, j)=P\left\{\left|U_{i: n}-q\right| \leq\left|U_{j: n}-q\right|\right\}, \quad 1 \leq i, j \leq n
$$

Then

$$
p(T, S)=p(\lambda, \mu)=\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \mu_{j} w_{q}(i, j)
$$

and $T^{*}=X_{J\left(\lambda^{*}: n\right)}$ is optimal if

$$
\min _{\mu} p\left(\lambda^{*}, \mu\right)=\max _{\lambda} \min _{\mu} p(\lambda, \mu)
$$

and

$$
\min _{\mu} p\left(\lambda^{*}, \mu\right) \geq \frac{1}{2}
$$

For a fixed i, the sum $\sum_{j=1}^{n} \mu_{j} w_{q}(i, j)$ is minimal for $\mu_{j^{*}}=1, \mu_{j}=0, j \neq j^{*}$, where $j^{*}=j^{*}(i)$ is such that $w_{q}\left(i, j^{*}\right) \leq w_{q}(i, j), j=1,2, \ldots, n$. Then the optimal λ^{*} satisfies $\lambda_{i^{*}}=1, \lambda_{i}=0, i \neq i^{*}$, where i^{*} maximizes $w_{q}\left(i, j^{*}(i)\right)$. It follows that the optimal estimator T^{*} is of the form $X_{i^{*}: n}$ with a suitable i^{*} and the problem reduces to finding i^{*}.

Denote $v_{q}^{-}(i)=w_{q}(i, i-1), v_{q}^{+}(i)=w_{q}(i, i+1)$ and define $v_{q}^{-}(1)=v_{q}^{+}(n)=1$. Proofs of all Lemmas and the Theorem below are postponed to next Section.

Lemma 1. For a fixed $i=1,2, \ldots, n$, we have $\min _{j} w_{q}(i, j)=\min \left\{v_{q}^{-}(i), v_{q}^{+}(i)\right\}$. By Lemma 1, the problem reduces to finding i^{*} which maximizes $\min \left\{v_{q}^{-}(i), v_{q}^{+}(i)\right\}$.

Lemma 2. The sequence $v_{q}^{+}(i), i=1,2, \ldots, n$, is increassing and the sequence $v_{q}^{-}(i), i=1,2, \ldots, n$ is decreasing.

By Lemma 2, to get i^{*} one should find $i^{\prime} \in\{1,2, \ldots, n-1\}$ such that

$$
\begin{equation*}
v_{q}^{-}\left(i^{\prime}\right) \geq v_{q}^{+}\left(i^{\prime}\right) \quad \text { and } \quad v_{q}^{-}\left(i^{\prime}+1\right)<v_{q}^{+}\left(i^{\prime}+1\right) \tag{3}
\end{equation*}
$$

and then calculate

$$
i^{*}= \begin{cases}i^{\prime}, & \text { if } v_{q}^{+}\left(i^{\prime}\right) \geq v_{q}^{-}\left(i^{\prime}+1\right) \tag{4}\\ i^{\prime}+1, & \text { otherwise }\end{cases}
$$

Eventually we obtain the following theorem.
Theorem. Let i^{*} be defined by the formula

$$
i^{*}= \begin{cases}i^{\prime}, & \text { if } v_{q}^{+}\left(i^{\prime}\right) \geq \frac{1}{2} \tag{5}\\ i^{\prime}+1, & \text { otherwise }\end{cases}
$$

where

$$
i^{\prime}= \begin{cases}\text { the smallest integer } i \in\{1,2, \ldots, n-2\} & \text { such that } Q(i+1 ; n, q)<\frac{1}{2} \tag{6}\\ n-1, & \text { if } Q(n-1, n, q) \geq \frac{1}{2}\end{cases}
$$

where

$$
Q(k ; n, q)=\sum_{j=k}^{n}\binom{n}{j} q^{j}(1-q)^{n-j}=I_{q}(k, n-k+1)
$$

and

$$
I_{x}(\alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} d t
$$

For i^{*} defined by (5) we have

$$
\begin{equation*}
P_{F}\left\{\left\lvert\, F\left(X_{i^{*}: n}-q|\leq|F(T)-q|\} \geq \frac{1}{2}\right.\right.\right. \tag{7}
\end{equation*}
$$

for all $F \in \mathcal{F}$ and for all equivariant estimators T of the q th quantile, which means that i^{*} is optimal.

Index i^{\prime} can be easily found by tables or suitable computer programs for Bernoulli or Beta distributions. Checking the condition in (5) will be commented in Section Practical applications.

As a conclusion we obtain that $X_{i^{*}: n}$ is PMC-optimal in the class of all equivariant estimators of the q th quantile.

Proofs.

Proof of Lemma 1. Suppose first that $i<j$ and consider the following events

$$
\begin{equation*}
A_{1}=\left\{U_{i: n}>q\right\}, \quad A_{2}=\left\{U_{i: n} \leq q<U_{j: n}\right\}, \quad A_{3}=\left\{U_{j: n}<q\right\} \tag{8}
\end{equation*}
$$

The events are pairwise disjoint and $P\left(A_{1} \cup A_{2} \cup A_{3}\right)=1$. Hence

$$
w_{q}(i, j)=\sum_{j=1}^{3} P\left\{\left|U_{i: n}-q\right| \leq\left|U_{j: n}-q\right|, A_{j}\right\}
$$

For the first summand we have

$$
P\left\{\left|U_{i: n}-q\right| \leq\left|U_{j: n}-q\right|, A_{1}\right\}=P\left\{U_{i: n}>q\right\}
$$

The second summand can be written in the form

$$
\begin{aligned}
P\left\{\left|U_{i: n}-q\right| \leq\left|U_{j: n}-q\right|, A_{2}\right\} & =P\left\{U_{i: n}+U_{j: n} \geq 2 q, U_{i: n} \leq q<U_{j: n}\right\} \\
& =P\left\{U_{i: n} \leq q<U_{j: n}, U_{j: n} \geq 2 q-U_{i: n}\right\}
\end{aligned}
$$

and the third one equals zero.
If $j^{\prime}>j$ then $U_{j^{\prime}: n} \geq U_{j: n}$, the event $\left\{U_{i: n} \leq q<U_{j: n}, U_{j: n} \geq 2 q-U_{i: n}\right\}$ implies the event $\left\{U_{i: n} \leq q<U_{j^{\prime}: n}, U_{j^{\prime}: n} \geq 2 q-U_{i: n}\right\}$, and hence

$$
w_{q}\left(i, j^{\prime}\right) \geq w_{q}(i, j)
$$

In consequence

$$
\min _{j>i} w_{q}(i, j)=w_{q}(i, i+1)=v_{q}^{+}(i)
$$

Similarly $\min _{j<i} w_{q}(i, j)=v_{q}^{-}(i)$, which ends the proof of Lemma 1 .

Proof of Lemma 2. Similarly as in the proof of Lemma 1, considering events (8) with $j=i+1$, we obtain

$$
v_{q}^{+}(i)=P\left\{U_{i: n}>q\right\}+P\left\{U_{i: n}+U_{i+1: n} \geq 2 q, U_{i: n} \leq q<U_{i+1: n}\right\}
$$

and by standard calculations

$$
v_{q}^{+}(i)=\frac{n!}{(i-1)!(n-i)!}\left(\int_{q}^{1} x^{i-1}(1-x)^{n-i} d x+\int_{(2 q-1)^{+}}^{q} x^{i-1}(1-2 q+x)^{n-i} d x\right)
$$

where $x^{+}=\max \{x, 0\}$. For $i=n-1$ we obviously have $v_{q}^{+}(n-1)<v_{q}^{+}(n)=1$. For $i \in\{1,2, \ldots, n-1\}$ the inequality $v_{q}^{+}(i)<v_{q}^{+}(i+1)$ can be written in the form

$$
\begin{aligned}
& i\left(\int_{q}^{1} x^{i-1}(1-x)^{n-i} d x+\int_{(2 q-1)^{+}}^{q} x^{i-1}(1-2 q+x)^{n-i} d x\right)< \\
& \quad<(n-i)\left(\int_{q}^{1} x^{i}(1-x)^{n-i-1} d x+\int_{(2 q-1)^{+}}^{q} x^{i}(1-2 q+x)^{n-i-1} d x\right)
\end{aligned}
$$

Integrating LHS by parts we obtain an equivalent inequality

$$
2(n-i) \int_{(2 q-1)^{+}}^{q} x^{i}(1-2 q+x)^{n-i-1} d x>0
$$

which is obviously always true.
In full analogy to the calculation of $v_{q}^{+}(i)$, for $i \in\{2,3, \ldots, n\}$ we obtain

$$
v_{q}^{-}(i)=\frac{n!}{(i-1)!(n-i)!}\left(\int_{0}^{q} x^{i-1}(1-x)^{n-i} d x+\int_{q}^{\min \{1,2 q\}}(2 q-x)^{i-1}(1-x)^{n-i} d x\right)
$$

and the inequality $v_{q}^{-}(i-1)>v_{q}^{-}(i)$ can be proved as above, which ends the proof of Lemma 2.

Proof of the Theorem. We shall use following facts

$$
\begin{equation*}
v_{q}^{+}(i)+v_{q}^{-}(i+1)=1 \tag{9}
\end{equation*}
$$

which follows from the obvious equality $w_{q}(i, j)+w_{q}(j, i)=1$, and

$$
\begin{equation*}
v_{q}^{+}(i)+v_{q}^{+}(i+1)=2(1-Q(i+1 ; n, q)), \quad i=1,2, \ldots, n-1 \tag{10}
\end{equation*}
$$

Equality (10) follows from integrating by parts both integrals in $v_{q}^{+}(i)$ and then calculating the $\operatorname{sum} v_{q}^{+}(i)+v_{q}^{+}(i+1)$.

Let us consider condition (3) for $i=1, i=n-1$, and $i \in\{2,3, \ldots, n-2\}$, separately.

For $i=1$ we have $v_{1}^{-}(1)=1>v_{q}^{+}(1)$ hence $i^{\prime}=1$ iff $v_{q}^{-}(2)<v_{q}^{+}(2)$ which by (9) amounts to $1-v_{q}^{+}(1)<v_{q}^{+}(2)$ and by (10) to $2(1-Q(2, n, q))>1$ or $Q(2, n, q)<\frac{1}{2}$. Now $i^{*}=1$ if $v_{q}^{+}(1) \geq v_{q}^{-}(2)$ or $v_{q}^{+}(1) \geq 1-v_{q}^{+}(1)$ or $v_{q}^{+}(1) \geq \frac{1}{2}$, and $i^{*}=2$ if $v_{q}^{+}(1)<\frac{1}{2}$.

Due to the equality $v_{q}^{-}(n)<v_{q}^{+}(n)=1$, by (3) we have $i^{\prime}=n-1$ iff $v_{q}^{-}(n-1) \geq$ $v_{q}^{+}(n-1)$ which by (9) amounts to $v_{q}^{+}(n-2)+v_{q}^{+}(n-1) \leq 1$, and by (10) to $Q(n-1 ; n, q) \geq \frac{1}{2}$. Now $i^{*}=n-1$ if $v_{q}^{+}(n-1) \geq v_{q}^{-}(n)$ or $v_{q}^{+}(n-1) \geq \frac{1}{2}$; otherwise $i^{*}=n$.

For $i \in\{2,3, \ldots, n-2\}$, by (9), condition (3) can be written in the form

$$
v_{q}^{+}(i-1)+v_{q}^{+}(i) \leq 1 \quad \text { and } \quad v_{q}^{+}(i)+v_{q}^{+}(i+1)>1
$$

and by (10) in the form

$$
Q(i ; n, q) \geq \frac{1}{2} \quad \text { and } \quad Q(i+1 ; n, q)<\frac{1}{2}
$$

Now by (4) and (9)

$$
i^{*}= \begin{cases}i^{\prime}, & \text { if } v_{q}^{+}\left(i^{\prime}\right) \geq \frac{1}{2} \\ i^{\prime}+1, & \text { otherwise }\end{cases}
$$

Summing up all above and taking into account that $Q(i ; n, q)$ decreases in $i=1,2, \ldots, n-1$, we obtain

$$
i^{\prime}=\left\{\begin{array}{l}
\text { first } i \in\{1,2, \ldots, n-2\} \text { such that } Q(i+1 ; n, q)<\frac{1}{2} \\
n-1, \text { if such } i \text { does not exist }
\end{array}\right.
$$

Then $i^{*}=i^{\prime}$ if $v_{q}^{+}\left(i^{\prime}\right) \geq \frac{1}{2}$ and $i^{*}=i^{\prime}+1$ otherwise, which gives us statement (5)-(6) of the Theorem.

To prove statement (7) of the Theorem observe that if $i^{*}=1$ then $v_{q}^{+}(1) \geq \frac{1}{2}$ and if $i^{*}=n$ then $v_{q}^{-}(n)=1-v_{q}^{+}(n-1) \geq \frac{1}{2}$. For $i^{*} \in\{2,3, \ldots, n-1\}$ we have: 1) if $i^{*}=i^{\prime}$ then by (5) $v_{q}^{+}\left(i^{*}\right) \geq \frac{1}{2}$ and by the first inequality in (3) $v_{q}^{-}\left(i^{*}\right) \geq v_{q}^{+}\left(i^{*}\right) \geq \frac{1}{2}$, hence $\min \left\{v_{q}^{-}\left(i^{*}\right), v_{q}^{+}\left(i^{*}\right)\right\} \geq \frac{1}{2}$ and 2) if $i^{*}=i^{\prime}+1$ then by (5) $v_{q}^{+}\left(i^{*}-1\right)<\frac{1}{2}$ which amounts to $1-v_{q}^{-}\left(i^{*}\right)<\frac{1}{2}$ or $v_{q}^{-}\left(i^{*}\right)>\frac{1}{2}$. Then by the second inequality in (3) we have $v_{q}^{+}\left(i^{*}\right)>v_{q}^{-}\left(i^{*}\right)>\frac{1}{2}$, so that again $\min \left\{v_{q}^{-}\left(i^{*}\right), v_{q}^{+}\left(i^{*}\right)\right\} \geq \frac{1}{2}$, which ends the proof of the theorem.

Practical applications. While calculating i^{\prime} in the Theorem is easy, checking condition (5) needs a comment.

First of all observe that $v_{0}^{+}(i)=1, v_{1}^{+}(i)=0$, and the first derivative of $v_{q}^{+}(i)$ with respect to q is negative. It follows that $v_{q}^{+}(i) \geq \frac{1}{2}$ iff $q \leq q_{n}(i)$ where $q_{n}(i)$ is the unique solution (with respect to q) of the equation $v_{q}^{+}(i)=\frac{1}{2}$. For $q \in(0,1), v_{q}^{+}(i)$ is a strictly decreasing function with known values at both ends of the interval so that $q_{n}(i)$ can be easily found by a standard numerical routine. Table 1 gives us the values of $q_{n}(i)$ for $n=3,4, \ldots, 20$. Due to the equality

$$
v_{q}^{+}(i)+v_{1-q}^{+}(n-i)=1
$$

we have $q \leq q_{n}(i)$ iff $1-q \geq q_{n}(n-i)$ so that in Table 1 only the values $q_{n}(i)$ for $i<[n / 2]$ are presented. Sometimes the following fact may be useful: if i^{*} is optimal for estimating the q th quantile from sample of size n, then $n-i^{*}+1$ is optimal for estimating the $(1-q)$ th quantile from the same sample.

Table 1

n	i								
	1	2	3	4	5	6	7	8	9
3	. 3612								
4	. 2800								
5	. 2283	. 4086							
6	. 1926	. 3450							
7	. 1666	. 2984	. 4326						
8	. 1467	. 2628	. 3811						
9	. 1311	. 2348	. 3406	. 4468					
10	. 1184	. 2122	. 3077	. 4038					
11	. 1080	. 1936	. 2807	. 3683	. 4561				
12	. 0993	. 1779	. 2580	. 3385	. 4192				
13	. 0919	. 1646	. 2387	. 3132	. 3879	. 4626			
14	. 0855	. 1532	. 2221	. 2914	. 3609	. 4304			
15	. 0799	. 1432	. 2076	. 2724	. 3374	. 4024	. 4675		
16	. 0750	. 1344	. 1949	. 2558	. 3168	. 3778	. 4389		
17	. 0707	. 1267	. 1837	. 2411	. 2985	. 3560	. 4136	. 4712	
18	. 0669	. 1198	. 1737	. 2279	. 2823	. 3367	. 3911	. 4455	
19	. 0634	. 1136	. 1647	. 2162	. 2677	. 3193	. 3709	. 4225	. 4742
20	. 0603	. 1080	. 1567	. 2055	. 2545	. 3036	. 3527	. 4018	. 4509

Examples.

1. Suppose we want to estimate the q th quantile with $q=0.3$ from a sample of size $n=10$. For the Bernoulli distribution we have

$$
B(4,10 ; 0.3)=0.3504<\frac{1}{2}<B(3,10 ; 0.3)
$$

hence $i^{\prime}=3$. Now $q_{10}(3)=0.3077$ so that $q<q_{n}\left(i^{\prime}\right)$, hence $i^{*}=3$.
2. For $n=8$ and $q=0.75$ we have $B(7,8 ; 0.75)=0.3671<\frac{1}{2}<B(6,8 ; 0.75)=$ 0.6785 and $i^{\prime}=6$. By Table 1 we have $q_{8}(6)=1-q_{8}(2)=0.7372$. Now $q>q_{8}(6)$ so that $i^{*}=i^{\prime}+1=7$.

A comment.

It is interesting to observe that PMC-optimal estimator differs from that which minimizes Mean Absolute Deviation $E_{F}|F(T)-q|$; the latter has been constructed in Zieliński (1999). For example, to estimate the quantile of order $q=0.225, X_{3: 10}$ is PMC-optimal , while $X_{2: 10}$ minimizes Mean Absolute Deviation.

Acknowledgment.

The research was supported by grant KBN 2 P03A 03317.

References

Keating, J.P., Mason, R.L., and Sen, P.K. (1993) Pitman's Measure of Closeness: A comparison of Statistical Estimators. SIAM, Philadelphia.

Keating, J.P., Mason, R.L., Rao, C.R., Sen, P.K. ed's (1991) Pitman's Measure of Closeness. Special Issue of Communications in Statistics - Theory and Methods, Vol. 20, Number 11

Lehmann, E.L. (1983), Theory of Point Estimation, John Wiley and Sons.
Uhlmann, W. (1963), Ranggrössen als Schätzfuntionen, Metrika 7, 1, 23-40.
Zieliński, R. (1999), Best equivariant nonparametric estimator of a quantile, Statistics and Probability Letters 45, 79-84.

