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Quasiregular mappings with distortion K and solutions of the p-Laplace equation have both been recently extended to

the case where the parameter K or p is a function depending on the space variable. For the constant parameter case,

results by Bojarski–Iwaniec and Manfredi show that the gradient of a p-harmonic function in the plane is quasiregular

or constant. We generalize the result, showing that a planar p(·)-harmonic-type function, modeled on the strong

equation, is a mapping of finite distortion under appropriate assumptions.

1 Introduction

If u ∈ C2(Ω), Ω ⊂ C, satisfies the Laplace equation ∆ u = 0, then the complex gradient ∂zu = ux − i uy is an
analytic function. This is a standard result in undergraduate Complex Analysis courses. The corresponding
result for the p-Laplace equation was derived in the late 1980s: Bojarski and Iwaniec [9] (p > 2) and
Manfredi [47] (1 < p < ∞) showed that that if ∆p u := div(|∇u|p−2∇u) = 0 and u ∈ W 1,p

loc is non-constant,
then ∂zu = 1

2 (ux − iuy) is Kp-quasiregular, with

Kp =
1
2

(
p− 1 +

1
p− 1

)
.

In other words, the gradient of every planar p-harmonic function is Kp-quasiregular. Recall that a mapping
F ∈ W 1,1

loc (Ω; Rn) is K-quasiregular if

‖DF (x)‖n 6 K JF (x) a.e.,

where DF is the derivative and the Jacobian JF ∈ L1
loc(Ω).

In recent years both p-harmonic functions and K-quasiregular mappings have been extended to include
the case where the parameter p or K depends on the space variable, leading to p(·)-harmonic functions and
mappings of finite distortion K(x) (also called below K(·)-quasiregular); see e.g. [3, 17, 20, 27, 30, 35] and
[8, 25, 36, 39, 53] for some recent advances and [2, 7, 10, 40, 55] for applications. In this paper we study
whether the Bojarski–Iwaniec–Manfredi result can be extended to this setting (for more on relations between
PDE and quasiregular mappings see e.g. [4, 5, 6, 50]). We refer to Section 2 for definitions, notation and
references and plunge here straight into the results.

An obvious conjecture would be that the gradient of a p(·)-harmonic function is Kp(·)-finite distortion
with

Kp(x) =
1
2

(
p(x)− 1 +

1
p(x)− 1

)
.

Unfortunately, the relationship in the variable exponent case is not quite as simple as this; in fact, for
arbitrarily regular p, say p ∈ C∞(Ω), we show in Example 3.1 that the gradient of a p(·)-harmonic function
need not be of finite distortion at all. In the rest of Section 3 we obtain an understanding of this phenomenon
through more sophisticated examples.
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It turns out that the central question is how we generalize the p-Laplace equation to the variable exponent,
non-standard growth setting. For background on the topic, see the surveys [30, 51]. Thus far, two approaches
have been used with the starting point being either the minimization problem

inf
u

∫
Ω

|∇u|p dx, u ∈ u0 + W 1,p
0 (Ω),

where the minimum is taken over all Sobolev functions with the same trace u0, or the weak form of the
differential equation −div

(
|∇u|p−2∇u

)
= 0. In the variable exponent case these lead to non-equivalent,

although closely related, problems, namely, the minimization of∫
Ω

|∇u(x)|p(x) dx with Euler–Lagrange equation div(p(x)|∇u(x)|p(x)−2∇u) = 0,

or the minimization of∫
Ω

1
p(x) |∇u(x)|p(x) dx with Euler–Lagrange equation div(|∇u(x)|p(x)−2∇u) = 0.

We denote both equations by ∆p(·) u(x) = 0. In what follows it will be clear from the context which version we
use. Neither of these equations gives solutions with the desirable geometric properties that we are interested
in, such as being of finite distortion.

The correct starting point for this problem seems to be the strong form of the p-Laplace equation
div(|∇u|p−2∇u) = 0, i.e.

∆p u = |∇u|p−4

[
(p− 2)

∑
i,j

uxi,xj uxiuxj + |∇u|2 ∆ u

]
= 0,

where uxi denotes the partial derivative. If p is replaced by p(x), we arrive at yet another generalization of
the p-Laplace equation. We denote this operator by ∆̃p(·). In order to state our problem in a weak form, we
use the following expression of this operator:

∆̃p(·) u := div(|∇u|p(x)−2∇u)− |∇u|p(x)−2 log(|∇u|)∇u · ∇p.

defined for u ∈ W
1,p(·)
loc (Ω). The corresponding weak formulation then requires that

−
∫

Ω

|∇u|p(x)−2∇u · ∇ϕ dx =
∫

Ω

|∇u|p(x)−2 log(|∇u|)∇u · ∇p ϕ dx (?)

for all ϕ ∈ W
1,p(·)
0 (Ω). Obviously, this equation reduces to the ordinary p-Laplace equation when p is constant.

Another point worth mentioning is that we must require that ∇p exists in some suitable sense, e.g. that p is
Lipschitz continuous.

The following simple result suggests that there may be some interest in looking at this equation.

Proposition 1.1. Let p be Lipschitz with 1 < p− 6 p+ < ∞. Then

∆̃p(·)(λu) = λp(·)−1 ∆̃p(·) u

in the sense of distributions for u ∈ W 1,p(·)(Ω) and λ ∈ [0,∞). In particular, if u is a solution, then so is
λu.

Recall that the equation ∆p(·) u = 0 is never homogeneous for variable p, which leads to problems with
various proof techniques. A reflection of this phenomenon is that the constant C in the Harnack inequality

ess sup
x∈B

|u(x)| 6 C ess inf
x∈B

|u(x)|

cannot be chosen independent of the positive solution u of the ∆p(·)-equation [34]. The example used in [34]
to show that C depends on u does not work in our case, but it remains for future investigations to study
whether it is possible to derive a Harnack inequality with absolute constant for solutions of (?).

Since our starting point is the strong form of the p-Laplace equation, it is natural to use this as leverage
in order to prove existence and regularity results for solutions (see also Remark 1.6 on limitations in the
current theory of weak solutions in this context). This is the approach adopted in this article. Our main
result in the case 1 < p− 6 p+ < ∞ is the following generalization of the Bojarski–Iwaniec–Manfredi result:
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Theorem 1.2. Let Ω ⊂ R2 be a bounded C2 domain and let g ∈ C1,γ(∂Ω). Suppose that p is Lipschitz
continuous and that 1 < p− 6 p+ < ∞. Then there exists a weak solution u ∈ C1,γ(Ω) of{

∆̃p(·) u = 0 in Ω
u = g on ∂Ω

which satisfies the strong maximum principle

sup
D
|u| 6 sup

∂D
|u|

for every D ⊂ Ω. Moreover, the complex gradient 1
2 (ux − iuy) of u is Kp(·)-quasiregular with

Kp(x) =
1
2

(
p(x)− 1 +

1
p(x)− 1

)
.

This result gives us good control locally of the mapping properties of ∂zu; for instance, if p = 2 in some
open set, then ∂zu is conformal in this set. However, the condition 1 < p− 6 p+ < ∞ implies that Kp(·) ∈ L∞,
so in fact our mapping is properly quasiregular. In order to arrive at mappings of finite distortion, we must
allow Kp(·) to be unbounded, which happens if either p− = 1 or p+ = ∞. Interest in such situation has arisen
recently for the equation −∆p(·)u = 0, see [31, 32, 33, 44, 48, 49]. In this paper we pursue the lower limit,
p− = 1.

Theorem 1.3. Let Ω ⊂ R2 be a bounded C2 domain and let g ∈ C1,γ(∂Ω). Suppose that p ∈ C(Ω) such that

• the set Y := {p = 1} has vanishing Hausdorff 1-measure, and
• for every Ω′ ⊂⊂ Ω \ Y , p|Ω′ is Lipschitz continuous.

Then there exists a weak solution u of (?) satisfying the strong maximum principle. If Kp(·) ∈ expL(Ω), with
Kp(·) as before, then the complex gradient 1

2 (ux − iuy) of u is Kp(·)-quasiregular.

Remark 1.4. In order to deal with mappings of finite distortion, it is natural to assume that Kp(·) ∈ expL(Ω)
(or some similar condition, see [36, 37] and Section 2.1). If we now assume that p is Lipschitz, then we can
easily conclude that p− > 1. Therefore it is crucial that the assumption on p be relaxed from Theorem 1.2,
even if it leads to a less transparent condition. For instance the exponent

p(x) = 1 +
c

log(e + 1/|x|)

satisfies the conditions of the theorem when c ∈ (0, 1).
Remark 1.5. If Y ⊂⊂ Ω in the theorem, then the solution u has boundary values given by g. See the end of
Section 6 for a justification.
Remark 1.6. The right hand side of (?) involves a function of the gradient of the solution. The recent survey
[30] found that existence for such equations has hardly been studied at all, and regularity only to a quite
limited extent. (Mingione (private communication) pointed out that perturbation techniques [13] are likely
to work here.)

Such equations have been studied largely under the assumption that the differential expression on the
right hand side is in divergence form, e.g. −div(|F |q−2F ) (see [3, 51] and references therein). To place our
results in the wider context, we note that there is a plethora of literature on perturbed p-harmonic equations
(especially for the one dimensional case) and one of the most discussed cases is

−div(|∇u|p−2∇u) = f(x, u),

under variety of growth conditions imposed on f and different boundary data (see [12, 18, 22, 24] and
references therein).

The structure of the rest of this paper is as follows. In the next section we present background on
mappings of finite distortion and variable exponent spaces that are needed later on. In Section 3 we present
the three examples which were alluded to in the introduction. These examples show that solutions of the usual
variable exponent p(·)-Laplace equation are very far from being mappings of finite distortion. In Section 4,
we prove Theorem 1.2, which can be done in a rather straightforward way using tools from [29]. Section 5
contains a variety of lemmas, including a Caccioppoli estimate which is used in the proof of the second main
theorem, and a proof of Proposition 1.1. Finally, in Section 6 we prove the second main result, Theorem 1.3,
via a combination of a limiting argument, a refinement of the method from Section 4, and a result from [33].
Although our main results only apply to the planar case, some auxiliary results are given in the Euclidean
space Rn for the benefit of future investigations.
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2 Preliminaries

By Ω ⊂ Rn we denote a bounded open set. By c we denote a generic constant, whose value may change
between appearances even within a single line. By fA we denote the integral average of f over A. We identify
the complex place C with R2.

2.1 Mappings of finite distortion

A mapping F ∈ W 1,1
loc (Ω; Rn) on a domain Ω ⊂ Rn with Jacobian JF ∈ L1

loc(Ω) is said to be of finite distortion
K(x) if there exists measurable function K : Rn → R, finite almost everywhere and

‖DF (x)‖n 6 K(x) JF (x) for a.e. x ∈ Ω.

If K ∈ L∞(Ω), then the mapping is called quasiregular. Such mappings in the planar case have been studied
since the late 1920s (under various names), the higher dimensional version since the late 1950s. Mappings of
finite distortion (MFD) have been studied for about 10 years. We refer to the monograph [39] by Iwaniec and
Martin for more background on these mappings. Also the research webpage of the Mathematics Department
of Jyväskylä University is the excellent source for the past and current developments in the area.

In what follows we will be largely concerned with compactness properties of mappings of finite distortion.
For the sequence (Fk) of K-quasiregular mappings, its uniform limit on compact subsets is a K-quasiregular
by [54, Chapter 9] or [45, Chapter 5]. The situation becomes more complicated if distortion function can be
unbounded. In such a case the integrability properties of DF and JF play a fundamental role (see e.g. [37]
or [39, Chapter 8]). Let us briefly discuss the relevant results.

Let P : [0,∞] → R+ be an Orlicz function such that:

1.
∫∞
1

P (t) t−n−1 dt = ∞; and
2. the function t 7→ P (t

2n+1
2n2 ) is convex.

Let (Fk) be a sequence of mappings of finite distortion, bounded in the Orlicz–Sobolev spaces W 1,P (Ω, Rn)
with distortions bounded by M :

KFk
(x) 6 M(x) < ∞ a.e. Ω, k = 1, 2, . . .

Then [39, Theorem 8.10.2] implies, in particular, that one can extract the subsequence converging locally
uniformly to a mapping of finite distortion F ∈ W 1,P (Ω, Rn) with KF 6 M a.e. For P (t) = tn and M(x) =
const we regain the bounded distortion case.

In order to carry various results known for mappings of bounded distortion to the setting of MFD,
one often requires the distortions to be exponentially integrable, see e.g. [41, 50, 52]. This works also for
compactness properties. For a given bounded family F of MFD, assume that there exist λ > 0 and M > 0
such that ∫

Ω

eλ KF (x) dx 6 M, for all F ∈ F . (2.1)

Then [39, Theorem 8.14.1] implies, among other things, that F is equicontinuous on all compact subsets of
Ω and that F is the closed normal family of MFD.

2.2 Variable exponent function spaces

For background on variable exponent function spaces we refer to the surveys [16, 56] or the (upcoming)
monograph [15]. Most of the results in this subsection were proved in [42]. The variable exponent Lebesgue
space is a special case of an Orlicz-Musielak space. For a constant function p, it coincides with the standard
Lebesgue space. Often it is assumed that p is bounded, since this condition is known to imply many desirable
features for Lp(·)(Ω).

A measurable function p : Ω → [1,∞] is called a variable exponent, and we denote

p+
A := ess sup

x∈A
p(x), p−A := ess inf

x∈A
p(x), p+ := p+

Ω and p− := p−Ω

for A ⊂ Ω. We define a (semi)modular on the set of measurable functions by setting

%Lp(·)(Ω)(u) :=
∫

Ω

|u(x)|p(x) dx;
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here we use the convention t∞ = ∞χ(1,∞](t) in order to get a left-continuous modular, see [15, Chapter 2]
for details. The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable functions u : Ω → R for
which the modular %Lp(·)(Ω)(u/µ) is finite for some µ > 0. The Luxemburg norm on this space is defined as

‖u‖Lp(·)(Ω) := inf
{

µ > 0 : %Lp(·)(Ω)

(
u
µ

)
6 1

}
.

Equipped with this norm, Lp(·)(Ω) is a Banach space.
If E is a measurable set of finite measure, and p and q are variable exponents satisfying q 6 p, then

Lp(·)(E) embeds continuously into Lq(·)(E). In particular, every function u ∈ Lp(·)(Ω) also belongs to Lp−Ω (Ω).
The variable exponent Hölder inequality takes the form∫

Ω

fg dx 6 2 ‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω),

where p′ is the point-wise conjugate exponent, 1/p(x) + 1/p′(x) = 1.
The function α is said to be log-Hölder continuous if there is constant L > 0 such that

|α(x)− α(y)| 6 L

log(e + 1/|x− y|)

for all x, y ∈ Ω. We denote p ∈ P log(Ω) if 1/p is log-Hölder continuous. (Note that this definition is only
appropriate in the bounded domains we consider.)

The variable exponent Sobolev space W 1,p(·)(Ω) consists of functions u ∈ Lp(·)(Ω) whose distributional
gradient ∇u belongs to Lp(·)(Ω). The variable exponent Sobolev space W 1,p(·)(Ω) is a Banach space with the
norm

‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω).

In general, smooth functions are not dense in the variable exponent Sobolev space [57], but the log-Hölder
condition suffices to guarantee that they are [15, Section 8.1]. In this case, we define the Sobolev space with
zero boundary values, W

1,p(·)
0 (Ω), as the closure of C∞

0 (Ω).
The Sobolev conjugate exponent is also defined point-wise, p∗(x) := np(x)

n−p(x) for p+ < n. If p is log-Hölder
continuous, the Sobolev–Poincaré inequality

‖u− uΩ‖Lp∗(·)(Ω) 6 c ‖∇u‖Lp(·)(Ω)

holds when Ω is a nice domain, for instance convex or John [15, Section 7.2].

3 Examples

Our first example shows that the direct generalization of the Bojarski–Iwaniec–Manfredi result to the usual
variable exponent Laplacian ∆p(·) fails.

Example 3.1. Let Ω = [0, 1]2 and p(x, y) = p(x) depending on x only and bounded away from 1. In this
situation we easily check that

uc(x, y) =
∫ x

0

(
c

p(ξ)

) 1
p(ξ)−1

dξ

is a p(·)-harmonic function for every c > 0. For this function we have

∂zuc(x, y) =
(

c

p(x)

) 1
p(x)−1

.

Note that Im ∂zuc = 0. If p is constant, then the right hand side is a real constant, which is excluded from
consideration by assumption. When p is variable, however, ∂zu maps the square Ω onto a line segment in the
real axis, hence it has vanishing Jacobian, and is certainly not quasiregular or even of finite distortion.

For constant p, one excludes the trivial case of affine solutions in the Bojarski–Iwaniec–Manfredi result
by assuming that the complex gradient is non-constant. In the variable exponent case, the previous example
showed that the trivial case is not quite as trivial, but one might nevertheless hope to exclude this and have
the result apply to other cases. The next example shows that this approach will not be successful, as we
obtain non-trivial quasiregular mappings with distortion not controlled by a function of p.
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Example 3.2. Let Ω be an annulus centered at the origin and let p be spherically symmetric. Suppose that
u ∈ C2(Ω) and u(z) = ϕ(|z|) with ϕ′ > 0. Then

∆p(·) u(z) = |ϕ′|p(z)−2
[
(p(z)− 1)ϕ′′ + n−1

|z| ϕ′ + p′(z) ϕ′ log ϕ′
]
.

If ∆p(·) u = 0, then (p(z)− 1)ϕ′′ + n−1
|z| ϕ′ + p′(z) ϕ′ log ϕ′ = 0. Hence

(rϕ′′ − ϕ′)(p(z)− 1) = −(ϕ′ + rp′(z) ϕ′ log ϕ′)− (p(z)− 1)ϕ′ = [−rp′(z) log ϕ′ − p(z)]ϕ′

and
(rϕ′′ + ϕ′)(p(z)− 1) = [−rp′(z) log ϕ′ + p(z)− 2]ϕ′.

Let the dimension n = 2 and set F := ux − iuy (here z = x + iy). Then

2∂zF = uxx − uyy − 2iuxy and 2∂z̄F = uxx + uyy = ∆ u.

Denoting r =
√

x2 + y2, we find that 2∂z̄F = ϕ′′ + 1
r ϕ′ and

2∂zF = ϕ′′ x
2

r2 + ϕ′ r
2−x2

r3 − ϕ′′ y
2

r2 − ϕ′ r
2−y2

r3 − 2i
[
ϕ′′ xy

r2 − ϕ′ xy
r3

]
=

[
ϕ′′ − 1

r ϕ′
]

x2−y2−2ixy
r2 .

Note that the last factor on the right hand side is unimodular. Thus we obtain

|∂zF |+ |∂z̄F |
|∂zF | − |∂z̄F |

=
|rϕ′′ − ϕ′|+ |rϕ′′ + ϕ′|
|rϕ′′ − ϕ′| − |rϕ′′ + ϕ′|

=
|rp′(z) log ϕ′ + p(z)|+ |p(z)− 2− rp′(z) log ϕ′|
|rp′(z) log ϕ′ + p(z)| − |p(z)− 2− rp′(z) log ϕ′|

.

From this expression we can see that the value of Kp(·) depends not only on p(z), but also on the derivative
of p.

The previous example showed that Kp(·) for solutions of ∆p(·) u = 0 depends point-wise on ∇p in addition
to p. The next example shows that this is not the case for ∆̃p(·) u = 0.

Example 3.3. Let u be as in the previous example. Then

∆̃p(·) u(z) = |ϕ′|p(z)−2
[
(p(z)− 2)ϕ′′ + ϕ′′ + n−1

|z| ϕ′
]
.

Note that we do not need to assume that p is radial to obtain this formula. Thus ∆̃p(·)u = 0 is equivalent to
(p(z)− 1)ϕ′′ + 1

|z|ϕ
′ = 0 for every z ∈ Ω.

Let F be as before. If ∆̃p(·) u = 0, then ϕ′ = −(p(z)− 1)rϕ′′, and

|∂zF |+ |∂z̄F |
|∂zF | − |∂z̄F |

=
p(z) + |2− p(z)|
p(z)− |2− p(z)|

= max
{

p(z)− 1,
1

p(z)− 1

}
.

Thus we see that F is MFD. Moreover, the bound for Kp(·) from the main theorems is seen to be of the right
order as p → 1.

4 Proof of Theorem 1.2

Our strategy for existence and generalizing the Bojarski–Iwaniec–Manfredi result is based on approximation
by strong solutions. Of course, as in the constant exponent case, the solution of the p(·)-Laplace equation
will not in general be strong. Therefore, we look at the regularized versions of the problem:{

div Aε(x,∇u) = Bε(x,∇u) in Ω ⊂ Rn

u = g on ∂Ω
(4.1)

where the functions A : R× Rn → R and B : R× Rn → R are given by:

Aε(x, ξ) = (ε + |ξ|2)
p(x)−2

2 ξ

Bε(x, ξ) = (ε + |ξ|2)
p(x)−2

2 log
√

ε + |ξ|2 ξ · ∇p.
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The weak formulation, a non-degenerate version of (?), is

−
∫

Ω

(ε + |∇u|2)
p(x)−2

2 ∇u · ∇ϕ dx =
∫

Ω

(ε + |∇u|2)
p(x)−2

2 log
√

ε + |∇u|2∇p · ∇u ϕ dx (4.2)

for ϕ ∈ C∞
0 (Ω). If u ∈ C2, we can express this in a strong form as used in Chapter 10 of [29]:

Qu :=
∑
i,j

ai,j(x,∇u) uxi,xj + b(x,∇u) = 0, (4.3)

where
ai,j(x, ξ) = (ε + |ξ|2)

p(x)−4
2

[
(p(x)− 2)ξiξj + δij(ε + |ξ|2)

]
and (in our case) b = 0. The ellipticity bounds for the operator Q are

λ(x, ξ) := min{p(x)− 1, 1} (ε + |ξ|2)
p(x)−2

2 and Λ(x, ξ) := max{p(x)− 1, 1} (ε + |ξ|2)
p(x)−2

2 .

To deal with problem (4.3) we need some variable exponent regularity results. Mingione and collaborators (cf.
[11, 51]) have developed the regularity theory greatly, but their results are stated mostly for the variational
case, although apparently extending by standard means to equations as well. We use a result by Xianling
Fan, who, following [1], has extended some of these results to the non-variational cases in [20].

Theorem 4.4 (Theorem 1.2 in [20]). Let ∂Ω be of class C1,γ, g ∈ C1,γ(∂Ω) and suppose that p is Lipschitz
continuous on Ω. If u ∈ W 1,p(·)(Ω) ∩ L∞(Ω) is a solution of (4.1), then u ∈ C1,α(Ω), where α and |u|C1,α(Ω)

depend only on p−, p+, ‖∇p‖∞, n, ‖u‖∞, γ, |g|C1,α(∂Ω) and Ω.

In order to put this result to use, we need to establish the boundedness of our solutions, for which we
use a maximum principle:

Theorem 4.5 (Theorem 10.3 in [29]). Let u ∈ C2(Ω) ∩ C(Ω) be a solution of (4.3). Suppose that

|b(x, ξ)| |ξ|2 6 (µ1|ξ|+ µ2)
∑
i,j

ai,j(x, ξ)ξiξj

for all ξ = (ξ1, ξ2) ∈ R2 and x ∈ Ω. Then u satisfies the strong maximum-type principle

sup
Ω
|u| 6 sup

∂Ω
|u|+ C(µ1,diam Ω)µ2.

With these tools the proof of the first main theorem is quite straightforward.

Proof of Theorem 1.2. We first prove the existence part. For ε > 0 we consider the auxiliary Dirichlet
boundary problem given by (4.1). This problem is uniformly elliptic for every ε > 0 (since p− > 1). Because the
boundary data g and the boundary ∂Ω are regular, the equation has a strong solution by [29, Theorem 12.5].
We denote this solution by uε. Since b = 0 in (4.3) in our case, the condition in Theorem 4.5 is satisfied with
µ2 = 0; hence uε satisfies the strong maximum principle, and

sup
Ω
|uε| 6 sup

∂Ω
|uε| = sup

∂Ω
|g|.

Since uε is a bounded weak solution, Theorem 4.4 implies that uε ∈ C1,γ(Ω) with |uε|C1,γ(Ω) independent
of ε. In particular, there exists M > 0 such that |∇uε| < M for all ε. We easily see that

dε := sup
x∈Ω

sup
|ξ|<M

|Aε(x, ξ)−A(x, ξ)|+ |Bε(x, ξ)−B(x, ξ)| → 0

as ε → 0 since 1 < p− 6 p+ < ∞. Fix ϕ ∈ W
1,p(·)
0 (Ω). Then∣∣∣∣ ∫

Ω

−A(x,∇uε) · ∇ϕ−B(x,∇uε)ϕ dx

∣∣∣∣
6

∣∣∣∣ ∫
Ω

−Aε(x,∇uε) · ∇ϕ−Bε(x,∇uε)ϕ dx

∣∣∣∣ + dε ‖ϕ‖W 1,1(Ω).
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Since uε is a solution of (4.1), the first term on the right hand side equals zero. Taking into account that
dε → 0, we obtain that ∫

Ω

−A(x,∇uε) · ∇ϕ dx−
∫

Ω

B(x,∇uε)ϕ dx → 0.

Since |uε|C1,γ(Ω) is bounded, we can choose a subsequence and u ∈ W 1,p(·)(Ω) such that uε → u a.e. and
∇uε → ∇u a.e. in Ω. Then the uniform estimate of |uε|C1,γ implies that uε → u everywhere in Ω, so that
u|∂Ω = uε|∂Ω = g. Furthermore, since |∇uε| is uniformly bounded, it follows by dominated convergence that∫

Ω

−A(x,∇u) · ∇ϕ−B(x,∇u)ϕ dx = lim
ε→0

∫
Ω

−A(x,∇uε) · ∇ϕ−B(x,∇uε)ϕ dx = 0,

so u is a solution of (?) with boundary values g. This completes the proof of the existence part. Since each
uε satisfies the strong maximum principle, so does the point-wise limit.

We now prove that u is a mapping of finite distortion. We follow Manfredi’s proof in [47, Theorem 1].
For the sake of completeness we repeat some steps. Let Ω′ ⊂⊂ Ω have smooth boundary. Let uε be a solution
of the auxiliary problem as before and recall that

uε → u in W 1,p(·)(Ω′) as ε → 0.

Since uε ∈ C2(Ω′), we can use the strong form of (4.1), which in two dimensions reads

a uε
xx + 2b uε

xy + c uε
yy = 0,

where

a = (ε + |∇uε|2) + (p(x)− 2)(uε
x)2,

b = (p(x)− 2)uε
xuε

y,

c = (ε + |∇uε|2) + (p(x)− 2)(uε
y)2.

We define the complex gradient F ε := (uε
x,−uε

y). Note that a, b and c are exactly the same as in [47] when
p is replaced by p(x). Therefore the same point-wise computations around formula (5) in Theorem 1 of [47]
imply that

‖DF ε‖2

JF ε

6
1
2

(
p(x)− 1 +

1
p(x)− 1

)
= Kp(x).

and hence the distortion inequality holds for F ε. That F ε belong to W 1,1
loc (Ω′) and JF ε ∈ L1

loc(Ω
′) are immediate

consequences of the C2 regularity of uε and the definition of F ε. Therefore, the F ε are mappings of finite
distortion for all ε.

From the construction of u, we know F εi → F a.e. The uniform Hölder estimate for |uε|C1,γ(Ω) implies
the equicontinuity of the family (F εi). From the Arzela-Ascoli Theorem we infer existence of a subsequence
F εi which converges to F uniformly on compact subsets of Ω′, for εi → 0.

Since 1 < p− 6 p+ < ∞, we see that Kp(·) ∈ L∞. In particular, the distortion Kp(·) for F ε is exponentially
integrable. Theorem 8.14.1 in [39] implies that F as the limit of the uniformly convergent sequence F εi is the
mapping of finite distortion (see condition (2.1) and the discussion in Section 2.1). This completes the proof
of theorem.

5 Auxilliary results

In this section we collect some miscellaneous results. We start with the homogeneity result as an example of
how the operator ∆̃p(·) is better behaved than ∆p(·).

Proof of Proposition 1.1. Fix ϕ ∈ W 1,∞
0 (Ω) and define

Jϕ(u) :=
∫

Ω

|∇u|p(x)−2∇u · ∇ϕ + |∇u|p(x)−2 log |∇u|∇u · ∇p ϕ dx.
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Since p is Lipschitz we see that Jϕ : W 1,p(·)(Ω) → R is continuous; for the same reason, smooth functions are
dense [15, Section 8.1]. Thus we can choose functions ui ∈ W 1,p(·)(Ω) ∩ C∞(Ω) such that ui → u in W 1,p(·)(Ω).
Since ui is smooth, integration by parts yields

Jϕ(ui) =
∫

Ω

[
− div

(
|∇ui|p(x)−2∇ui

)
+ |∇ui|p(x)−2 log |∇ui|∇ui · ∇p

]
ϕ dx

=
∫

Ω

|∇ui|p(x)−3
[
|∇ui|∆ u + (p(x)− 2)∇(|∇ui|) · ∇ui

]
ϕ dx.

Therefore Jϕ(λui) = Jλp(·)−1ϕ(ui) for any λ > 0 and so it follows by the continuity of Jλp(·)−1ϕ that

Jϕ(λu) = lim
i→∞

Jϕ(λui) = lim
i→∞

Jλp(·)−1ϕ(ui) = Jλp(·)−1ϕ(u),

which is the weak formulation of the claim of the proposition. Since ϕ can be any test function, we conclude
that λu is also a weak solution if u is.

Next, we derive a Caccioppoli type inequality for (?). In the theory of elliptic PDE, establishing the
Caccioppoli inequality is one of the first steps in analyzing the equation. It is then used for example to
investigate higher integrability properties of solutions as well as to show Harnack type estimates.

Theorem 5.1 (Caccioppoli inequality). Let u be a solution of equation (?) and let the exponent p be Lipschitz
with 1 < p− 6 p+ < ∞. For δ ∈ (0, 1) there exists a constant C = C(p−, p+, ‖∇p‖∞, δ) such that∫

Ω

|∇u|p(x)ηp+
dx 6 C

∫
Ω

|u|p(x)|∇η|p(x) + |u|
p(x)
1−δ ηp+

dx

for all test functions η ∈ C∞
0 (Ω).

Proof . Let η ∈ C∞
0 (Ω) be a test function with 0 6 η 6 1 and define ϕ ∈ W

1,p(·)
0 (Ω) by

ϕ := uηp+
so that ∇ϕ = ηp+

∇u + p+ηp+−1 u∇η.

For such ϕ, equation (?) yields∫
Ω

|∇u|p(x)−2 ηp+
|∇u|2 dx = −

∫
Ω

|∇u|p(x)−2 log |∇u|∇u · ∇p u ηp+
dx

− p+

∫
Ω

|∇u|p(x)−2∇u · ∇η u ηp+−1 dx.

From this we obtain∫
Ω

|∇u|p(x) ηp+
dx 6 c

∫
Ω

|∇u|p(x)−1|u|
[∣∣ log |∇u|

∣∣ ηp+
+ |∇η| ηp+−1

]
dx. (5.2)

As usual, we want to apply Young inequalities, and absorb all terms with |∇u| into the left hand side. For
the second term on the right hand side we have

|∇u|p(x)−1 |∇η| |u| η(p+ − p+

p′(x) −1)+ p+

p′(x) 6 σ |∇u|p(x)ηp+
+ cσ ηp+−p(x)|u|p(x)|∇η|p(x),

where σ ∈ (0, 1). For the other term, we use that |∇u|p(x)−1
∣∣ log |∇u|

∣∣ 6 c |∇u|p(x)−1+δ for δ > 0 since p− > 1.
Thus Young’s inequality gives

|∇u|p(x)−1
∣∣ log |∇u|

∣∣ |u| 6 σ|∇u|p(x) + cσ |u|
p(x)
1−δ .

Next we apply these two Young-type inequalities in (5.2):∫
Ω

|∇u|p(x) ηp+
dx 6 c

∫
Ω

σ |∇u|p(x)ηp+
+ cσ

(
|u|p(x)|∇η|p(x) + |u|

p(x)
1−δ ηp+)

dx

With the choice σ := c/2 we can absorb the first term on the right hand side into the left hand side, which
gives the claim.
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Using the Caccioppoli inequality from the previous theorem we can show a compactness result similar
to the one used in Corollary 5.5 of [31]. For the proof we recall the following well known result which is valid
when p+ < ∞ [15, Chapter 2]:∫

Ω

|uj |p(x) dx →∞ if and only if ‖uj‖Lp(·)(Ω) →∞. (5.3)

Proposition 5.4. Let the exponent p be Lipschitz with 1 < p− 6 p+ < n. Let (uj) be a sequence of solutions
of (?), such that uj → u in L

p∗(·)
loc (Ω) for some u ∈ W

1,p(·)
loc (Ω). Then there exists constant C such that

lim sup
j→∞

‖∇uj‖Lp(·)(B) 6 C ‖∇u‖Lp(·)(2B) (5.5)

for all balls 2B ⊂⊂ Ω.

Proof . We first note that u− c is a solution if and only u is. Therefore, we may assume that u2B = 0 by
subtracting a constant from all functions. By homogeneity, u′j := uj

λ is also a solution for every λ > 0. Let us
choose λ := ‖∇u‖Lp(·)(2B). (If λ = 0, then we apply the proof to λ′ > 0 and let λ′ → 0 in the end.)

Choose η ∈ C∞
0 (2B) with η|B = 1 and |∇η| 6 2/ diam B. Then Theorem 5.1 yields∫

B

|∇u′j |p(x) dx 6 c

∫
Ω

( |u′j |
diam(B)

)p(x)

+ |u′j |p
∗(x) dx.

By assumption, uj → u in L
p∗(·)
loc (Ω). Hence, by dominated convergence,

lim sup
j→∞

∫
B

|∇u′j |p(x) dx 6 c

∫
Ω

( |u′|
diam(B)

)p(x)

+ |u′|p
∗(x) dx. (5.6)

Since (u′)2B = 0, it follows from the Poincaré inequality [15, Section 7.2] that∥∥∥ u′

diam(B)

∥∥∥
Lp(·)(2B)

6 c diam(B)
∥∥∥∇ u′

diam(B)

∥∥∥
Lp(·)(2B)

= c ‖∇u′‖Lp(·)(2B);

and from the Sobolev–Poincaré inequality [15, Section 7.2] that

‖u′‖Lp∗(·)(2B) 6 c ‖∇u′‖Lp(·)(2B).

The choice of λ implies that ‖∇u′‖Lp(·)(2B) = 1. Therefore, it follows from these inequalities and (5.3) that
right hand side of (5.6) is bounded by a constant. Using (5.3) again, we see that

c > lim sup
j→∞

‖∇u′j‖Lp(·)(Ω) = 1
λ lim sup

j→∞
‖∇uj‖Lp(·)(Ω).

We obtain the claim by multiplying this by λ = ‖∇u‖Lp(·)(2B).

6 Proof of Theorem 1.3

Recall that Y = {x ∈ Ω : p(x) = 1} and define pλ = max{p, λ} for λ > 1. Let p be locally Lipschitz in Ω \ Y
and let the domain and boundary data be as in Theorem 1.3. Then pλ is Lipschitz for every λ > 1, so there
exists a solution uλ of (?) with exponent pλ by Theorem 1.2. The following proposition shows us how we can
construct a solution for the case p− = 1 using these auxiliary solutions of the pλ-equation. This approach is
similar to [31, Proposition 6.1] for the equation ∆p(·)u = 0.

Proposition 6.1. Let Ω ⊂ R2 be a bounded C2 domain and let g ∈ C1,γ(∂Ω). Let p be a bounded exponent
such that p−Ω′ > 1 and p|Ω′ is Lipschitz for every Ω′ ⊂⊂ Ω \ Y , and the set Y has Lebesgue measure zero.

Then there exists a sequence (λj) decreasing to 1, pλj (·)-solutions (uλj ) of (?) with boundary values g,
and u ∈ L∞(Ω) satisfying the strong maximum principle such that

1. uλj → u in Lp(·)(Ω);
2. uλj ⇀ u in W

1,p(·)
loc (Ω \ Y ); and

3. u is a p(·)-solution in Ω \ Y .
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Proof . The existence of the sequence (uλj ) of solutions follows by Theorem 1.2. Let us denote uj := uλj and
pj := pλj

. By the strong maximal principle, supΩ |uj | 6 sup∂Ω |g| =: M < ∞.
Fix ε > 0 and choose open sets Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω \ Y such that |Ω \ Ω′′| < ε/M . Fix also a function

η ∈ C∞
0 (Ω′) with χΩ′′ 6 η 6 1. Since p−Ω′ > 1, it follows by the Caccioppoli inequality, Theorem 5.1, that

‖∇uj‖Lp(·)(Ω′′) 6 ‖∇uj‖Lpj(·)(Ω′′)
6 C. The constant does not depend on j. By the point-wise inequality

tp(x) 6 tpj(x) + 1 we obtain ∫
Ω′′
|∇uj(x)|p(x) dx 6

∫
Ω′′
|∇uj(x)|pj(x) dx + |Ω′′|;

hence we conclude that the sequence (uj) is bounded in W 1,p(·)(Ω′′). The compact embedding

W 1,p(·)(Ω′′) ↪→↪→ Lp(·)(Ω′′)

holds since p ∈ P log(Ω′′) [15, Section 7.4]. Combined with the boundedness of (uj) in W
1,p(·)
loc (Ω′′), this implies

that we may choose a subsequence (relabeled (uj)) which converges in Lp(·)(Ω′′). Then∫
Ω

|uj − uk|p(x) dx 6 2M |Ω \ Ω′′|+
∫

Ω′′
|uj − uk|p(x) dx < 4ε

provided j and k are large enough. Moving to a diagonal subsequence, we obtain a Cauchy sequence in
Lp(·)(Ω), hence we may define u such that Claim (1) holds. Since |uj | 6 M for every j, the same holds for u.

Since 1 < p−Ω′′ 6 p+
Ω′′ < ∞, the space W 1,p(·)(Ω′′) is reflexive [15, Section 7.1]. Since (uj) is bounded in

W 1,p(·)(Ω′′) we find that there exists a weakly converging subsequence. Thus (2) is proved.
It follows that u ∈ W

1,p(·)
loc (Ω \ Y ), and hence to prove (3) we need to check that (?) is satisfied for every

test function ϕ ∈ W 1,p(·)(Ω \ Y ) with compact support in Ω \ Y . Assume λj ∈ (1, p−Ω′) so that pj = p in Ω′.
Let (uj) be a subsequence that converges weakly to u ∈ W 1,p(·)(Ω′). We use η (u− uj) as a test function for
the solution uj . Recalling that pj = p in Ω′, we obtain∫

Ω′
|∇uj |p(x)−2(u− uj)∇uj · ∇η dx +

∫
Ω′
|∇uj |p(x)−2η∇uj · (∇u−∇uj) dx

= −
∫

Ω′
|∇uj |p(x)−2 log |∇uj |∇uj · ∇p η (u− uj) dx.

From this we conclude, using Hölder’s inequality, that∫
Ω′
|∇uj |p(x)−2η∇uj · (∇u−∇uj) dx

6 ‖∇η‖∞
∫

Ω′
|∇uj |p(x)−1|u− uj | dx + ‖∇p‖∞

∫
Ω′
|∇uj |p(x)−1

∣∣ log |∇uj |
∣∣ |u− uj | dx

6 2
∥∥ |∇uj |p(x)−1

∥∥
Lp′(·)(Ω)

‖u− uj‖Lp(·)(Ω) + C
∥∥ |∇uj |p(x)−1 log |∇uj |

∥∥
Lα(·)(Ω′)

‖u− uj‖L2p(·)(Ω′),

where α(x) := p(x)/(p(x)− 1/2). Since p−Ω′ > 1, there exists a constant C > 0 such that

|∇uj |p(x)−1
∣∣ log |∇uj |

∣∣ 6 C |∇uj |p(x)/α(x).

Since ‖∇uj‖p(·) 6 C, we conclude by the previous inequality that
∥∥ |∇uj |p(x)−1 log |∇uj |

∥∥
Lα(·)(Ω′)

6 C. Also,
(p∗ − 2p)−Ω′ > 0, so the Rellich–Kondrachov theorem [15, Section 7.4] implies that ‖u− uj‖L2p(·)(Ω′) → 0.
Similarly, ∥∥ |∇uj |p(x)−1

∥∥
Lp′(·)(Ω′)

‖u− uj‖Lp(·)(Ω′) → 0.

Thus we have proved that ∫
Ω′
|∇uj |p(x)−2η∇uj · (∇u−∇uj) dx → 0 (6.2)

as j →∞.
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Since |∇u|p(x)−2η∇u ∈ Lp′(·)(Ω′) and ∇uj ⇀ ∇u in Lp(·)(Ω′), we see that∫
Ω′
|∇u|p(x)−2η∇u · (∇u−∇uj) dx → 0

Subtracting the right hand side of the previous line from (6.2) yields∫
Ω′

η
[
|∇uj |p(x)−2∇uj − |∇u|p(x)−2∇u

]
· (∇uj −∇u) dx → 0.

Since the integrand is non-negative and η = 1 in Ω′′, we conclude that ∇uj → ∇u a.e. in Ω′′. Since
(|∇uj |p(x)−2∇uj) is a bounded sequence in Lp′(·)(Ω′′), it has (after moving to a subsequence) a weak limit,
which necessarily coincides with the point-wise limit, hence

|∇uj |p(x)−2∇uj ⇀ |∇u|p(x)−2∇u

weakly in Lp′(·)(Ω′′). Fix a test function ϕ ∈ W 1,p(·)(Ω \ Y ) with suppϕ ⊂ Ω′′. The weak convergence implies
that ∫

Ω

|∇uj |p(x)−2∇uj · ∇ϕ dx =
∫

Ω′′
|∇uj |p(x)−2∇uj · ∇ϕ dx

→
∫

Ω′′
|∇u|p(x)−2∇u · ∇ϕ dx =

∫
Ω

|∇u|p(x)−2∇u · ∇ϕ dx.

(6.3)

Since (p∗)′ 6 α, the weak convergence in Lp(·)(Ω′) implies that |∇uj |p(·)/α(·) ⇀ |∇u|p(·)/α(·) in L(p∗)′(·)(Ω′).
Because

∣∣ |∇uj |p(x)−2 log |∇uj |∇uj · ∇p
∣∣ 6 C|∇uj |p(x)/α(x), we conclude that also

|∇uj |p(x)−2 log |∇uj |∇uj · ∇p ⇀ |∇u|p(x)−2 log |∇u|∇u · ∇p

in the same space. By the Sobolev inequality, ϕ ∈ Lp∗(·)(Ω′′). Thus we find that∫
Ω′′
|∇uj |p(x)−2 log |∇uj |∇uj · ∇p ϕ dx →

∫
Ω′′
|∇u|p(x)−2 log |∇u|∇u · ∇p ϕ dx.

Combining this with (6.3), we obtain that

−
∫

Ω

|∇u|p(x)−2∇u · ∇ϕ− |∇u|p(x)−2 log |∇u|∇u · ∇p ϕ dx

= lim
j→∞

−
∫

Ω

|∇uj |p(x)−2∇uj · ∇ϕ− |∇uj |p(x)−2 log |∇uj |∇uj · ∇p ϕ dx = 0.

Therefore u is a solution in Ω \ Y .

We need the following result on local regularity of solutions. The comments regarding Theorem 4.4 apply
also here.

Theorem 6.4 (Theorem 1.1 in [20]). Let p be Lipschitz continuous on Ω. If u ∈ W 1,p(·)(Ω) ∩ L∞(Ω) is a
solution of (4.1), then u ∈ C1,α

loc (Ω′) for Ω′ ⊂⊂ Ω, where α and |u|C1,α(Ω′) depend only on p−, p+, ‖∇p‖∞, n,
‖u‖∞, and dist(Ω′, Rn \ Ω).

We are now ready to prove the second main result by upgrading the solutions from the previous result
to a solution in the whole domain.

Proof of Theorem 1.3. Let u be as in Proposition 6.1. Then u is a solution of (?) in Ω \ Y . Since Y has zero
1-Hausdorff measure, it is removable for Sobolev functions in W 1,p(·)(Ω) and u is a solution in Ω by [33,
Theorem 3.2].

Let next x ∈ Ω be a point with p(x) > 1. Since p is continuous, we may choose B := B(x, r) such that
p−2B > 1. By Theorem 6.4, |∇uj | is bounded in B, uniformly in j. Since ∇uj |B in Kp(·)-quasiregular and
uniformly bounded, it follows by the compactness result at the end of Section 2.1 that ∇u|B is also Kp(·)-
quasiregular. Therefore the distortion estimate holds in the set Ω \ Y , i.e. almost everywhere in Ω, which
concludes the proof of the theorem.

Let us conclude by justifying Remark 1.5. If Y ⊂⊂ Ω, then we can choose E ⊂⊂ Ω closed with C2

boundary such that p−Ω\E > 1. By Theorem 6.4 the functions uj from Proposition 6.1 are C1,α on ∂E, uniformly
in j. Hence uj satisfies the assumptions of Theorem 4.4 in the set Ω \ E. Then we may conclude that the
limit u has boundary values g in Ω by the same method as in Theorem 1.2.
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[31] P. Harjulehto, P. Hästö and V. Latvala: Minimizers of the variable exponent, non-uniformly convex
Dirichlet energy, J. Math. Pures Appl. (9) 89 (2008), no. 2, 174–197.
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