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Rewolucji 1905, 41,  Lódź
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Inst. Math. Polish Acad. Sc.
P.O.Box 137 Warszawa, Poland

e-mail: rziel@impan.gov.pl

ABSTRACT
The celebrated Kaplan-Meter estimator (KME) suffers from a disadvantage:

it may happen that estimated probabilities of survival for two different times t1
and t2 are equal each to other while t1 and t2 differ substantially. We propose
a smoothinq of KME in such a way that the resulting estimator is a strictly
decreasing function of time. The smoothed KME appears to be more accurate
than the original one.

1. INTRODUCTION

The celebrated Kaplan-Meter estimator (KME) suffers from a disadvantage: it
may happen that estimated probabilities of survival for two different times t1 and
t2 are equal each to other while t1 and t2 differ substantially. It is a consequence of
the fact that KME, like typical empirical distiribution function, is piecewise con-
stant. The disadvantage has been recognized since long ago and some smoothed
versions have been, explicitly or implicitly, presented in the literature. Typical ap-
proach is to choose a smooth and strictly decreasing parametric representation for
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the survival probablity and to estimate that from observations at hand. For exam-
ple exponential and Weibull models has been used in Greenhouse and Silliman1,
Gompertz model in Gieser et al.2), logistic, log-logistic and Weibull in Hauck et
al.3. Biganzoli et al.4 presented a smoothed estimate of the discrete hazard function
through artificial neural network (ANN) developed as Partial Logistic regression
models with ANN (PLANN). A smooth prediction through a parametric transfor-
mation of the time axis is discussed in Byers et al.5. An interesting nonparametric
smoothing for survival distribution with strictly decreasing probability distribu-
tion function one can find in Xu and Prorok6. The literature is abundant; to not
overload our note with quotations we confine ourselves to the most recent results
presented in Statistics in Medice.

Our proposal for smoothing KME is to approximate a slightly modified version
of KME locally by a suitable Weibull survival function. In practice it means that
we fit the Weibull curve to two adjoining jump points of the original KME. The
resulting estimator is a strictly decreasing function of time. It appears to be more
accurate than the original KME.

2. MODEL AND ESTIMATION

We assume a nonparametrical model: the survival probablity function is any
continuous and strictly decreasing function F (t) for t ≥ 0 with F (0) = 1 and
limt→∞ F (t) = 0. Typical representatives are exponential, Weibull, gamma, gen-
eralized gamma, lognormal, Gompertz, Pareto, log-logistic, and exponential-power
distribtuions, to mention the most popular among them (see e.g. Kalbfleisch and
Prentice7 , Klein et al.8). Every survival probability function may be locally ap-
proximated with a prescribed level of accuracy by a Weibull W (t; λ, α) survival
probability function of the form W (t; λ, α) = exp{−λtα}. For that reason we con-
struct our estimator, to be denoted by S2(t) (a reason for the subcript will become
clear later), as follows.

Denote by t1, t2, . . . , tN the jump points of KME, by P1, P2, . . . , PN the values
of KME at those points, and by P̄1, P̄2, . . . , P̄N the arithmetic means of KME in
close left-hand and right-hand vinicities of a given point t (by the very definition,
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at the point ti KME jumps down from the level Pi−1 to the level Pi (we define
t0 = 0 and P0 = 1). Hence we define P̄i = (Pi−1 + Pi)/2 for i = 1, 2, . . . , N − 1;
for i = N we define P̄N = PN/2 if the last observation is censored and P̄N = PN

otherwise. We shall illustrate our considerations using the well known data on the
effect of 6-mercaptopurine on the duration of steroid-induced remission in acute
leukemia taken from Freireich at al.9 (see also Marubini and Valsecchi10). The
”survival times” of 21 clinical patients were

6, 6, 6, 6∗, 7, 9∗, 10, 10∗, 11∗, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗, 32∗, 32∗, 34∗, 35∗ (1)

where ∗ denotes a censored observation. Kaplan-Meier estimator for that data is
presented in Fig. 1 and in the following table:
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Fig.1. Kaplan-Meier estimator for data (3)

Tab.1. KME and modified KME for data (1)

i 1 2 3 4 5 6 7 8
ti 6 7 10 13 16 22 23 35
Pi .857 .807 .753 .690 .627 .538 .448 .448
P̄i .928 .832 .780 .722 .659 .583 .493 .448

To estimate the survival probability for a given t we define our estimator S2(t) as
follows.

If t = ti for some i, then S2(t) = P̄i.
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If 0 < t ≤ tN and ti < t < ti+1 then we choose a Weibull survival probability
function which pass through the points (ti, P̄i) and (ti+1, P̄i+1) and then as the
value of our estimator S2(t) we take the value of the fitted Weibull survival prob-
ability function at that point t. It amounts to finding values of λ and α, say λ̂ and
α̂, such that

W (ti; λ̂, α̂) = P̄i and W (ti+1; λ̂, α̂) = P̄i+1 (2)

Then S2(t) = W (t; λ̂, α̂). Solving (1) amounts to solving, with respect to Λ and α,
the simple set of two linear equations

{

α log ti + Λ = log(− log P̄i)
α log ti+1 + Λ = log(− log P̄i+1)

(2′)

with Λ = log λ.

If t > tN than we proceed as follows:

— if the last observed tN is a censoring time, our estimator, like the original KME,
is not defined;

— otherwise we solve (2) for i = N − 1 (we extrapolate the Weibull curve which
is based on two largest not censored observations).
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Fig.4. Kaplan-Meier and S2 estimators for data (3)
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Estimator S2(t) for data (1), as well as original KME, are presented in Fig. 2.
For example, if t = 25 or t = 33 the original KME gives us the predicted survival
equal to 0.448 in both cases, while our estimator gives us S2(25) = 0.484 and
s2(33) = 0.456, respectively. Similarly, for t = 17 and t = 20 KME is equal
to 0.627, S2(17) = 0.645, and S2(20) = 0.607. Between the two points KME is
constant while S2(t) strictly decreases.

3. SIMULATION

To assess teh accuracy of the new estimator we performed a great number of
computer simulations. It appeared that Mean Square Error and Mean Absolute
Deviation were significantly smaller. Also Pitman’s Measure of Closeness advocates
for our estimator. Detailed numerical results are given in a technical report (Rossa
and Zieliński11) which we can sent to an interested reader in a TeX-file form.

4. DISCUSSION

The proposed estimator S2(t) is based on a local fitting a Weibull survival
probability to two neighbouring step points of the modified KME. One could ex-
pect that a similar estimator Sk(t) based on k neighbours would perform better. It
evidently gives us a better smoothing but any interval on time axis which contains
k > 2 neighbouring points is of course larger than that for k = 2 which may result
in a poorer local approximation of an unknown survival curve from a nonparamet-
ric family by a Weibull one. Also some practical questions arise: instead of solving
(2) or (2′) one has to apply a technic of fitting two-parameter Weibull curve to
k > 2 points, for example a version of the least square method. All these advocate
for a very simple but still quite satisfactory estimator S2(t).
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