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Abstract

Standard kernel estimators do not converge to the true distribution uniformly. A con-
sequence is that no inequality like Dvoretzky-Kiefer-Wolfowitz one can be constructed,
and as a result it is impossible to answer the question how many observations are
needed to guarantee a prescribed level of accuracy of the estimator. A remedy is to
adapt the bandwidth to the sample at hand.
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1. GLIVENKO-CANTELLI THEOREM AND DVORETZKY-KIEFER-WOLFOWITZ INEQUA-
LITY. Let X1, Xs,..., X,, be a sample from an (unknown) distribution F' € F where

F is the class of all continuous distribution functions.

The version of the Glivenko-Cantelli theorem in the form to be exploited below states
that

(GeT)  (Ye)(vn)(3N)(Vn = N)(VF € F)  P{ Sup, |Fu(2) = Fx)] = e} <n

where

1 n
Fn(ZB> = E Z 1(—00,37] (XJ)
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The theorem is effective in the sense that for every ¢ > 0 and for every > 0 one
can effectively calculate N = N(e,n). That can be done by the following version of
Dvoretzky-Kiefer-Wolfowitz inequality (Massart 1990)

(%) P{sup |F,(z) — F(z)| > e} < 2e7 2.

z€R!
Due to the above, GCT together with (%) give us a genuinely statistical tool; if all
that a statistician knows is that an unknown distribution F' belongs to JF, he is able
to make a precise inference about F' (testing hypotheses or constructing confidence

intervals).



2. KERNEL ESTIMATORS. The standard kernel density estimator is of the form (e.g.
Wegman 2006)

~ I~ 1 /22— X;
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fal@) =22 5k (=
with appropriate h,,,n = 1,2,.... We shall consider kernel distribution estimator in
~ 1 <& r— X.
=1 0(552)
0= (5

where K(z) = [ k(t)dt, and we shall show that (GCT) does not hold if F, is
replaced by ﬁn, i.e. that the following is true

its classical form

(F)(@)(VN)(En = N)EF € F) P Sup, |Fa(@) = Fz)| > e} > 1.

Obviously it is enough to demonstrate that

(1) (32)3En)(vn)(3F € F)  P{F,(0) > F(0) +¢} > n.

Concerning the kernel K, only the following assumptions are relevant: 1) 0< K (0) <1
and 2) K~1(t) < 0 for some ¢ € (0, K(0)). Concerning the sequence (h,,n =1,2,...)

we assume that h, >0,n=1,2,....

Take € € (0,¢) and n € (t —e€,1). Given €, n, and n, take F' such that F/(0) =t —¢
and F(— h, K~(t)) = P{X; < —h,K~1(t)} > n*/". Then

X.
P{K (—h—ﬂ) >t} > npt/n

n

and due to the fact that

ﬂ {K(—f—p > F(0) +¢} C {% ZK(—%) > F(0) + ¢}

n

we have



It follows that for classical kernel estimators no inequality like (*) can be obtained

which makes the estimators of a doubtful usefulness for statistical applications.

3. RANDOM BANDWIDTH. A remedy is as follows. Let Xi., < Xo., < ... < X, be
order statistics from the sample X1, X5, ..., X,,. Define

H, :min{Xj:n — Aj—1lin, J :2737"'7n}‘

Define the kernel estimator

=1

where for K we assume: )
0, fort< —5
1, for ¢ 2 5,

1
K(0) = =, K(t) continuous and nondecreasing in (—5, 5)

N —

~ 1
Now, for k = 1,2,...,n we have |F,(Xg.n) — Fn(Xikan)| < o Kernel estimator
n
F,(z) is continuous and increasing, empirical distribution function F,(x) is a step
~ 1
function, and in consequence |F,(x) — F,(x)| < 5 for all x € (—o0,00). By the
n

triangle inequality

Fale) ~ F(@)] < 1Fu(@) = F@)l + 5

we obtain
=~ 1
P{sup |F,(x) — F(z)| > e} < P{sup |F,(x) — F(z)|+ — > ¢}
zeR!? reR? 2n
and hence, by (*) we have
1

(xx) P{ sup |ﬁn(a:) —F(x)| > ¢} < 26_2”(5_1/2")2, n> —
z€R! 2e

which enables us to calculate N = N(g,n) that guarantees the prescribed accuracy

of the kernel estimator F,(z).



A COMMENT. Observe that the smallest N = N(g,n) that guarantees the prescribed
accuracy is somewhat greater for kernel estimator F,, than that for crude empiri-
cal step function Fj,. For example, N(0.1,0.1) = 150 for F,, and = 160 for ﬁn;
N(0.01,0.01) = 26,492 for F,, and = 26,592 for ﬁn. Another disadvantage of kernel
smoothing has been discovered by Hjort and Walker (2001): ” kernel density estima-
tor with optimal bandwidth lies outside any confidence interval, around the empirical
distribution function, with probability tending to 1 as the sample size increases”.
Perhaps a reason is that smoothing adds to observations something which is rather

arbitrarily chosen and which may spoil the inference.

A GENERALIZATION. Inequality (**) holds for every smoothed nondecreasing distri-
N - 1
bution function F,,(x) that satisfies |F,,(Xk.n) — Fn(Xgm)| < 2 E=1,2,...,n.
n
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