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Abstract
Standard kernel estimators do not converge to the true distribution uniformly. A con-
sequence is that no inequality like Dvoretzky-Kiefer-Wolfowitz one can be constructed,
and as a result it is impossible to answer the question how many observations are
needed to guarantee a prescribed level of accuracy of the estimator. A remedy is to
adapt the bandwidth to the sample at hand.
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1. Glivenko-Cantelli theorem and Dvoretzky-Kiefer-Wolfowitz inequa-

lity. Let X1, X2, . . . , Xn be a sample from an (unknown) distribution F ∈ F where
F is the class of all continuous distribution functions.

The version of the Glivenko-Cantelli theorem in the form to be exploited below states

that

(GCT ) (∀ε)(∀η)(∃N)(∀n ≥ N)(∀F ∈ F) P{ sup
x∈R1

|Fn(x)− F (x)| ≥ ε} ≤ η

where

Fn(x) =
1
n

n
∑

j=1

1(−∞,x](Xj).

The theorem is effective in the sense that for every ε > 0 and for every η > 0 one

can effectively calculate N = N(ε, η). That can be done by the following version of

Dvoretzky-Kiefer-Wolfowitz inequality (Massart 1990)

(∗) P{ sup
x∈R1

|Fn(x)− F (x)| ≥ ε} ≤ 2e−2nε2
.

Due to the above, GCT together with (∗) give us a genuinely statistical tool; if all
that a statistician knows is that an unknown distribution F belongs to F , he is able
to make a precise inference about F (testing hypotheses or constructing confidence

intervals).
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2. Kernel estimators. The standard kernel density estimator is of the form (e.g.
Wegman 2006)

̂fn(x) =
1
n

n
∑

j=1

1
hn

k
(x−Xj

hn

)

with appropriate hn, n = 1, 2, . . .. We shall consider kernel distribution estimator in
its classical form

̂Fn(x) =
1
n

n
∑

j=1

K
(x−Xj

hn

)

where K(x) =
∫ x
−∞ k(t)dt, and we shall show that (GCT ) does not hold if Fn is

replaced by ̂Fn, i.e. that the following is true

(∃ε)(∃η)(∀N)(∃n ≥ N)(∃F ∈ F) P{ sup
x∈R1

| ̂Fn(x)− F (x)| ≥ ε} ≥ η.

Obviously it is enough to demonstrate that

(†) (∃ε)(∃η)(∀n)(∃F ∈ F) P{ ̂Fn(0) > F (0) + ε} ≥ η.

Concerning the kernel K, only the following assumptions are relevant: 1) 0<K(0)<1

and 2) K−1(t) < 0 for some t ∈ (0,K(0)). Concerning the sequence (hn, n = 1, 2, . . .)

we assume that hn > 0, n = 1, 2, . . ..

Take ε ∈ (0, t) and η ∈ (t − ε, 1). Given ε, η, and n, take F such that F (0) = t − ε

and F
(

− hnK−1(t)
)

= P{Xj < −hnK−1(t)} > η1/n. Then

P{K
(

−Xj

hn

)

> t} > η1/n

and due to the fact that

n
⋂

j=1

{

K(−Xj

hn
) > F (0) + ε

}

⊂
{ 1

n

n
∑

j=1

K(−Xj

hn
) > F (0) + ε

}

we have

P
{ 1

n

n
∑

j=1

K
(

−Xj

hn

)

> t
}

= P
{ 1

n

n
∑

j=1

K
(

−Xj

hn

)

> F (0) + ε
}

> η;

hence (†).
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It follows that for classical kernel estimators no inequality like (*) can be obtained

which makes the estimators of a doubtful usefulness for statistical applications.

3. Random bandwidth. A remedy is as follows. Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be
order statistics from the sample X1, X2, . . . , Xn. Define

Hn = min{Xj:n −Xj−1:n, j = 2, 3, . . . , n}.

Define the kernel estimator

˜Fn(x) =
1
n

n
∑

j=1

K
(x−Xj

Hn

)

where for K we assume:

K(t) =











0, for t ≤ −1
2
,

1, for t ≥ 1
2
,

K(0) =
1
2
, K(t) continuous and nondecreasing in (−1

2
,
1
2
).

Now, for k = 1, 2, . . . , n we have | ˜Fn(Xk:n) − Fn(Xk:n)| ≤ 1
2n

. Kernel estimator

˜Fn(x) is continuous and increasing, empirical distribution function Fn(x) is a step

function, and in consequence | ˜Fn(x) − Fn(x)| ≤ 1
2n

for all x ∈ (−∞,∞). By the

triangle inequality

| ˜Fn(x)− F (x)| ≤ |Fn(x)− F (x)|+ 1
2n

we obtain

P{ sup
x∈R1

| ˜Fn(x)− F (x)| ≥ ε} ≤ P{ sup
x∈R1

|Fn(x)− F (x)|+ 1
2n

≥ ε}

and hence, by (*) we have

(∗∗) P{ sup
x∈R1

| ˜Fn(x)− F (x)| ≥ ε} ≤ 2e−2n(ε−1/2n)2 , n >
1
2ε

which enables us to calculate N = N(ε, η) that guarantees the prescribed accuracy
of the kernel estimator ˜Fn(x).
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A comment. Observe that the smallest N = N(ε, η) that guarantees the prescribed

accuracy is somewhat greater for kernel estimator ˜Fn than that for crude empiri-
cal step function Fn. For example, N(0.1, 0.1) = 150 for Fn and = 160 for ˜Fn;
N(0.01, 0.01) = 26, 492 for Fn and = 26, 592 for ˜Fn. Another disadvantage of kernel
smoothing has been discovered by Hjort and Walker (2001): ”kernel density estima-

tor with optimal bandwidth lies outside any confidence interval, around the empirical
distribution function, with probability tending to 1 as the sample size increases”.

Perhaps a reason is that smoothing adds to observations something which is rather

arbitrarily chosen and which may spoil the inference.

A generalization. Inequality (∗∗) holds for every smoothed nondecreasing distri-

bution function ˜Fn(x) that satisfies | ˜Fn(Xk:n)− Fn(Xk:n)| ≤ 1
2n

, k = 1, 2, . . . , n.
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