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Abstract
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problem is formulated and proven for a subclass of polyconvex energy integrals
and counterexamples in general case are given. A conjecture about the general-
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1 Introduction

The purpose of this paper is to extend the Grötzsch Problem in the plane to higher
dimensions (see below or cf. [2] for formulation of the problem). This elaboration
is obtained for a wide class of polyconvex energy integrals under certain conditions
imposed on them. The motivation for our work comes from recent developments in the
theory of mappings with integrable distortion [3] - a promissing, dynamically growing
branch of the calculus of variations.

The paper is organized as follows. In Section 2 we briefly recall the classical planar
Grötzsch Problem of finding the nearly conformal map between two rectangles. This
classical framework employs supremum norm of the distortion function.

Section 3 features new distortion functions in Rn.
The Section 4 is an epitomized survey of some of the recent developments in the

theory of extremal problems for mappings with integrable distortion. A definition
of Grötzsch Property is given. Roughly speaking an energy integral has Grötzsch
Property if its minimum among admissible mappings is attained at the linear one.
This property is very much reminiscent to that of quasiconvexity, introduced by C.B.
Morrey in 1952, [8].

Section 5 deals with the notion of polyconvex functions; some basic properties
are listed.

The purpose of Section 6 is to formulate and prove the main result of the pa-
per - Theorem 3 in Section 6.2. This is arranged in the chain of auxiliary theorems,
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corollaries and technical details. It is shown that a large class of polyconvex func-
tionals possesses the Grötzsch Property. However, we give several counterexamples
to analogous theorem in more general setting.

Section 7 is devoted to formulation and explanation of some open problems. We
raise a conjecture about the most general form of the distortion functions. Also we
address a question concerning relations between functionals having Grötzsch Property,
quasiconvexity and rank-one convexity.

Acknowledgements: The author wishes to thank his advisor Professor Tadeusz
Iwaniec for helpful discussions, remarkable comments and precious advices.

2 Grötzsch Problem in the Plane

The introductory section is based on Ahlfors book [2], so the interested reader should
consult this excellent source for more details and exposition of the subject.

The following problem often appears in the course of Complex Analysis.

Consider two rectangles R and R′ in the plane. When does there exist a confor-
mal mapping of R onto R′ which takes vertices to vertices?

The necessary and sufficient condition turns out to be that the rectangles are similar.
Moreover, the similarity map is the only such conformal equivalence between R and
R′, modulo orthogonal automorphisms of the rectangles.
In 1928 H. Grötzsch [4] asked for more general homeomorphism (not necessarily con-
formal) between two given rectangles which is nearly conformal. This led him to the
notion of quasiconformality; this name was coined by Ahlfors in 1935 [1]. It is also
worth mentioning the pioneering work of Teichmüler, 1937 [9], where this subject was
ingeniously explored. In order to be more precise we have to specify what it means
for a mapping to be nearly conformal. This is done via the concept of the distortion
function.

Definition 1 Let f be a sense preserving homeomorphism between two regions in
R2 having partial derivatives defined almost everywhere. The following expression is
called the distortion function of f :

Df =
|fz|+ |fz|
|fz| − |fz| > 1

Under suitable regularity assumptions the mapping is conformal if and only if Df ≡ 1
for almost all points in the domain of the mapping f .

In the classical setting the mapping f is considered nearly conformal if it minimizes
the supremum norm of Dh, subject to all sense preserving mappings h between given
two regions. Recall that in case of Grötzsch Problem the minimizer turns out to be
an affine map (Theorem 1, pg. 8 [2]).

3 Distortion Functions and Extremal Mappings

In higher dimensions we may measure the deviation from conformality in many dif-
ferent ways. To this effect we introduce various distortion functions.
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Definition 2 Consider a matrix A ∈ Rn×n with positive determinant. Denote by

Al×l, l = 1, 2, . . . , n

the
(
n
l

)×(
n
l

)− matrix whose entries are l × l subdeterminants of A. The following
expressions will serve as building blocks of distortion functions defined on matrices
(with positive determinant).

Kl(A) =
‖Al×l‖ n

n−l

(det A)
l

n−l

, l = 1, . . . , n− 1

Remark 1 In what follows we will apply these formulas to the Jacobian matrix
of an orientation preserving mapping f . Accordingly, we denote them by

Klf = Kl(x, f) = Kl(Df(x)) =
‖Dl×lf(x)‖ n

n−l

J(x, f)
l

n−l

, l = 1, . . . , n− 1

This formula is well defined at the points where the differential Df(x) exists and has
positive determinant.

Let us point out that the distortion functions are here understood in a little bit
more general fashion than usually; that is the symbol ||·|| can be any norm in R(n

l)×(n
l)

space. However, in what follows we will only consider Hilbert-Schmidt norm of ma-
trices (for the definition and motivation of such norm see [3], Theorems 6.2, 6.6)∗.

Remark 2 For further properties of distortion functions we refer to [5], Sec-
tion 6.4. Recently ([3], [6], [7]) there has been an increasing interest and substantial
progress made in the theory of extremal quasiconformal mappings. In this new de-
velopment the proximity to conformal mappings is measured by means of integral
averages rather than of supremum norm.

4 A brief survey of recent results

Following the notation from [3] we consider the minimization problem

min
f∈F

∫

Q
− Kl(x, f) dx, (4.1)

where F consists of homeomorphisms f : Q→ Q′ of Sobolev class W1,p
loc(Q,Q′), p > l,

with integrable distortion and positive Jacobian determinant. Here Q and Q′ are
rectangular boxes,

Q = [0, a1]× . . .× [0, an] ⊂ Rn, Q′ = [0, a′1]× . . .× [0, a′n] ⊂ Rn

∗Let A ∈ Rn×n be a matrix. Here the Hilbert-Schmidt norm of A is defined as follows

‖A‖2 =
1

n
tr(AT A)

Usually the Hilbert-Schmidt norm is defined without factor 1
n

, but we introduce it to get simpler
formulas and to normalize Hilbert-Schmidt norm of identity matrix.
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We will also assume - in analogy to the original Grötzsch Problem - that f maps
(n − 1)-dimensional faces of Q into corresponding faces of Q′. This implies that f
also maps every l-dimensional face, l = 0, 1, . . . , n − 1 of Q into the corresponding
l-dimensional face of Q′.
The simplest example of a mapping in F is the linear transformation

g(x) = (λ1x1, . . . , λnxn) with λk =
a′k
ak

The following result has been recently proven [3].

Theorem 1 For each l = 1, 2, . . . , n − 1 the minimization problem (4.1) has exactly
one solution, namely the linear map g.

Remark 3 From now on we are going to consider more general energy integrals,
so the definition of the class of admissible mappings has to be modified accordingly.
First of all the mappings in F have to possess sufficient degree of integrability of
derivatives in order to speak of their energy.

We shall take on stage rather general energy integrals, of the form

E (f) =
∫

Q
− E(Df(x)) dx subject to mappings f ∈ F

Here E : Rn×n → [0,∞) is a given stored energy integrand whose regularity will be
specified latter on.

Definition 3 We say that energy integral E has a Grötzsch Property if its min-
imum value is assumed on the linear transformation

g(x) = (λ1x1, . . . , λnxn) with λk =
a′k
ak

, for x ∈ Q.

5 Polyconvex, Quasiconvex and Rank-one convex
Functions

One of the main goals of this paper is to investigate the Grötzsch Problem for a wide
class of energy integrals - a subclass of the so called polyconvex energy integrals.
For a matrix A ∈ Rn×n we denote by A] the list of all l× l minors of A with l =
1, 2, . . . , n. The order in this list is immaterial for the subsequent discussion as long
as it is fixed once for all. We shall view this list as a point in Rσ(n), where

σ(n) =
n∑

i=1

(
n

i

)2

=
(

2n

n

)
− 1 (5.1)

A matrix function Ψ = Ψ(A) is polyconvex if it can be expressed as a convex function
of the minors of A; that is

Ψ(A) = M(A]), for some convex M : Rσ(n) → R

More precisely,
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Definition 4 A function Ψ : U ⊂ Rn×n → R is said to be polyconvex if there is a
measurable map M′ : U → Rσ(n) (subgradient of M), such that

Ψ(A)−Ψ(B) > 〈M′(B), A] −B] 〉, for all A,B ∈ U

The notation 〈 , 〉 stands for the usual inner product in Rσ(n).

Polyconvex functions are special cases of the null-Lagrangians, one of the fundamental
notions in the calculus of variations.

Definition 5 A function Φ : Rn×n → R is said to be a null-Lagrangian if it is a
linear function of minors, meaning that

Φ(X) = 〈C, X] 〉

for all X ∈ Rn×n and some C ∈ Rσ(n).

Among significant features of the polyconvex functions are that all distortion func-
tions Kl, with l = 1, 2, . . . , n − 1 are polyconvex on the set of matrices with positive
determinant (see [5], 8.8); also convex functions on Rn×n (or any convex subset of
Rn) are polyconvex, since the entries of Rn×n are none other than the 1× 1-minors.
In Section 7 we will raise the question of relations between energy functionals with
Grötzsch Property and quasiconvex and rank-one convex functionals therefore we
recall these concepts now.

Definition 6 Let U ⊂ Rn be open. A function E : U ⊂ Rn×n → R is said to be
quasiconvex if for every matrix A ∈ U ⊂ Rn×n and for every Φ ∈ C1

0 (Rn,Rn), with
sufficiently small derivatives, we have

∫

Rn

E(A + DΦ)− E(A) > 0

A necessary condition for function to be quasiconvex is so called rank-one convex-
ity.

Definition 7 A function E : U ⊂ Rn×n → R is said to be rank-one convex if for
every matrix A ∈ U and every a, b ∈ Rn function

t → E(A + t a⊗ b), is convex as a function of t ∈ R

6 Results

We are now ready to formulate numerous generalizations of Theorem 1 in Section 4.
We will do it gradually expanding the class of energy integrals with Grötzsch Property
(Definition 3).

First, we state an auxiliary observation. According to Remark 3 if we add to
the definition of class F the assumption that p > n then the following is true for
mappings f ∈ F :

(∗)
∫

Q
− J(x, f) dx =

∫

Q
− J(x, g) dx
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for any mapping f ∈ F and g an affine map (in fact it holds for any two mappings
from F ). This is immediate consequence of the definition of F .
Remark 4 From now on we will use exchangeably the following notations for the
Jacobian determinant: Jf = J(x, f)

Lemma 1 The following inequality holds for mappings f and g as above and l =
1, . . . , n− 1

∫

Q
−K2− 2l

n

l (x, f)J
2l
n (x, f) dx >

∫

Q
−K2− 2l

n

l (x, g)J
2l
n (x, g) dx

Equality occurs if and only if f ≡ g.

Proof:
Let us recall that

K2− 2l
n

l (x, f)J
2l
n (x, f) = ‖Dl×lf(x)‖2

By Theorem 7.5 in [3] we have the so-called L1−estimate

‖Dl×lg‖ =
∫

Q
−‖Dl×lg(x)‖ dx =

[(
n

l

)−1 ∑

16i1<...<il6n

(λi1 · · ·λil
)2

] 1
2

6
∫

Q
−‖Dl×lf(x)‖ dx

Since ‖Dl×lg(x)‖ is actually independent of x, with the aid of Hölder’s inequality, we
easily deduce the Lp−estimate as well, for p > 1.

∫

Q
−‖Dl×lg‖p =

( ∫

Q
−‖Dl×lg‖

)p

=

[
1(
n
l

)
∑

16i1<...<il6n

(λi1 · · ·λil
)2

] p
2

6
( ∫

Q
−‖Dl×lf(x)‖ dx

)p

6
∫

Q
−‖Dl×lf(x)‖p dx

Taking p = 2 gives the lemma.
The uniqueness part of Lemma 1 follows in much the same way as in Theorem

7.6, [3] and, therefore, is omitted.

Q.E.D.

We are now in a position to formulate and prove:

Theorem 2 Let Ψ : [1,∞) → [1,∞) be a strictly increasing convex function. Then
the statement of Theorem 1 holds for the energy integrals of the form

E(Df(x)) = Ψ(Kl(x, f)), l = 1, . . . , n− 1

for f ∈ F .
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Remark 5 In this paper the term convex function will always mean convex and
differentiable function.

Proof:
Fix l. Theorem 7.6 [3] provides us with an explicit formula for Kl(x, g); namely, Kl

is a constant function given by

Kl(x, g) = (λ1 · · ·λn)
l

n−l

[(
n

l

)−1 ∑

16i1<...<il6n

(λi1 · · ·λil
)2

] n
2n−2l

,

where λi are the stretching factors as in the definition of the linear mapping g (Section
4).
We emphasise once again that l-th distortion of g does not depend on a point in the
domain Q. This observation allows us to write

Ψ
(
Kl(x, g)

)
=

∫

Q
− Ψ

(
Kl(x, g)

)
dx

Hence

Ψ
( ∫

Q
− Kl(x, g) dx

)
=

∫

Q
− Ψ

(
Kl(x, g)

)
dx

Therefore, for each f ∈ F , we obtain:
∫

Q
− Ψ

(
Kl(x, f)

)
dx > Ψ

( ∫

Q
− Kl(x, f) dx

)

> Ψ
( ∫

Q
− Kl(x, g) dx

)
=

∫

Q
− Ψ

(
Kl(x, g)

)
dx

It is at this stage that we have appealed to increasing property of Ψ(x). Theorem 1
and the familiar Jensen’s inequality for convex functions have been used here as well.
Obviously, this computation works on the assumption of integrability of Kl(x, f) in
the definition of class F .

As Ψ is increasing last inequality becomes an equality when
∫

Q
− Kl(x, f) dx =

∫

Q
− Kl(x, g) dx

that in turn implies that f = g (Theorem 7.6 [3]).

Q.E.D.

Let us emphasize that the uniqueness statements below follow by the same type
of reasoning as we just presented.
As an immediate corollary we obtain the following result.

Corollary 1 The statement of Theorem 2 holds for

E(Df) = Ψ(K1f) + Ψ(K2f) + . . . + Ψ(Kn−1f) + Ψ(Jf )

for function Ψ as above and all f ∈ F .
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Proof:
We apply linearity of the integral and Theorem 2 to each term of the sum.

A comment on the regularity of f is needed. In the formulation of the minimization
problem for Kl - see formula (4.1) in Section 4 - we assume that p > l (Remark 3).
In Corollary 1 we use all distortion functions Kl, l = 1, 2, . . . , n− 1, hence we require
p > n− 1.

In addition we need integrability of the Jacobian determinant. This validates the
assumption, that f ∈ W 1,p

loc (Q,Q′), for all p > n.

In the same fashion we may prove the following.

Corollary 2 The statement of Theorem 2 holds for

E(Df) = Ψ1(K1f) + Ψ2(K2f) + . . . + Ψn−1(Kn−1f) + Ψn(Jf ),

where each Ψi, i = 1, 2, . . . , n satisfies the assumptions of Theorem 2.

Another corollary is a consequence of the several variable variant of Jensen’s inequality

Corollary 3 The statement of Theorem 2 holds for

E(Df) = Ψ
(
K1f , K2f , . . . , Kn−1f , Jf

)

Here the function Ψ is strictly convex and increasing with respect to each of the first
n− 1 variables; that is, with other variables fixed. The regularity assumption on f is
the same as in Corollaries 1 and 2.

Proof:
We will sketch only the proof of uniqueness, the rest is straightforward from the
variant of Jensen’s inequality and previous discussion. The details are the same as in
the proof of Theorem 2, and therefore, are omitted.
Analytic formulation of convexity of Ψ reads as

Ψ(F )−Ψ(G) > 〈∇Ψ(G), F −G 〉, where F, G are vectors in Rn

For G and F , we put respectively:

G = (K1g, . . . , Kn−1g, Jg), F = (K1f, . . . , Kn−1f , Jf )

Passing to the integral averages we have
∫

Q
−Ψ(F )−

∫

Q
−Ψ(G) > ∂Ψ

∂x1
(G)

∫

Q
− (F1 −G1) + . . . +

∂Ψ
∂xn

(G)
∫

Q
− (Fn −Gn) > 0

The reader may wish to observe that all terms on the right hand side are nonnegative,
by Theorem 1 and monotonicity of Ψ with respect to each variable.
Now assume that the integral averages on the left hand side are equal, to obtain

∫

Q
−Kif =

∫

Q
−Kig i = 1, . . . , n− 1
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Also note that the last term vanishes because of (*). Uniqueness in Theorem 1 com-
pletes the proof.

Q.E.D.

This corollary suggests that we should look for a similar result when E is convex
in minors. We are going to prove that under certain conditions on Ψ the Grötzsch
Property is true for a subclass of polyconvex functionals.
Our first goal is to find algebraic relations between two vectors:

(
K1f,K2f, . . . ,Kn−1f, Jf

)
∈ Rn and

(
Df,D2×2f, . . . , Dn×nf

)
∈ Rσ(n)

Let us recall that Dl×lf(x) stands for an ordered set of l × l minors of the Jacobian
matrix and, in particular Dn×nf = detDf = Jf .

The dimension of Rσ(n) can be explicitly computed - see formula (5.1).
Definition of Kl implies that

(
J

2
n

f K
2− 2

n
1 f, . . . , J

2l
n

f K2− 2l
n

l f, . . . , J2
f

)
=

(
‖Df‖2, . . . , ‖Dl×lf‖2, . . . , J2

f

)

The right hand side consists of the squares of Hilbert-Schmidt norms of matrices
of minors. Each ‖Dl×lf‖2, l = 1, . . . , n is the arithmetic average of the squares of
corresponding minors. We are going to relate this vector with D]f , the list of all
minors.

6.1 The relation

Let us introduce the squaring operation (·)2 : Rσ(n) → Rσ(n) defined for vectors
v = (v1, . . . , vσ(n)), by the rule (v)2 ==

df
(v2

1 , . . . , v2
σ(n))

Thus for D]f(x) our formula reads as:

[D]f(x)]2 =
(
[D]f(x)]21, . . . , [D

]f(x)]2σ(n)

)

Next we compose the squaring operation with a linear map Φ : Rσ(n) → Rn, whose
matrix representation is built of 0 and 1 in the following way:

(n
1)

2

︷ ︸︸ ︷ (n
2)

2

︷ ︸︸ ︷
. . . . . . .

(n
i)

2

︷ ︸︸ ︷
. . . . . . .

(n
n)

2

︷︸︸︷

M(Φ) =




1 . . . 1
1 . . . . . . 1 0

. . .
1 . . 1

0
. . .

1
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The composition gives us a mapping Φ◦ (·)2, which takes D]f into a vector of squares
of Hilbert-Schmidt norms of the lth−cofactor matrices Dl×lf , with l = 1, 2, . . . , n

(
‖Df‖2, ‖D2×2f‖2, . . . , ‖Dn×nf‖2

)

6.2 The Main Theorem

Theorem 3 Let an energy functional be defined on the set of mappings f ∈ F by the
rule

E (f) =
∫

Q
− E(Df(x)) dx

As for the integrand we assume that there exists strictly convex and increasing (with
respect to first n− 1 variables) function

Ẽ : Rn → R,

such that

E(A) = Ẽ

(
Φ(A])2

)

Then E assumes its minimal value exactly on the linear mapping g.

Remark 6 Notice that the integrand

E = Ẽ ◦ Φ ◦ (·)2 : Rn×n → R

is a convex function of minors of matrix Df , hence polyconvex. To see this let us ob-
serve that each coordinate function of (·)2 is convex. Obviously the composition with
linear mapping Φ does not change convexity. These facts together with monotonicity
of Ẽ in each variable ( when all other variables are held fixed) imply, after lengthy
though elementary computation, that E is polyconvex. We are now in a position to
complete the arguments for Theorem 3.
Proof of Theorem 3:

∫

Q
−E(Df(x)) dx =

∫

Q
− Ẽ

(
Φ(D]f)2

)

> Ẽ

( ∫

Q
−

[
Φ(D]f)2

]

1

, . . . ,

∫

Q
−

[
Φ(D]f)2

]

n−1

,

∫

Q
−

[
Φ(D]f)2

]

n

)

= Ẽ

( ∫

Q
− J

2
n

f K
2− 2

n
1 f, . . . ,

∫

Q
− J

2− 2
n

f K
2
n
n−1f,

∫

Q
− J2

f

)

> Ẽ

( ∫

Q
− J

2
n
g K

2− 2
n

1 g, . . . ,

∫

Q
− J

2− 2
n

g K
2
n
n−1g,

∫

Q
− J2

g

)

Here we use Lemma 1 and the comment before Remark 4.

= Ẽ

(
J

2
n
g K

2− 2
n

1 g, . . . , J
2− 2

n
g K

2
n
n−1g, J2

g

)
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=
∫

Q
− Ẽ

(
J

2
n
g K

2− 2
n

1 g, . . . , J
2− 2

n
g K

2
n
n−1g, J2

g

)

=
∫

Q
− Ẽ

(
Φ(D]g)2

)
=

∫

Q
−E(Dg)

All inequalities become equalities for f = g. This is due to the fact that all differential
expressions above which contain g are constant.

The similar analysis as in Corollary 3 along with Lemma 1 results in the uniqueness
statement.

Q.E.D.

Remark 7 It is well known that convexity implies polyconvexity. Let us provide
the reader with an example of a polyconvex function which is not convex and still
satisfies the hypothesis and assertion of Theorem 3. This emphasizes the novelty of
our result.

Consider n > 2, thus σ(n) =
(
2n
n

)− 1. The integrand in question takes the form

E(Df) = [D]f ]21 + . . . + [D]f ]2σ(n) = [D]f ]21 + . . . + [D]f ]2σ(n)−1 + J2
f

This function, being convex in the minors, is polyconvex. However, E is not convex,
largely because determinant is not a convex function of the matrix. Nonetheless,
taking

Ẽ(x1, . . . , xn) = x1 + . . . + xn

we find that Theorem 3 remains valid.

6.2.1 Examples of Energies with Grötzsch Property

In this section we discuss some examples of classical energy functionals which also
share the Grötzsch Property.

(1) An interesting energy functional arises from considering expressions of type

f(A) = |A|p + h(det A), p > 2, h convex

As f(A) is a sum of two convex function we immediately have from Theorem 3
that f is a function with Grötzsch Property.

(2) Let us take on stage the functional

f(A) = λ|A|p + |A|pK1(A)1−n, for p > n and for all A ∈ Rn×n,

where λ > 0.
It is worth mentioning that its two dimensional analog is the subject of intensive
studies in harmonic analysis, probability theory, geometric function theory and
calculus of variations.
Conspicously first term is a convex function. To see that the second one also
has this property we invoke Lemma 8.8.2 in [5]: a function xa

yb of variables
x, y ∈ (0,∞) is convex provided that a > b + 1 > 1. Apply this fact to

x = |A|, y = K1(A), a = p, b = n− 1

to obtain convexity completing the argument that f shares the Grötzsch Prop-
erty.
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6.2.2 Examples of Nonuniqueness

In this section we are going to address the following naturally arising question:

Does Theorem 3 hold for all polyconvex functions?

Unfortunately the answer is no. Below we give examples of energy functionals without
uniqueness property.
Remark 8 The uniqueness is the real essence of matter. To see it recall the defin-
ition of quasiconvexity (Definition 6, Section 5). It says that affine transformations
are minimizers of energy E among mappings with the same affine boundary values.
Whereas in our case we do not impose boundary values and therefore uniqueness
property is delicate and difficult to prove.

[1] We start with polyconvex function (in fact linear function of minors, hence the
null - Lagrangian) which does not enjoy the uniqueness property. We construct a non-
linear mapping which belongs to F and has the same energy as the affine mapping
g. Let

Q = [0, 1]× [0, 1]× [0, 1] and Q′ = [0, 1]× [0, 1]× [0, 2]

be rectangles in R3. Then g(x, y, z) = (x, y, 2z) is the unique affine map in the family
F . We then consider a polynomial map defined by

f(x, y, z) = (x2, y2, 2z).

It is easy to verify that f lies in F . To this end we see that f is a homeomorphism
and it maps Q onto Q′ in a way that the faces of Q are mapped into the corresponding
faces of Q′. Obviously f belongs to W1,p

loc(Q,Q′), for all p > 2.
As n = 3, σ(3) = 19. Take

E(Df) = [D]f ]1 + . . . + [D]f ]19

This is a sum of all minors of the Jacobian matrix. Indisputably, E(Df) is polyconvex
(inequality in Definition 4 is satisfied trivially - in fact becomes equality), actually a
null-Lagrangian.
A straightforward calculation shows that

∫

Q
E(Dg) = 11,

while, on the other hand
∫

Q
E(Df) =

∫

Q
(2 + 6x + 6y + 12xy) dx dy dz = 11,

so the uniqueness is lost (compare with Theorem 1).
Remark 9 This counterexample may be easily generalized to any dimension n > 3
by taking rectangles

Q = [0, 1]× . . .× [0, 1]︸ ︷︷ ︸
n

and Q′ = [0, 1]× . . .× [0, 1]︸ ︷︷ ︸
n−1

×[0, 2]
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and mappings

f(x1, . . . , xn) = ( x2
1, . . . , x

2
n−1, 2xn ) g(x1, . . . , xn) = ( x1, . . . , xn−1, 2xn )

Elementary calculation reveals that∫

Q
E(Df) =

∫

Q
E(Dg) = 3 · 2n−1 − 1

The same holds in case of

f(x1, . . . , xn) = ( xα1
1 , . . . , x

αn−1
n−1 , 2xn ), for αi > 1, i = 1, . . . , n− 1

[2] Next example shows that energy functional has to depend on all squares of 1× 1
minors, otherwise uniqueness is lost.
Consider Q = Q′ = [0, 1]× . . .× [0, 1] ⊂ Rn, and so g = Id.
Define mapping f(x1, . . . , xn) = ( x1, . . . , x

2
i , . . . , xn ) ∈ F

Let now

E(Df) =
n∑

k=1
k 6=i

(
∂fk

∂xk

)2

Then mappings f and g possess the same energy.
By permuting coordinates of f we may obtain examples of nonuniqueness for any i.
[3] Example below explains that dependence on squares is vital for uniqueness. For
the sake of simplicity we will restrict ourselves to three dimensional case.
Consider Q = [0, 1]× [0, 1]× [0, 1] and Q′ = [0, 1]× [0, 1]× [0, 2], and thus g(x, y, z) =
(x, y, 2z )
Define mapping

f(x, y, z) = ( x, yβ , 2zγ ),
for positive numbers β, γ to be found. Let energy integrand be defined via the following
formula:

E(Df) =
(

∂f1

∂x

)2

+
(

∂f2

∂y

)2

+
(

∂f3

∂z

)α

, 1 < α < 2,

for α close enough to 2 (see below). Then
∫

Q
− E(Dg) = 2 + 2α and

∫

Q
− E(Df) = 1 +

β2

2β − 1
+

2αγα

α(γ − 1) + 1

In order to show the loss of uniqueness we need to find β 6= 1, 1
2 , γ 6= 1 and α that

above integral mean values are equal each other, i.e.:

2 + 2α = 1 +
β2

2β − 1
+

2αγα

α(γ − 1) + 1

For γ = 2 last equation reduces to the following one:

h(α) ==
df

1 + 2α − 22α

α + 1
=

β2

2β − 1
(∗)

As 1 < α < 2, h(1) = 1, h(2) = − 1
3 . Using the Intermediate Value Theorem we solve

the equation (*) for 1 < α < 2.
For instance, to obtain h(α) = 1−√2

2 we take β = 1 − 1√
2
. Mapping f(x, y, z) =

(x, y
1− 1√

2 , 2z2 ) has the same energy as g.
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7 Open problems

To proceed further we will consider function Ψ similar to one we considered in Corol-
lary 3 but with one distinction; namely, not depending explicitly on the Jacobian
determinant of f :

E(Df(x)) = Ψ
(
K1(x, f),K2(x, f), . . . ,Kn−1(x, f)

)

Conspicuously this energy also satisfies the statement of Theorem 2.
We conveniently normalize Ψ as follows

Ψ(1, . . . , 1) = 1

Notice that E has the following properties:

(1) E(A) = 1, for any conformal matrix A; that is, a multiple of an orthogonal
matrix having positive determinant (see e.g. [5] for details concerning conformal
matrices). The same property is shared by the distortion functions defined in
Section 3.

(2) E(A) is 0-homogeneous, i.e. E(λA) = E(A), for any λ > 0
Moreover, E is invariant with respect to conformal change of variables; precisely
E(UAV ) = E, for conformal matrices U and V. This follows from the same
property for distortion functions and normalization we imposed on Ψ.

(3) E(A) is polyconvex, just like the basic distortion functions K1, . . . ,Kn−1.

These properties justify calling

K(f) = Ψ
(
K1f ,K2f , . . . ,Kn−1f

)

a generic distortion function. A natural question arises as to whether the condi-
tions (1)-(3) are enough for E to become a generic distortion function. We rephrase
this question as a conjecture.

Conjecture 1 Let function E : Rn×n → [1,∞] be strictly convex and satisfy the
conditions

(1) E(A) = 1 ⇔ A is a conformal matrix, i.e. A ∈ λO(n)

(2) E(λO · A) = E(A · λO) = E(A), for any λ > 0 and O ∈ O(n) (i.e. E is
conformal invariant in the domain and range of A).

(3) E is polyconvex

Does there exists a convex function Ψ which is non-decreasing with respect to each
variable such that

E(A) = Ψ
(
K1(A), K2(A), . . . , Kn−1(A)

)
?
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The affirmative answer to this conjecture would provide us with the large class
of the distortion functions and in this way we would gain deeper insight into the
Geometric Function Theory.

Another interesting question that appears concerns the relations between Grötzsch
Property and quasiconvexity and rank-one convexity:

Assume that a functional has a Grötzsch Property. Does it imply other convexity
properties?

We will state the problem in an abstract setting. Let F be a mapping family con-
sisted of homeomorphisms between rectangular boxes Q and Q′ in Rn. We assume
mappings in F possess suitable degree of integrability of derivatives in order to be
able to speak of their energy. Denote by A = {Df : f ∈ F} a family of Jacobian
matrices of F .
Let E : A ⊂ Rn×n → [1,∞) satisfy the conditions (1) and (2) of Conjecture 1, also
let E has a Grötzsch Property

Under what additional assumptions imposed on E is this energy integrand quasi-
convex (rank-one convex)?
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