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According to Pitman’s Measure of Closeness, if T1 and T2 are
two estimators of a real parameter θ, then T1 is better than T2 if
Pθ{|T1 − θ| < |T2 − θ|} > 1/2 for all θ. It may however happen that
while T1 is better than T2 and T2 is better than T3, T3 is better than
T1. Given q ∈ (0, 1) and a sample X1, X2, . . . , Xn from an unknown
F ∈ F , an estimator T ∗ = T ∗(X1, X2, . . . , Xn) of the q-th quan-
tile of the distribution F is constructed such that PF {|F (T ∗)− q| ≤
|F (T ) − q|} ≥ 1/2 for all F ∈ F and for all T ∈ T , where F is a
nonparametric family of distributions and T is a class of estimators.
It is shown that T ∗ = Xj:n for a suitably chosen jth order statistic.
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Pitman’s Measure of Closeness If T and S are two estimators of a real
parameter θ we define T as better than S if Pθ{|T − θ| ≤ |S − θ|} ≥ 1/2 for all θ
(Keating et al. 1991, 1993). A rationale behind that criterion is that the absolute
error of estimator T is more often smaller than that of S. A restricted applicability
of the idea is a consequence of the fact that while T1 is better than T2 and T2 is
better than T3 it may happen that T3 is better than T1. It may however happen
that in a given statistical model and in a given class of estimators there exists
one which is better than any other. We define such estimator as PMC-optimal .
In what follows we construct a PMC-optimal estimator of a qth quantile of an
unknown continuous and strictly increasing distribution function.

Statistical model. Let F be the family of all continuous and strictly increas-
ing distribution functions on the real line: F ∈ F if and only if F (a)=0,F (b)=1,
and F is strictly increasing on (a, b) for some a and b, −∞ ≤ a < b ≤ +∞.
Let X1, X2, . . . , Xn be a sample from an unknown F ∈ F and let X1:n, X2:n, . . .
. . . , Xn:n (X1:n ≤ X2:n ≤ . . . ≤ Xn:n) be the order statistic from the sample. The
sample size n is assumed to be fixed (nonasymptotic approach). Let q ∈ (0, 1) be
a given number and let xq(F ) denote the qth quantile (the quantile of order q) of
the distribution F ∈ F . The problem is to estimate xq(F ).

Due to the fact that (X1:n, X2:n, . . . , Xn:n) is a minimal sufficient and com-
plete statistic for F (Lehmann 1983) we confine ourselves to estimators T =
T (X1:n, X2:n, . . . , Xn:n).

Observe that if X is a random variable with a distribution F ∈ F with the
qth quantile equal to x then, for every strictly increasing fucntion ϕ, the random
variable ϕ(X) has a distribution from F with the qth quantile equal to ϕ(x).
According to that property we confine ourselves to the class T of equivariant
estimators: T ∈ T iff

T (ϕ(x1), ϕ(x2), . . . , ϕ(xn)) = ϕ (T (x1, x2, . . . , xn))

for all strictly increasing functions ϕ and for all x1 ≤ x2 ≤ . . . ≤ xn

It follows that T (x1, x2, ..., xn) = xk for any fixed k (Uhlmann (1963)). Allow-
ing randomization (Zieliński 1999) we conclude that the class T of equivariant
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estimators (1) is identical with the class of estimators

T = XJ(λ):n

where J(λ) is a random variable independent of the sample X1, X2, . . . , Xn, such
that

P{J(λ) = j} = λj , λj ≥ 0, j = 1, 2, . . . , n,
n

∑

j=1

λj = 1

This gives us an explicit and easily tractable characterization of the class T of
estimators under consideration.

Observe that if T is to be a good estimator of the qth quantile xq(F ) of an
unknown distribution F ∈ F , then F (T ) should be close to q. Hence we shall
measure the error of estimation in terms of differences |F (T (X1, X2, . . . , Xn))− q|
rather than in terms of differences |T (X1, X2, . . . , Xn))−xq(F )|. According to the
Pitman’s Measure of Closeness an estimator T is better than S if

(1) PF {|F (T )− q| ≤ |F (S)− q|} ≥ 1/2 for all F ∈ F

(for more fine definitions see Keating et al. 1993).

Definition. An estimator T ∗ which satisfies

(2) PF {|F (T ∗)− q| ≤ |F (S)− q|} ≥ 1/2 for all F ∈ F and for all S ∈ T

is said to be PMC-optimal .

We use ≤ in the first inequality in the above definition because for T = S we
prefer to have LHS of (1) to be equal to one rather than to zero; otherwise the
part ”for all T ∈ T ” in (2) would not be true. For example two different estimators
X[nq]:n and X[(n+1)q]:n are identical for n = 7 when estimating qth quantile for
q = 0.2.

One can easily conclude from the proof of the Theorem below that the second
inequality ≥1/2 may be strengthened in the following sense: if there are two optimal
estimators T ∗1 and T ∗2 (we can see from the proof of the Theorem that it may hap-

pen), then PF {|F (T ∗1 )−q|≤|F (T ∗2 )−q|}=
1
2

and PF {|F (T ∗1 )− q|≤|F (T )− q|}>
1
2

for all other estimators T ∈ T .

3



Denote LHS of (1) by p(T, S) and observe that to construct T ∗ it is enough to
find T ′ such that

min
S∈T

p(T ′, S) = max
T∈T

min
S∈T

p(T, S) for all F ∈ F

and take T ∗ = T ′ if minS∈T p(T ∗, S) ≥ 1
2

for all F ∈ F . If the inequality does not
hold then the optimal estimator T ∗ does not exist. In what follows we construct
the estimator T ∗.

The optimal estimator T ∗. Let T = XJ(λ):n and S = XJ(µ):n. If the sample
X1, X2, . . . , Xn comes from a distribution function F then F (T ) = UJ(λ):n and
F (S) = UJ(µ):n, respectively, where U1:n, U2:n, . . . , Un:n are the order statistics
from a sample U1, U2, . . . , Un drawn from the uniform distribution U(0, 1). Denote

wq(i, j) = P{|Ui:n − q| ≤ |Uj:n − q|}, 1 ≤ i, j ≤ n

Then

p(T, S) = p(λ, µ) =
n

∑

i=1

n
∑

j=1

λiµjwq(i, j)

and T ∗ = XJ(λ∗:n) is optimal if

min
µ

p(λ∗, µ) = max
λ

min
µ

p(λ, µ)

and
min

µ
p(λ∗, µ) ≥ 1

2

For a fixed i, the sum
∑n

j=1 µjwq(i, j) is minimal for µj∗ = 1, µj = 0, j 6= j∗,
where j∗ = j∗(i) is such that wq(i, j∗) ≤ wq(i, j), j = 1, 2, . . . , n. Then the optimal
λ∗ satisfies λi∗ = 1, λi = 0, i 6= i∗, where i∗ maximizes wq(i, j∗(i)). It follows that
the optimal estimator T ∗ is of the form Xi∗:n with a suitable i∗ and the problem
reduces to finding i∗.

Denote v−q (i) = wq(i, i−1), v+
q (i) = wq(i, i+1) and define v−q (1) = v+

q (n) = 1.
Proofs of all Lemmas and the Theorem below are postponed to next Section.

4



Lemma 1. For a fixed i = 1, 2, . . . , n, we have minj wq(i, j) = min{v−q (i), v+
q (i)}.

By Lemma 1, the problem reduces to finding i∗ which maximizes min{v−q (i), v+
q (i)}.

Lemma 2. The sequence v+
q (i), i = 1, 2, . . . , n, is increassing and the sequence

v−q (i), i = 1, 2, . . . , n is decreasing.

By Lemma 2, to get i∗ one should find i′ ∈ {1, 2, . . . , n− 1} such that

(3) v−q (i′) ≥ v+
q (i′) and v−q (i′ + 1) < v+

q (i′ + 1)

and then calculate

(4) i∗ =
{

i′, if v+
q (i′) ≥ v−q (i′ + 1)

i′ + 1, otherwise
Eventually we obtain the following theorem.

Theorem. Let i∗ be defined by the formula

(5) i∗ =







i′, if v+
q (i′) ≥ 1

2
i′ + 1, otherwise

where
(6)

i′ =











the smallest integer i ∈ {1, 2, . . . , n− 2} such that Q(i + 1; n, q) <
1
2

n− 1, if Q(n− 1, n, q) ≥ 1
2

where

Q(k; n, q) =
n

∑

j=k

(

n
j

)

qj(1− q)n−j = Iq(k, n− k + 1)

and

Ix(α, β) =
Γ(α + β)
Γ(α)Γ(β)

x
∫

0

tα−1(1− t)β−1dt

For i∗ defined by (5) we have

(7) PF {|F (Xi∗:n − q| ≤ |F (T )− q|} ≥ 1
2

for all F ∈ F and for all equivariant estimators T of the qth quantile, which means
that i∗ is optimal.
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Index i′ can be easily found by tables or suitable computer programs for
Bernoulli or Beta distributions. Checking the condition in (5) will be commented
in Section Practical applications.

As a conclusion we obtain that Xi∗:n is PMC-optimal in the class of all equiv-
ariant estimators of the qth quantile.

Proofs.

Proof of Lemma 1. Suppose first that i < j and consider the following
events

(8) A1 = {Ui:n > q}, A2 = {Ui:n ≤ q < Uj:n}, A3 = {Uj:n < q}

The events are pairwise disjoint and P (A1 ∪A2 ∪A3) = 1. Hence

wq(i, j) =
3

∑

j=1

P{|Ui:n − q| ≤ |Uj:n − q|, Aj}

For the first summand we have

P{|Ui:n − q| ≤ |Uj:n − q|, A1} = P{Ui:n > q}

The second summand can be written in the form

P{|Ui:n − q| ≤ |Uj:n − q|, A2} = P{Ui:n + Uj:n ≥ 2q, Ui:n ≤ q < Uj:n}

= P{Ui:n ≤ q < Uj:n, Uj:n ≥ 2q − Ui:n}

and the third one equals zero.

If j′ > j then Uj′:n ≥ Uj:n, the event {Ui:n ≤ q < Uj:n, Uj:n ≥ 2q − Ui:n}
implies the event {Ui:n ≤ q < Uj′:n, Uj′:n ≥ 2q − Ui:n}, and hence

wq(i, j′) ≥ wq(i, j)

In consequence
min
j>i

wq(i, j) = wq(i, i + 1) = v+
q (i)

Similarly minj<i wq(i, j) = v−q (i), which ends the proof of Lemma 1. �
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Proof of Lemma 2. Similarly as in the proof of Lemma 1, considering events
(8) with j = i + 1, we obtain

v+
q (i) = P{Ui:n > q}+ P{Ui:n + Ui+1:n ≥ 2q, Ui:n ≤ q < Ui+1:n}

and by standard calculations

v+
q (i) =

n!
(i− 1)!(n− i)!







1
∫

q

xi−1(1− x)n−idx +

q
∫

(2q−1)+

xi−1(1− 2q + x)n−idx







where x+ = max{x, 0}. For i = n − 1 we obviously have v+
q (n − 1) < v+

q (n) = 1.
For i ∈ {1, 2, . . . , n − 1} the inequality v+

q (i) < v+
q (i + 1) can be written in the

form

i
(

1
∫

q

xi−1(1− x)n−idx +

q
∫

(2q−1)+

xi−1(1− 2q + x)n−idx
)

<

< (n− i)
(

1
∫

q

xi(1− x)n−i−1dx +

q
∫

(2q−1)+

xi(1− 2q + x)n−i−1dx
)

Integrating LHS by parts we obtain an equivalent inequality

2(n− i)

q
∫

(2q−1)+

xi(1− 2q + x)n−i−1dx > 0

which is obviously always true.

In full analogy to the calculation of v+
q (i), for i ∈ {2, 3, . . . , n} we obtain

v−q (i) =
n!

(i− 1)!(n− i)!







q
∫

0

xi−1(1− x)n−idx +

min{1,2q}
∫

q

(2q − x)i−1(1− x)n−idx







and the inequality v−q (i−1) > v−q (i) can be proved as above, which ends the proof
of Lemma 2. �
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Proof of the Theorem. We shall use following facts

(9) v+
q (i) + v−q (i + 1) = 1

which follows from the obvious equality wq(i, j) + wq(j, i) = 1, and

(10) v+
q (i) + v+

q (i + 1) = 2 (1−Q(i + 1; n, q)) , i = 1, 2, . . . , n− 1

Equality (10) follows from integrating by parts both integrals in v+
q (i) and then

calculating the sum v+
q (i) + v+

q (i + 1).

Let us consider condition (3) for i = 1, i = n − 1, and i ∈ {2, 3, . . . , n − 2},
separately.

For i = 1 we have v−1 (1) = 1 > v+
q (1) hence i′ = 1 iff v−q (2) < v+

q (2) which
by (9) amounts to 1 − v+

q (1) < v+
q (2) and by (10) to 2 (1−Q(2, n, q)) > 1 or

Q(2, n, q) <
1
2
. Now i∗ = 1 if v+

q (1) ≥ v−q (2) or v+
q (1) ≥ 1 − v+

q (1) or v+
q (1) ≥ 1

2
,

and i∗ = 2 if v+
q (1) <

1
2
.

Due to the equality v−q (n) < v+
q (n) = 1, by (3) we have i′ = n−1 iff v−q (n−1) ≥

v+
q (n − 1) which by (9) amounts to v+

q (n − 2) + v+
q (n − 1) ≤ 1, and by (10) to

Q(n − 1;n, q) ≥ 1
2
. Now i∗ = n − 1 if v+

q (n − 1) ≥ v−q (n) or v+
q (n − 1) ≥ 1

2
;

otherwise i∗ = n.

For i ∈ {2, 3, . . . , n− 2}, by (9), condition (3) can be written in the form

v+
q (i− 1) + v+

q (i) ≤ 1 and v+
q (i) + v+

q (i + 1) > 1

and by (10) in the form

Q(i; n, q) ≥ 1
2

and Q(i + 1; n, q) <
1
2

Now by (4) and (9)

i∗ =







i′, if v+
q (i′) ≥ 1

2
i′ + 1, otherwise
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Summing up all above and taking into account that Q(i;n, q) decreases in
i = 1, 2, . . . , n− 1, we obtain

i′ =

{

first i ∈ {1, 2, . . . , n− 2} such that Q(i + 1; n, q) <
1
2

n− 1, if such i does not exist

Then i∗ = i′ if v+
q (i′) ≥ 1

2
and i∗ = i′ + 1 otherwise, which gives us statement

(5)-(6) of the Theorem.

To prove statement (7) of the Theorem observe that if i∗ = 1 then v+
q (1) ≥ 1

2
and if i∗ = n then v−q (n) = 1 − v+

q (n − 1) ≥ 1
2
. For i∗ ∈ {2, 3, . . . , n − 1} we

have: 1) if i∗ = i′ then by (5) v+
q (i∗) ≥ 1

2
and by the first inequality in (3)

v−q (i∗) ≥ v+
q (i∗) ≥ 1

2
, hence min{v−q (i∗), v+

q (i∗)} ≥ 1
2

and 2) if i∗ = i′ + 1 then

by (5) v+
q (i∗ − 1) <

1
2

which amounts to 1 − v−q (i∗) <
1
2

or v−q (i∗) >
1
2
. Then

by the second inequality in (3) we have v+
q (i∗) > v−q (i∗) >

1
2
, so that again

min{v−q (i∗), v+
q (i∗)} ≥ 1

2
, which ends the proof of the theorem. �

Practical applications. While calculating i′ in the Theorem is easy, checking
condition (5) needs a comment.

First of all observe that v+
0 (i) = 1, v+

1 (i) = 0, and the first derivative of

v+
q (i) with respect to q is negative. It follows that v+

q (i) ≥ 1
2

iff q ≤ qn(i) where

qn(i) is the unique solution (with respect to q) of the equation v+
q (i) =

1
2
. For

q ∈ (0, 1), v+
q (i) is a strictly decreasing function with known values at both ends

of the interval so that qn(i) can be easily found by a standard numerical routine.
Table 1 gives us the values of qn(i) for n = 3, 4, . . . , 20. Due to the equality

v+
q (i) + v+

1−q(n− i) = 1

we have q ≤ qn(i) iff 1 − q ≥ qn(n − i) so that in Table 1 only the values qn(i)
for i < [n/2] are presented. Sometimes the following fact may be useful: if i∗ is
optimal for estimating the qth quantile from sample of size n, then n − i∗ + 1 is
optimal for estimating the (1− q)th quantile from the same sample.
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Table 1
i

n
1 2 3 4 5 6 7 8 9

3 .3612
4 .2800
5 .2283 .4086
6 .1926 .3450
7 .1666 .2984 .4326
8 .1467 .2628 .3811
9 .1311 .2348 .3406 .4468
10 .1184 .2122 .3077 .4038
11 .1080 .1936 .2807 .3683 .4561
12 .0993 .1779 .2580 .3385 .4192
13 .0919 .1646 .2387 .3132 .3879 .4626
14 .0855 .1532 .2221 .2914 .3609 .4304
15 .0799 .1432 .2076 .2724 .3374 .4024 .4675
16 .0750 .1344 .1949 .2558 .3168 .3778 .4389
17 .0707 .1267 .1837 .2411 .2985 .3560 .4136 .4712
18 .0669 .1198 .1737 .2279 .2823 .3367 .3911 .4455
19 .0634 .1136 .1647 .2162 .2677 .3193 .3709 .4225 .4742
20 .0603 .1080 .1567 .2055 .2545 .3036 .3527 .4018 .4509

Examples.

1. Suppose we want to estimate the qth quantile with q = 0.3 from a sample
of size n = 10. For the Bernoulli distribution we have

B(4, 10; 0.3) = 0.3504 <
1
2

< B(3, 10; 0.3)

hence i′ = 3. Now q10(3) = 0.3077 so that q < qn(i′), hence i∗ = 3.

2. For n = 8 and q = 0.75 we have B(7, 8; 0.75) = 0.3671 <
1
2

< B(6, 8; 0.75) =
0.6785 and i′ = 6. By Table 1 we have q8(6) = 1− q8(2) = 0.7372. Now q > q8(6)
so that i∗ = i′ + 1 = 7.
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A comment.

It is interesting to observe that PMC-optimal estimator differs from that which
minimizes Mean Absolute Deviation EF |F (T )−q|; the latter has been constructed
in Zieliński (1999). For example, to estimate the quantile of order q = 0.225, X3:10

is PMC-optimal , while X2:10 minimizes Mean Absolute Deviation.
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