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According to Pitman’s Measure of Closeness, if 77 and T are
two estimators of a real parameter 6, then T is better than Ty if
Po{|Ty — 0| < |To — 0|} > 1/2 for all 6. It may however happen that
while T7 is better than T5 and T5 is better than T3, T3 is better than
T;. Given g € (0,1) and a sample X7, Xo,..., X,, from an unknown
F € F, an estimator T* = T*(X1, Xs,...,X,,) of the ¢-th quan-
tile of the distribution F' is constructed such that Pp{|F(T™*) —q| <
|F(T) —q|} > 1/2 for all F € F and for all T' € 7, where F is a
nonparametric family of distributions and 7 is a class of estimators.
It is shown that T = Xj.,, for a suitably chosen jth order statistic.
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Pitman’s Measure of Closeness If T and S are two estimators of a real
parameter § we define T as better than S if Pp{|T — 0| <|S — 0|} > 1/2 for all ¢
(Keating et al. 1991, 1993). A rationale behind that criterion is that the absolute
error of estimator 7T is more often smaller than that of S. A restricted applicability
of the idea is a consequence of the fact that while T} is better than 75 and T5 is
better than T3 it may happen that T35 is better than T;. It may however happen
that in a given statistical model and in a given class of estimators there exists
one which is better than any other. We define such estimator as PMC-optimal .
In what follows we construct a PMC-optimal estimator of a qth quantile of an

unknown continuous and strictly increasing distribution function.

Statistical model. Let F be the family of all continuous and strictly increas-
ing distribution functions on the real line: F' € F if and only if F'(a)=0,F(b) =1,
and F' is strictly increasing on (a,b) for some a and b, —o00 < a < b < +o0.
Let X1, X5,...,X,, be a sample from an unknown F' € F and let Xi.,, Xo.n,...

vy Xnm (X1n < Xown < ... < Xyp) be the order statistic from the sample. The
sample size n is assumed to be fixed (nonasymptotic approach). Let ¢ € (0,1) be
a given number and let x,(F') denote the gth quantile (the quantile of order ¢) of
the distribution F' € F. The problem is to estimate x,(F).

Due to the fact that (Xi.n, Xom,. .-, Xn:n) is a minimal sufficient and com-
plete statistic for F (Lehmann 1983) we confine ourselves to estimators 7' =
T(Xl:?’w X2:n7 ) Xn:n)-

Observe that if X is a random variable with a distribution F' € F with the
qth quantile equal to x then, for every strictly increasing fucntion ¢, the random
variable ¢(X) has a distribution from F with the gth quantile equal to ¢(z).
According to that property we confine ourselves to the class 7 of equivariant
estimators: T' € T iff

T ((p('xl)7 90(332)7 ey (p(l’n)) =@ (T(le,wQ? s 7'7:71))

for all strictly increasing functions ¢ and for all 1 <y < ... <z,

It follows that T'(zy,x2,...,2,) = x) for any fixed k& (Uhlmann (1963)). Allow-

ing randomization (Zielinski 1999) we conclude that the class 7 of equivariant
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estimators (1) is identical with the class of estimators
T= XJ()\):n

where J(A) is a random variable independent of the sample X7, Xs,..., X,,, such
that

j=1
This gives us an explicit and easily tractable characterization of the class 7 of

estimators under consideration.

Observe that if T" is to be a good estimator of the gth quantile z,(F') of an
unknown distribution F' € F, then F(T') should be close to ¢q. Hence we shall
measure the error of estimation in terms of differences |F(T'(X1, Xo, ..., X,)) —q|
rather than in terms of differences |T'(X1, Xs, ..., X,)) —24(F)|. According to the

Pitman’s Measure of Closeness an estimator 7' is better than S if
(1) Pr{|F(T)—q| < |F(S)—¢q|} >1/2 for all F € F

(for more fine definitions see Keating et al. 1993).

DEFINITION. An estimator T* which satisfies
(2)  Pp{|F(T*)—q| <|F(S)—gq|} >1/2forall F € F and forall S €T

is said to be PMC-optimal .

We use < in the first inequality in the above definition because for T'= S we
prefer to have LHS of (1) to be equal to one rather than to zero; otherwise the
part "for all 7' € 77 in (2) would not be true. For example two different estimators
Xingl:in and X[(11)q:n are identical for n = 7 when estimating gth quantile for
q=0.2.

One can easily conclude from the proof of the Theorem below that the second
inequality > 1/2 may be strengthened in the following sense: if there are two optimal
estimators 77" and T (we can see from the proof of the Theorem that it may hap-
pen), then Pp{|F(TF) | < |F(T3) ~ql) = 5 and Pe{|F(TY) ~ o] < |F(T) ~ al} >
for all other estimators T € 7.



Denote LHS of (1) by p(T,S) and observe that to construct 7 it is enough to
find 7" such that

inp(T”, ) = inp(T, S) for all F
min p(7", 5) = max min p(T, 5) for all F' € F

1
and take T* = T" if minge7 p(T*, S) > 3 for all F' € F. If the inequality does not
hold then the optimal estimator 7™ does not exist. In what follows we construct

the estimator T™*.

The optimal estimator 7. Let T' = X ;())., and § = X j(,,).,,. If the sample
X1,Xs,...,X, comes from a distribution function F' then F(T') = Uj(\)., and
F(S) = Uj(u)mn, respectively, where Uy.n, Usip, ..., Uny are the order statistics

from a sample Uy, Us, ..., U, drawn from the uniform distribution U (0, 1). Denote
wq(lvj):P{len_Q| < |Uj:n_Q|}, 1§27]§n

Then o
p(T,8) =p\u) =D > Ainjwg(i, j)
i=1 j=1
and T = X j(\«.n) is optimal if

minp(A*, 1) = max min p(\, p)
H A iz

and

N | =

min p(A*, ) >
nw

For a fixed i, the sum Y7 | pjw,(i,j) is minimal for pj- =1, pu; = 0,5 # j*,
where j* = j*(4) is such that wy(7, j*) < wy(7,7), 7 =1,2,...,n. Then the optimal
\* satisfies A= = 1, A\; = 0,7 # ¢*, where * maximizes w, (¢, 7*(¢)). It follows that
the optimal estimator T™ is of the form X,«., with a suitable ¢* and the problem
reduces to finding ¢*.

Denote v, (i) = wq(i,i — 1), v} (i) = wy(i,i41) and define v, (1) = v} (n) = 1.

Proofs of all Lemmas and the Theorem below are postponed to next Section.
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LEMMA 1. For afixedi = 1,2,...,n, we have min; w, (i, j) = min{v, (i),v; (1)}
By Lemma 1, the problem reduces to finding 7* which maximizes min{v, (i), v} ()}

LEMMA 2. The sequence v;(i), i=1,2,...,n, Is increassing and the sequence

vy (i), i =1,2,...,n is decreasing.

By Lemma 2, to get i* one should find i’ € {1,2,...,n — 1} such that
(3) vy (i) > vi () and vy (i +1) <vf(i' +1)
and then calculate

(4)

Eventually we obtain the following theorem.

. {@", it o (i) > og (i + 1)
i’ +1, otherwise

THEOREM. Let ¢* be defined by the formula

i if ol (i') >

Y
(@)
N~—
~.
*
I
N | =

i/ +1, otherwise

1
the smallest integer i € {1,2,...,n — 2} such that Q(i + 1;n,q) < 3
./
T =
1
n_l’ 1fQ<n_17n7Q)Z§
where

3

Q(ksn,q) = (?) ¢ —q)" 7 =I(kn—k+1)

and
xT

I'(a)T(B) J
For i* defined by (5) we have
(7) Pp{|F (X — q| < |F(T) — q|} = %

for all F' € F and for all equivariant estimators T of the qth quantile, which means

that * is optimal.



Index i’ can be easily found by tables or suitable computer programs for
Bernoulli or Beta distributions. Checking the condition in (5) will be commented

in Section Practical applications.

As a conclusion we obtain that X;«.,, is PMC-optimal in the class of all equiv-

ariant estimators of the gth quantile.

Proofs.

ProOF OF LEMMA 1. Suppose first that ¢ < j and consider the following

events
(8) Al == {Uzn > Q}7 A2 - {Uzn S q < Uj:n}a AS - {Uj:n < Q}

The events are pairwise disjoint and P(A4; U A3 U A3) = 1. Hence

3
U)q(i,j) = ZP‘“Uzn - q, < |Uj:n - Q|7Aj}

j=1

For the first summand we have
P{|Uzn - Q| S |Uj:n - Q|7A1} - P{Ui:n > Q}

The second summand can be written in the form
P{‘Uzn - Q| é ’Uj:n - CJ\,A2} - P{Uzn + Uj:n Z 2q, Uzn S q < Uj:n}
= P{Uzn <g< Uj:n7 Uj:n > 2(] - Ui:n}

and the third one equals zero.

It j/ > j then Uj’:n Z Uj:na the event {Ui:n S q < Uj:nan:n Z 26] - Ui:n}
implies the event {U;.,, < ¢ < Ujr.p, Ujr.p, > 2q — Uy }, and hence

wq(iajl) > wq(iaj)
In consequence
min wg(i, j) = we(i,i + 1) = v (i)
7>

Similarly min;; wy(i,j) = v, (i), which ends the proof of Lemma 1. (J
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PROOF OF LEMMA 2. Similarly as in the proof of Lemma 1, considering events
(8) with j =i+ 1, we obtain
U;(Z) = P{Uzn > Q} + P{Uzn + Ui—i—l:n > 2(], Ui:n < q< Ui+1:n}

and by standard calculations

1 q
. n! i— n—i i n—i
U;(Z):(i—l)!(n—i)! /:U Y1 —z)"de + / 271 -2+ 2)" dx
q (2¢—1)*

where 2% = max{z,0}. For i = n — 1 we obviously have v} (n —1) < v} (n) = 1.
For i € {1,2,...,n — 1} the inequality v} (i) < v} (i 4+ 1) can be written in the
form

q

1
i(/xil(l — )" 'dx + / 21— 29 + x)”*ida,) <
q

(2¢—1)F
1 q
< (n—z)(/:z:’(l — )" + / z'(1 —2q—|—x)”_i_1d:v>
q (2¢—1)+

Integrating LHS by parts we obtain an equivalent inequality

q
2(n — 1) / /(1 —2¢+x)" " tdx >0

(2¢—-1)*

which is obviously always true.

In full analogy to the calculation of v} (i), for i € {2,3,...,n} we obtain
| q min{1,2q}
— (5 n: i—1(1 _ . \n—i o=l \n—i
v, (1) = =Dl — ) /a: (1 —x)""dx + / (2¢ —x)" (1 —2)" 'dex

0 q

and the inequality v, (i —1) > v (i) can be proved as above, which ends the proof
of Lemma 2. 0J



PrOOF OF THE THEOREM. We shall use following facts

(9) vy (i) 4o (i+1)=1

which follows from the obvious equality wq(7,j) + wq(j,7) = 1, and

(10) vF@) i (i+1)=2(1-Q(i+1in,q), i=1,2...,n—1

Equality (10) follows from integrating by parts both integrals in v*( ) and then
calculating the sum v} (i) + v (i 4 1).

Let us consider condition (3) for i =1, i =n—1, and i € {2,3,...,n — 2},

separately.
For i = 1 we have v; (1) = 1 > v} (1) hence 7 = 1 iff v; (2) < v} (2) which
by (9) amounts to 1 — v} (1) < v} (2) and by (10) to 2(1 —Q(2,n,q)) > 1 or
1 L B 1
Q(2,n,q) < 3 Now i* = 1 if v} (1) > v (2) or v (1) > 1 — v (1) or v} (1) > 3

" : 1

and i* = 2 if v} (1) < 3
Due to the equality v, (n) < v} (n) = 1, by (3) we have i’ = n—1iffv, (n—1) >

vf (n — 1) which liy (9) amounts to v (n —2) + v} (n —1) < 1, and by (10) ‘io
Q(n — 1;n,q) > 3 Now i* = n —1if vf(n—1) > v (n) or vf(n—1) > -;

otherwise ¢* = n.

\)

For i € {2,3,...,n — 2}, by (9), condition (3) can be written in the form

Jr. +. +. Jr.
v (i—1)+v, () <1 and v, (i) +v, (i +1)>1

and by (10) in the form

N =

and Qi+ 1;n,q) <

N =

Q(isn, q) >

Now by (4) and (9)
i, if v (i") >

-~
Il
N =

i +1, otherwise



Summing up all above and taking into account that Q(i;n,q) decreases in

1 =1,2,...,n — 1, we obtain
. . 1
i = {ﬁrst i€{1,2,...,n— 2} such that Q(i + 1;n,q) < 5

n — 1,if such 7 does not exist

1
Then i* = 4" if v} (i) > - and i* = 7' 4 1 otherwise, which gives us statement

(5)-(6) of the Theorem.

[\

To prove statement (7) of the Theorem observe that if * = 1 then v} (1) >

N

1
and if * = n then v (n) = 1 —-vf(n—-1) > 5 For i* € {2,3,...,n — 1} we

1
have: 1) if i* = ¢’ then by (5) v/ (i*) > - and by the first inequality in (3)

[\

i " 1 SN " 1 e
vy (i*) > vi (i*) > 3 hence min{v, (i*), v/ (i)} > 3 and 2) if * = 4’ + 1 then

1 1 1
by (5) v (i* —1) < 3 which amounts to 1 — v, (i*) < 5 or vy (1%) > 3 Then
1
by the second inequality in (3) we have v (i*) > v, (i*) > 5 80 that again

1
min{v, (4*), v} (i*)} > 2 which ends the proof of the theorem. O

Practical applications. While calculating i’ in the Theorem is easy, checking

condition (5) needs a comment.

First of all observe that vy (i) = 1, v{ (i) = 0, and the first derivative of

1
vl (i) with respect to ¢ is negative. It follows that v (i) > 3 iff ¢ < ¢, (i) where

qn (@) is the unique solution (with respect to q) of the equation v} (i) = % For
q € (0,1), v;(z') is a strictly decreasing function with known values at both ends
of the interval so that ¢, (i) can be easily found by a standard numerical routine.
Table 1 gives us the values of ¢, (i) for n = 3,4,...,20. Due to the equality

vl (i) + vf’_q(n —i)=1

we have ¢ < ¢, (i) iff 1 — ¢ > ¢,(n — i) so that in Table 1 only the values g, (i)
for i < [n/2] are presented. Sometimes the following fact may be useful: if i* is
optimal for estimating the gth quantile from sample of size n, then n —¢* + 1 is

optimal for estimating the (1 — ¢)th quantile from the same sample.



Table 1

. i
1 2 3 4 ) 6 7 8 9

3 1.3612

4 {.2800

5 [.2283 |.4086

6 |.1926 |.3450

7 1.1666 |.2984 |.4326

8 [.1467 |.2628 |.3811

9 [.1311 |.2348 |.3406 |.4468

10 |.1184 |.2122 |.3077 |.4038

11 [.1080 |.1936 [.2807 |.3683 |.4561

12 [.0993 |.1779 |.2580 |.3385 |.4192

13 [.0919 |.1646 |.2387 |.3132 |.3879 |.4626

14 |.0855 [.1532 |.2221 |.2914 |.3609 |.4304

15 1.0799 |.1432 |.2076 |.2724 |.3374 |.4024 |.4675

16 {.0750 |.1344 |.1949 |.2558 |.3168 [.3778 [.4389

17 1.0707 |.1267 |.1837 |.2411 |.2985 |.3560 [.4136 |.4712

18 [.0669 |.1198 |.1737 |.2279 |.2823 |.3367 |.3911 |.4455

19 1.0634 |.1136 |.1647 |.2162 |.2677 [.3193 [.3709 |.4225 |.4742

20 {.0603 |.1080 |.1567 |.2055 [.2545 |.3036 |.3527 [.4018 |.4509
Examples.

1. Suppose we want to estimate the gth quantile with ¢ = 0.3 from a sample

of size n = 10. For the Bernoulli distribution we have

hence i’ = 3. Now ¢10(3) = 0.3077 so that ¢ < ¢, ('), hence i* = 3.

1
2. For n = 8 and ¢ = 0.75 we have B(7,8;0.75) = 0.3671 < 5 < B(6,8;0.75) =
0.6785 and ' = 6. By Table 1 we have ¢g(6) = 1 — gs(2) = 0.7372. Now ¢ > ¢s(6)

1
B(4,10;0.3) = 0.3504 < 5 < B(3,10;0.3)

sothat i* =4 +1="1.
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A comment.

It is interesting to observe that PMC-optimal estimator differs from that which
minimizes Mean Absolute Deviation Er|F(T)— q|; the latter has been constructed
in Zielinski (1999). For example, to estimate the quantile of order ¢ = 0.225, X3.1¢

is PMC-optimal , while X5.19 minimizes Mean Absolute Deviation.
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