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Abstract. We study solutions of the strong p(·)-Laplace equation. We show

that, in contrast to p(·)-Laplace solutions, these solutions satisfy the ordinary,
scale-invariant Harnack inequality. As consequences we derive the strong max-

imum principle and global integrability of solutions.

1. Introduction

During the last decade, function spaces with variable exponent have attracted
a lot of interest, as can be seen from the surveys [11, 37], the monograph [10] or
the recent papers [5, 12, 21, 29]. The impetus for these studies was both natural
theoretical developments and applications to electrorheological fluids [1, 36] and
image processing [8, 9, 24].

Partial differential equations related to variable exponent Sobolev spaces have
also been investigated by several researchers, see the surveys [15, 34] or papers
[2, 6, 13, 14, 19, 23, 33, 40]. The usual way of generalizing the p-Laplacian to the
setting of variable exponents is to start with the minimization problem

inf
{ ∫

Ω

|∇u|p dx : u ∈ u0 + W1,p
0 (Ω)

}
,

or the weak form of the differential equation − div(|∇u|p−2∇u) = 0. In the variable
exponent case these lead to non-equivalent, although closely related, problems,
namely, ∫

Ω

|∇u|p(x)−2∇u · ∇ϕ dx = 0 or

∫
Ω

1
p(x)

|∇u|p(x)−2∇u · ∇ϕ dx = 0.

Recently, we introduced a new variant of the p(·)-Laplacian in [3]. It is based on
the strong form of the p-Laplace equation div(|∇u|p−2∇u) = 0, i.e.

∆p u := |∇u|p−4[(p − 2) ∆∞ u + |∇u|2 ∆ u
]

= 0,

where

∆∞ u :=
∑
i, j

uxi ux j uxi,x j

and uxi denotes the partial derivative. If p is replaced by p(x), we arrive at yet
another generalization of the p-Laplace equation, the strong p(·)-Laplacian

∆̃p(·) u := |∇u|p(·)−4[(p(·) − 2) ∆∞ u + |∇u|2 ∆ u
]
.

In order to state our problem in a weak form, we note that

∆̃p(·) u = div(|∇u|p(·)−2∇u) − |∇u|p(·)−2 log(|∇u|)∇u · ∇p
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when u ∈ C2(Ω). The weak formulation of ∆̃p(·) u = 0 then requires that u ∈ W1,p(·)
loc

(Ω)
satisfies

(?)

∫
Ω

|∇u|p(x)−2∇u · ∇ϕ dx +

∫
Ω

|∇u|p(x)−2 log(|∇u|)∇u · ∇pϕ dx = 0

for all ϕ ∈ W1,p(·)
0 (Ω). This equation, like the previous two generalizations, reduces

to the ordinary p-Laplace equation when p is constant. At first sight the strong
p(·)-Laplacian seems to have a distinct disadvantage over the earlier introduced
versions. For instance, we need to assume that ∇p ∈ Ln log Ln(Ω) for the second
term to make sense. (This can be weakened to ∇p ∈ Lp(·) log Lp(·)(Ω) if we only test
with ϕ ∈ C∞0 (Ω).)

However, we found in [3] that solutions of (?) possesses some advantages over
p(·)-solutions:

• scalability : if u is a solution, then so is λu;
• geometric regularity : if u is a solution in a planar domain, then the gradient
∇u is a mapping of finite distortion Kp(x), with

Kp(x) =
1
2

(
p(x) − 1 +

1
p(x) − 1

)
.

The former property is trivial for the case of constant p, while the later is a general-
ization of results by Bojarski and Iwaniec [7] (p > 2) and Manfredi [30] (1 < p < ∞).
These results for the strong p(·)-Laplacian are noteworthy since neither of them hold
for the p(·)-Laplacian (see [3, Example 3.1]).

The scalability of Equation (?) is a very useful feature. A reflection of the
nonscalability of the (ordinary) p(·)-Laplacian is that the constant c in the Harnack
inequality

(1.1) ess sup
x∈B

|u(x)| 6 c
(

ess inf
x∈B

|u(x)| + |B|
1
n
)

cannot be chosen independent of the non-negative solution u of the ∆p(·)-equation
[17, Example 3.10]. In this paper we show that Equation (?) is better than the p(·)-
Laplacian also in this respect by establishing a Harnack inequality with constant
independent of u, and the term |B|1/n omitted.

Theorem 1.2 (The Harnack Inequality). Let Ω ⊂ Rn be a bounded domain and let
p ∈ Plog(Ω) satisfy either

(1) 1 < p− 6 p+ < n and ∇p ∈ Ln log Ln(Ω); or
(2) 1 < p− 6 p+ < ∞ and ∇p ∈ Lq(·)(Ω), where q > max{p, n} + δ for some δ > 0.

If u is a non-negative solution of (?), then

ess sup
x∈B

u(x) 6 c ess inf
x∈B

u(x),

for balls B with 2B b Ω. The constant is independent of the function u.

Note that the assumptions of the theorem holds e.g. if p is Lipschitz with 1 <
p− 6 p+ < ∞. Further note that it suffices to assume that ‖∇p‖Ln log Ln(B) 6 c for
every ball B with diam B < τ dist(B, ∂Ω), τ > 0, see Remark 4.4.

Our proof is based on Moser iteration. For the weak p(·)-Laplacian equation
this method was first used by Alkhutov [4]. The difficulty came from the use of
test functions of the type uγηp+

with constant exponents. Now the exponent of the
test function will not exactly match the exponent of the equation, so one needs to
take care of the error term. In this paper, we use test functions more similar to
the classical constant exponent case, e.g. u1−(1+γ)p(·)ηp(·). Thus we avoid the error
terms from exponent mismatch, which led to the dependence of the constant on
u in (1.1). However, compared to the classical case we end up with several extra
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terms involving the gradient of p. Dealing with these terms is the major difficulty
in the proofs of the main lemmas.

The main difficulty with these additional terms is that they have “supercritical”
growth: they are of order tp(·)−1 log t while the “main term” has order only tp(·)−1.
The term with the logarithm in (?) has the same supercritical order of growth and
the proofs rely on combining all of these terms and using the scalability in a suitable
way. In fact, the special nature of our equation, especially the scalability, is crucial
for us: we would not be able to handle the equation∫

Ω

|∇u|p(x)−2∇u · ∇ϕ dx +

∫
Ω

|∇u|p(x)−2 log |∇u| ∇u · ξ ϕ dx = 0

for arbitrary C1 vector field ξ even when p is constant.

On the other hand, once we do have a proper Harnack inequality, we immediately
obtain several corollaries by well-known paths. First, we have the following strong
minimum principle:

Corollary 1.3. Let Ω and p be as in the previous theorem. If u is a non-negative
solution of (?), then either u > 0 or u ≡ 0.

Again it is worth noting that this conclusion does not follow from the weaker
kinds of Harnack inequality (1.1) available for the p(·)-Laplacian (but see also [16]
for a new approach to this problem). With the Weak Harnack Inequality (Theo-
rem 4.6), we can actually prove the strong minimum principle for supersolutions.

As usual, it is possible to iterate the Harnack inequality in order to prove Hölder
continuity, see, e.g., [18, Theorem 6.6]. In this case the procedure works also for
the weaker Harnack inequality (1.1) of the p(·)-Laplacian, although the constants
in that case will depend on u.

Corollary 1.4. Let Ω and p be as in the previous theorem. If u is a solution of
(?), then u is Hölder continuous in D b Ω. The Hölder constant and exponent
depend only on n, p and dist(D, ∂Ω).

Continuing to contrast with the p(·)-Laplacian case, we obtain a global integra-
bility result:

Theorem 1.5. Let Ω be a Hölder domain and let p be as in the previous theorem.
If u is a non-negative supersolution of (?), then there exists q > 0, depending only
on n, p and diam Ω, such that ∫

Ω

uq dx < ∞.

Remark 1.6. The assumption ∇p ∈ Ln log Ln(Ω) implies that p has modulus of
continuity (log 1

t )1/(n−1). If n = 2, this implies the log-Hölder continuity. In higher

dimensions the assumption ∇p ∈ Ln log L2(n−1)(Ω) would suffice for this.

Remark 1.7. In the last two years, several authors [26, 31, 32, 35] have considered
pi(·)-Laplacian type equations when pi → ∞. This leads to equations somewhat
similar to our, namely

−p(·) ∆∞u − |∇u|2 log |∇u| ∇u · ∇p = 0.

Also in this context, the Harnack inequality holds in the weaker form similar to p(·)-
Laplacian [26], as is to be expected due to the lack of scalability of the equation.
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2. Preliminaries

By Ω ⊂ Rn we denote a bounded open set. By c we denote a generic constant,
whose value may change between appearances even within a single line. By fA we
denote the integral average of f over A. For a ball B ⊂ Rn, we denote by c B the
c-fold dilate with the same center.

For background on variable exponent function spaces we refer to the surveys
[11, 37] or the (forthcoming) monograph [10]. Most of the results in this section
were proved in [22]. The variable exponent Lebesgue space is a special case of a
Musielak–Orlicz space. For a constant function p, it coincides with the standard
Lebesgue space. Often it is assumed that p is bounded, since this condition implies
many desirable features for Lp(·)(Ω).

A measurable function p : Ω→ [1,∞] is called a variable exponent, and we denote

p+
A := ess sup

x∈A
p(x), p−A := ess inf

x∈A
p(x), p+ := p+

Ω and p− := p−Ω

for A ⊂ Ω. We define a (semi)modular on the set of measurable functions by setting

%Lp(·)(Ω)(u) :=
∫

Ω

|u(x)|p(x) dx;

here we use the convention t∞ = ∞χ(1,∞](t) in order to get a left-continuous modular,
see [10, Chapter 3] for details. The variable exponent Lebesgue space Lp(·)(Ω) consists
of all measurable functions u : Ω → R for which the modular %Lp(·)(Ω)(u/λ) is finite
for some λ > 0. The Luxemburg norm on this space is defined as

‖u‖Lp(·)(Ω) := inf
{
λ > 0 : %Lp(·)(Ω)

( u
λ

)
6 1

}
.

Equipped with this norm, Lp(·)(Ω) is a Banach space. There is no functional rela-
tionship between norm and modular, but we do have the following useful inequality:

min
{
%Lp(·)(Ω)( f )

1
p− , %Lp(·)(Ω)( f )

1
p+

}
6 ‖ f ‖Lp(·)(Ω) 6 max

{
%Lp(·)(Ω)( f )

1
p− , %Lp(·)(Ω)( f )

1
p+

}
.

In particular, the norm equals one if and only if the modular equals one.
If E is a measurable set of finite measure, and p > q are variable exponents, then

Lp(·)(E) embeds continuously into Lq(·)(E). In particular, every function u ∈ Lp(·)(Ω)
also belongs to Lp− (Ω). The variable exponent Hölder inequality takes the form∫

Ω

f g dx 6 2 ‖ f ‖Lp(·)(Ω)‖g‖Lp′ (·)(Ω),

where p′ is the point-wise conjugate exponent, 1/p(x) + 1/p′(x) ≡ 1.
The function α defined in a bounded domain Ω is said to be log-Hölder continuous

if there is constant L > 0 such that

|α(x) − α(y)| 6
L

log(e + 1/|x − y|)

for all x, y ∈ Ω. We write p ∈ Plog(Ω) if 1/p is log-Hölder continuous; the smallest
constant for which 1

p is log-Hölder continuous is denoted by clog(p). If p ∈ Plog(Ω),
then

|B|p
+
B ≈ |B|p

−
B ≈ |B|p(x) ≈ |B|pB

for every ball B ⊂ Ω and x ∈ B [10, Lemma 5.1.6]; here pB is the harmonic average,

1
pB

:=
?

B

1
p(x)

dx.

(Note that this is a special convention for the exponent, otherwise, fA denotes the
usual, arithmetic average.) The constants in the equivalences depend on clog(p) and
diam Ω.
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The variable exponent Sobolev space W1,p(·)(Ω) consists of functions u ∈ Lp(·)(Ω)
whose distributional gradient ∇u belongs to Lp(·)(Ω). The variable exponent Sobolev
space W1,p(·)(Ω) is a Banach space with the norm

‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω).

In general, smooth functions are not dense in the variable exponent Sobolev space
[41], but the log-Hölder condition suffices to guarantee that they are [10, Sec-
tion 9.1]. In this case, we define the Sobolev space with zero boundary values,

W1,p(·)
0 (Ω), as the closure of C∞0 (Ω) in W1,p(·)(Ω).
The Sobolev conjugate exponent is also defined point-wise, p∗(x) := np(x)

n−p(x) for

p+ < n. If p is log-Hölder continuous, then the Sobolev–Poincaré inequality

‖u − uΩ‖Lp∗ (·)(Ω) 6 c ‖∇u‖Lp(·)(Ω)

holds when Ω is a nice domain, for instance convex or John [10, Section 8.2]. If

u ∈ W1,p(·)
0 (Ω), then ‖u‖Lp∗ (·)(Ω) 6 c ‖∇u‖Lp(·)(Ω) in any open set Ω.

The Zygmund space Lp log Lq(Ω) is defined for p > 1 and q ∈ R by the modular

%Lp log Lq(Ω)( f ) :=
∫

Ω

| f |p
(

log(e + | f |)
)q dx.

The Luxemburg norm is defined from this as before. In Zygmund spaces we have
the following Hölder inequality

(2.1)

∫
Ω

k∏
i=1

fi dx 6
k∏

i=1

∥∥∥ fi
∥∥∥

Lpi log Lqi (Ω),

where
k∑

i=1

1
pi

= 1 and
k∑

i=1

qi

pi
= 0

[20, (4.92), p. 77]. The inequality is based on point-wise Young-type inequalities,
and directly generalizes to the variable exponent case.

3. The infimum and supremum estimates

In this section we prove two components of the Harnack inequality, namely, we
estimate the essential supremum of a subsolution by the γ integral average from
above, and the essential infimum of a superpolution by the −γ integral average from
below, γ > 0. Let us recall the definition of these terms.

Definition 3.1. We say that u ∈ W1,p(·)
loc

(Ω) is a supersolution (of (?)) if∫
Ω

|∇u|p(x)−2∇u · ∇ϕ dx +

∫
Ω

|∇u|p(x)−2 log(|∇u|)∇u · ∇pϕ dx > 0

for all non-negative ϕ ∈ W1,p(·)(Ω) with compact support. It is a subsolution, if −u
is a supersoluton; and a solution if it is both a sub- and a supersolution.

We start with the infimum-estimate; it is based on a Caccioppoli estimate, which
comes in two versions.

Lemma 3.2 (Caccioppoli estimate). Let ∇p ∈ Ln log Ln(Ω) with 1 < p− 6 p+ < n,
and let u be a non-negative supersolution of (?). Then for every γ > 0 there exists
c, depending only on p− and p+, such that∥∥∥∥ η∇u

u1+γ

∥∥∥∥
Lp(·)(Ω)

6 c
∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

+ c
∥∥∥∥ ηuγ ∥∥∥∥Lp∗ (·)(Ω)

‖∇p‖Ln log Ln(supp η)

for every non-negative Lipschitz function η ∈ C0(Ω).
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Proof. We consider first the function uδ := u + δ. It is still a supersolution, and
uδ > δ > 0. For simplicity, we drop the subscript δ from the notation.

Let η ∈ C0(Ω) be a non-negative Lipschitz function and set ϕ := u1−(1+γ)p(·)ηp(·).
Since u > δ, ϕ is bounded; since η ∈ C0(Ω), ϕ has compact support. Denoting
ηu−(1+γ) by f , we find that

∇ϕ = −((1 + γ)p(·) − 1) f p(·)∇u + p(·)u−γ f p(·)−1∇η + f p(·)u log f ∇p.

Now f and u−γ are bounded, and f p(·)u log f = ηu−γ f p(·)−1 log f is thus also bounded;

hence ∇ϕ ∈ Lp(·)(Ω). Therefore, ϕ ∈ W1,p(·)
0 (Ω), and can be used as a test function.

Using ϕ as a test function in Equation (?), we obtain

((1 + γ)p− − 1)
∫

Ω

|∇u|p(x) f p(x) dx

6

∫
Ω

|∇u|p(x)−2∇u ·
[
p(x)u−γ f p(x)−1∇η + f p(x)u log f ∇p

]
+ |∇u|p(x)−2 log |∇u|∇u · ∇p f p(x)u dx

6

∫
Ω

|∇u|p(x)−1u−γ f p(x)−1
[
p+ |∇η| + η

∣∣∣ log
(
f |∇u|

)∣∣∣ |∇p|
]

dx.

Denoting further g := f |∇u|, we rewrite this as:

(3.3)

∫
Ω

gp(x) dx 6 c
∫

Ω

gp(x)−1u−γ
[
|∇η| + η | log g| |∇p|

]
dx.

Here we used also that (1 + γ)p− − 1 > p− − 1 > 0.
Let us assume for the moment that ‖g‖p(·) = 1. Then∥∥∥gp(·)−1

∥∥∥
Lp′ (·)(Ω) = 1 and

∥∥∥gp(·)−1 log g
∥∥∥

Lp′(·) log L−p′(·)(Ω) 6 c

with constant depending on p− and p+; to establish the latter we calculate

%Lp′(·) log L−p′(·)(Ω)(g
p(·)−1 log g) =

∫
Ω

(gp(x)−1| log g|)p(x)′
(

log
(
e + gp(x)−1| log g|

))−p(x)′
dx

=

∫
Ω

gp(x)
(

| log g|
log(e + gp(x)−1| log g|)

)p(x)′

dx

6 c %p(·)(g) + c = c,

where we used that p− > 1 and that the modular of g equals 1. Using that the
norm equals one if and only if the modular equals one and Hölder’s inequality for
Zygmund spaces (2.1) in (3.3), we find that

‖g‖Lp(·)(Ω) =

∫
Ω

gp(x) dx 6 c
∥∥∥gp(·)−1

∥∥∥
Lp′ (·)(Ω)

∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

+ c
∥∥∥gp(·)−1 log g

∥∥∥
Lp′(·) log L−p′(·)(Ω)

∥∥∥∥ ηuγ ∥∥∥∥Lp∗ (·)(Ω)
‖∇p‖Ln log Ln(supp η)

6 c
∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

+ c
∥∥∥∥ ηuγ ∥∥∥∥Lp∗ (·)(Ω)

‖∇p‖Ln log Ln(supp η).

This proves the claim for the case ‖g‖p(·) = 1. Since u is a non-negative supersolution
if and only if λu is a non-negative supersolution, and since the claim we are proving
is homogeneous (of order −γ < 0), we obtain from this the general case by scaling.

This completes the proof for u > δ. Since the constants do not depend on δ,
we may replace uδ by u on the right hand side of the inequality, possibly obtaining
infinite norms (in which case the claim is trivially true). Since uδ ↘ u and u appears
with negative powers, we obtain the final claim from this by monotone convergence
as δ↘ 0. �
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To deal with the case p+ > n, we use the following variant of the Caccioppoli
estimate. The derivation is the same as above, except we use the Hölder inequality
with exponent (p − δ′)∗ in the last stage of the proof.

Lemma 3.4 (Caccioppoli estimate 2). Let ∇p ∈ Lq(·)(Ω) with 1 < p− 6 p+ < n + δ′,
where q > max{p, n} + δ for some δ > 0. Here δ′ > 0 depends on δ, p− and n. Let u
be a non-negative supersolution of (?). Then there exists c, depending on p− and
p+, such that ∥∥∥∥ η∇u

u1+γ

∥∥∥∥
Lp(·)(Ω)

6 c
∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

+ c
∥∥∥∥ ηuγ ∥∥∥∥L(p−δ′ )∗ (·)(Ω)

‖∇p‖Lq(·)(supp η)

for every non-negative Lipschitz function η ∈ C0(Ω) and γ > 0.

Now we can prove the first part of the Harnack estimate, by the usual Moser
iteration scheme.

Theorem 3.5 (The ess inf-estimate). Let p ∈ Plog(Ω) be as in Theorem 1.2 and let
u be a non-negative supersolution of (?). Then for every α > 0 there exist c, c′ > 0
depending on p−, p+, n, Ω and clog(p) such that(?

2B
u−α dx

)− 1
α

6 c ess inf
x∈B

u(x),

for balls B with 2B b Ω so small that ‖∇p‖Ln log Ln(2B) < c′ (if p+ < n) or ‖∇p‖Lq(·)(2B) < c′

(if p+ < ∞).

Proof. We consider first the case p+ < n and ‖∇p‖Ln log Ln(2B) < c′. Let γ > 0. Then
by Lemma 3.2 we conclude that∥∥∥∇(u−γη)∥∥∥Lp(·)(Ω) 6

∥∥∥∥ η∇u
u1+γ

∥∥∥∥
Lp(·)(Ω)

+
∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

6 c
∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

+ c
∥∥∥∥ ηuγ ∥∥∥∥Lp∗ (·)(Ω)

‖∇p‖Ln log Ln(supp η).

(3.6)

We choose η with support in rB′ ⊂ 2B, η|%B′ = 1 and |∇η| 6 4/R(r − %), where
1 6 % < r 6 3 and R := diam B′. Using the Sobolev inequality [10, Theorem 8.3.1]
for the first inequality, we obtain∥∥∥∥ ηuγ ∥∥∥∥Lp∗ (·)(2B)

6 c
∥∥∥∇(u−γη)∥∥∥Lp(·)(Ω) 6 c

∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(2B)

+ c1

∥∥∥∥ ηuγ ∥∥∥∥Lp∗ (·)(2B)
‖∇p‖Ln log Ln(2B).

Assuming now that c1 c′ < 1
2 , we can absorb the second term on the right hand side

into the left, obtaining ‖η u−γ‖Lp∗ (·)(2B) 6 c ‖∇η u−γ‖Lp(·)(2B). Using this for the third
inequality, we find that∥∥∥u−γ

∥∥∥
Ln′ p(·)(%B′) 6 c

∥∥∥u−γ
∥∥∥

Lp∗ (·)(%B′) 6 c
∥∥∥∥ ηuγ ∥∥∥∥Lp∗ (·)(Ω)

6 c
∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

6
c

R(r − %)

∥∥∥u−γ
∥∥∥

Lp(·)(rB′).

We are now in a position to apply the iteration scheme. Let r j := % + 2− j(r − %)
and ξ j := (n′) j for j = 0, 1, 2, . . . We apply the inequality with the balls r j+1B′ and
r jB′ and γ = ξ j. This gives∥∥∥u−ξ j+1

∥∥∥ 1
n′

Lp(·)(r j+1B′) =
∥∥∥u−ξ j

∥∥∥
Ln′ p(·)(r j+1B′) 6

c
R(r j − r j+1)

∥∥∥u−ξ j
∥∥∥

Lp(·)(r jB′)
.

We then multiply this inequality by R1−n, raise it to the power of 1
ξ j

and use the

definition of r j:∥∥∥R−n u−ξ j+1
∥∥∥ 1
ξ j+1

Lp(·)(r j+1B′) =
∥∥∥R1−n u−ξ j

∥∥∥ 1
ξ j

Ln′ p(·)(r j+1B′)
6

( 2 jc
r − %

) 1
ξ j ∥∥∥R−n u−ξ j

∥∥∥ 1
ξ j

Lp(·)(r jB′)
.
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Therefore

lim
j→∞

∥∥∥R−n u−ξ j
∥∥∥ 1
ξ j

Lp(·)(r jB′)
6
∞∏
j=0

( 2 jc
r − %

) 1
ξ j ∥∥∥R−n u−ξ0

∥∥∥ 1
ξ0

Lp(·)(r0B′) = c
∥∥∥R−n u−1

∥∥∥
Lp(·)(rB′).(3.7)

The inequality ‖ · ‖1 6 c ‖ · ‖p(·) and a trivial estimate give

1
c

(?
%B′

u−ξ j dx
) 1
ξ j
6

∥∥∥R−n u−ξ j
∥∥∥ 1
ξ j

Lp(·)(%B′) 6 c ‖R−n‖

1
ξ j

Lp(·)(2B′)

(
ess inf
x∈r jB′

u(x)
)−1
.

Since the left and right hand sides of the inequality tend to (ess infx∈%B′ u(x))−1 as
ξ j → ∞, we see that the left hand side of (3.7) equals (ess infx∈%B′ u(x))−1. Thus

(
ess inf

x∈%B′
u(x)

)−1 6 c
∥∥∥R−n u−1

∥∥∥
Lp(·)(rB′) 6 c

∥∥∥R−n u−1
∥∥∥

Lp+ (rB′) 6 c |rB′|1−
1

p+

(?
rB′

u−p+

dx
) 1

p+

,

which is the claim of the theorem with α = p+, since |rB′|1−
1

p+ 6 |Ω|1−
1

p+ can be
absorbed in the constant. From this the case of general α > 0 is obtained in the
usual way, see, e.g., [28, Corollary 3.10]. This completes the proof in the case
p+ < n.

We consider then the case p+ < ∞ when the gradient satisfies the stronger as-
sumption ∇p ∈ Lq(·)(Ω), where q > max{p, n} + δ for some δ > 0. If 2B is a ball
in which p < n + δ′ (δ′ is from Lemma 3.4), then the same argument as before
works when we use Lemma 3.4 instead of Lemma 3.2 and the Sobolev inequality
‖u−γη‖L(p−δ′ )∗ (·)(Ω) 6 c ‖∇(u−γη)‖Lp(·)(Ω).

If p > n + δ′

2 in 2B, then we estimate in (3.6) instead∥∥∥∥ ηuγ ∥∥∥∥L∞(Ω)
6 c

∥∥∥∇(u−γη)∥∥∥
Ln+ δ′

2 (Ω)

6 c
∥∥∥∇(u−γη)∥∥∥Lp(·)(Ω)

6 c
∥∥∥∥∇ηuγ

∥∥∥∥
Lp(·)(Ω)

+ c
∥∥∥∥ ηuγ ∥∥∥∥L∞(Ω)

‖∇p‖Lq(·)(supp η);

here we used Morrey’s embedding theorem. As before, we absorb the second term
on the right hand side into the left. Then we raise both sides to the power 1

γ
. In

this case the claim follows directly with γ = α, without the need for any iteration.
Finally, we consider the case when 2B satisfies neither of the conditions in the

previous two paragraphs. By the log-Hölder condition, the sets {p > n + δ′} and
{p < n + δ′

2 } are a positive distance R apart, and this distance is determined only by

clog(p). We cover 2B by balls Bi of diameter 1
3 R. The number of such balls needed

depends only on R and n. By the preceding argument, the claim holds in each small
ball 2Bi. Thus(?

3B
u−α dx

)− 1
α

6 c
(∑

i

|2Bi|

|2B|

?
2Bi

u−α dx
)− 1

α

6 c
(∑

i

|2Bi|

|2B|
(ess inf

x∈B
u(x))−α

)− 1
α

= c ess inf
x∈B

u(x).

This is the claim with the ball 2B replaced by 3B. By carrying out the preceding
steps for 4

3 B instead of 2B, we obtain the claim for 2B as stated in the theorem. �

We then prove an estimate for the essential supremum. The proof follows [28,
Theorem 3.11].
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Theorem 3.8 (The ess sup-estimate). Let p ∈ Plog(Ω) satisfy the conditions of
Theorem 3.5 and let u be a non-negative subsolution of (?). Then for every α > 0
there exist c, c′ > 0 depending only on p−, p+, n and clog(p) such that

ess sup
x∈B

u(x) 6 c
(?

2B
uα dx

) 1
α

for balls B with 2B b Ω so small that ‖∇p‖Ln log Ln(2B) < c′ or ‖∇p‖Lq(·)(2B) < c′.

Proof. We consider first the case p+ < n. Let γ > 1, l > 1 and define

Gl(t) :=

 1
γ
tγ, t ∈ [0, l),

lγ−1t − (1 − 1
γ
)lγ, t > l.

Note that Gl ∈ C1([0,∞)) and G′l(t) = min{t, l}γ−1. We further define

Hl(x, ξ) =

∫ ξ

0
G′l(t)

p(x) dt.

Let η ∈ C∞0 (Ω) and define

ϕ := Hl(·, u) ηp(·).

Since Hl(x, ξ) 6 l(γ−1)p(x)ξ, it is clear that ϕ ∈ Lp(·)(Ω). For the gradient we obtain

∇ϕ = Hl(·, u)p(·)ηp(·)−1∇η + Hl(·, u)ηp(·) log η∇p

+ ηp(·)G′l(u)p(·)∇u + ηp(·)
∫ u(x)

0
G′l(t)

p(x) log G′l(t) dt∇p

= Hl(·, u)ηp(·)−1[p(·)∇η + η log(ηG′l(u))∇p
]

+ ηp(·)G′l(u)p(·)∇u + ηp(·)
∫ u(x)

0
G′l(t)

p(x) log
G′l(t)

G′l(u(x))
dt∇p.

Since G′l is bounded, we see that |∇ϕ| 6 cu |∇p| + c |∇u|, so that ∇ϕ ∈ Lp(·)(Ω). Let
us denote the integral on the right hand side of the previous equality by Ll(x, u(x)).
Testing with ϕ in Equation (?), we obtain that

0 >
∫

Ω

Hl(x, u)ηp(x)−1|∇u|p(x)−2[p(x)∇u · ∇η + η log(ηG′l(u))∇u · ∇p
]

+ ηp(x)G′l(u)p(x)|∇u|p(x) + ηp(x)Ll(x, u(x)) |∇u|p(x)−2∇u · ∇p

+ |∇u|p(x)−2 log |∇u| ∇u · ∇p Hl(x, u) ηp(x) dx.

From this we conclude that∫
Ω

G′l(u)p(x)|∇u|p(x)ηp(x) dx

6

∫
Ω

Hl(x, u)|∇u|p(x)−1ηp(x)−1
[
p+|∇η| + η|∇p|

∣∣∣ log
(
G′l(u)|∇u| η

)∣∣∣]
+ c |∇u|p(x)−1ηp(x)|∇p| |Ll(x, u)| dx.

(3.9)

A somewhat lengthy but elementary computation shows that

Hl(x, ξ)
G′l(ξ)

p(x)−1 =

 1
aξ

γ, ξ < l,
lγ−1ξ − (1 − 1

a )lγ, ξ > l,

where a := (γ − 1)p(x) + 1. The right hand side of the previous inequality is a
decreasing expression in a, and hence we see that it is less than or equal to Gl(ξ)
since γ 6 a. Thus

Hl(x, ξ) 6 G′l(ξ)
p(x)−1Gl(ξ).
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Similarly, using the expression for G′l and the substitution s = t
ξ
, we derive that

|Ll(x, ξ)| =
∫ ξ

0
G′l(t)

p(x) log
G′l(ξ)
G′l(t)

dt = cp(x),γ max{ξ, l}(γ−1)p(x)+1,

where

cp(x),γ :=
∫ 1

0
s(γ−1)p(x) log

1
sγ−1 ds.

Since p− > 1, we see that the integrand is a bounded function, so that cp(x),γ 6 c;
on the other hand with the change of variables σ = sγ−1 we conclude cp(x),γ 6

c
γ−1 .

Combined, these estimates yield cp(x),γ 6
c
γ
. Hence

|Ll(x, ξ)| 6
c
γ

max{ξ, l}γ G′l(ξ)
p(x)−1 6 c G′l(ξ)

p(x)−1Gl(ξ).

Using these estimates in (3.9), we find that∫
Ω

G′l(u)p(x)|∇u|p(x)ηp(x) dx 6 c
∫

Ω

G′l(u)p(x)−1Gl(u)|∇u|p(x)−1ηp(x)−1·

·
[
|∇η| + η|∇p|

∣∣∣ log
(
G′l(u)|∇u| η

)∣∣∣ + η|∇p|
]

dx.

Next we denote v := Gl(u) and note that ∇v = G′l(u)∇u by the chain rule. Hence the
previous inequality can be written as∫

Ω

|∇v|p(x)ηp(x) dx 6 c
∫

Ω

v|∇v|p(x)−1ηp(x)−1
[
|∇η| + η|∇p|

(
1 +

∣∣∣ log
(
|∇v| η

)∣∣∣) ] dx.

This inequality is analogous to (3.3), albeit slightly more complicated because Gl

ruins the (immediate) possibility of scaling. Assume first that ‖g‖p(·) ∈ ( 1
2 , 1], where

g := η |∇v|. Then

‖gp(·)−1‖Lp′(·) 6 1 and ‖gp(·)−1(1 + log g)‖Lp′(·) log L−p′(·) 6 c,

by the same reasoning as in Theorem 3.5. Hence it follows by Hölder’s inequality
that ∫

Ω

gp(x) dx 6 c
∫

Ω

vgp(x)−1
[
|∇η| + η|∇p|

(
1 +

∣∣∣ log g
∣∣∣)] dx

6 c ‖gp(·)−1‖Lp′ (·)‖v∇η‖p(·)

+ c ‖gp(·)−1(1 + log g)‖Lp′ (·) log L−p′ (·)‖vη‖Lp∗ (·)‖∇p‖Ln log Ln(supp η)

6 c ‖v∇η‖p(·) + c ‖vη‖Lp∗ (·)‖∇p‖Ln log Ln(supp η).

Since ‖g‖p(·) ∈ ( 1
2 , 1], the left hand side is estimated from below by c ‖g‖p(·).

Taking into account also that
∥∥∥∇(ηv)

∥∥∥
Lp(·)(Ω) 6

∥∥∥η∇v
∥∥∥

Lp(·)(Ω) +
∥∥∥v∇η

∥∥∥
Lp(·)(Ω), we further

obtain ∥∥∥∇(ηv)
∥∥∥

Lp(·)(Ω) 6 c
∥∥∥v∇η

∥∥∥
Lp(·)(Ω) + c

∥∥∥vη
∥∥∥

Lp∗ (·)(Ω)

∥∥∥∇p
∥∥∥

Ln log Ln(supp η).

By the Sobolev inequality [10, Theorem 8.3.1],∥∥∥vη
∥∥∥

Lp∗ (·)(Ω) 6 c
∥∥∥∇(ηv)

∥∥∥
Lp(·)(Ω) 6 c

∥∥∥v∇η
∥∥∥

Lp(·)(Ω) + c
∥∥∥vη

∥∥∥
Lp∗ (·)(Ω)

∥∥∥∇p
∥∥∥

Ln log Ln(supp η).

If ‖∇p‖Ln log Ln(supp η) is sufficiently small, the last term on the right hand side can be
absorbed in the left hand side, and we obtain∥∥∥Gl(u)η

∥∥∥
Lp∗ (·)(Ω) =

∥∥∥vη
∥∥∥

Lp∗ (·)(Ω) 6 c
∥∥∥v∇η

∥∥∥
Lp(·)(Ω) = c

∥∥∥Gl(u)∇η
∥∥∥

Lp(·)(Ω)

in the case ‖g‖p(·) ∈ ( 1
2 , 1].

We then use the scalability of (?) and the claim and thus may assume without
loss of generality that ‖η∇G∞(u)‖p(·) = 1 where G∞(t) := 1

γ
tγ. Since |∇Gl(u)| ↗

|∇G∞(u)|, it follows that there is a bound l0 such that ‖η∇Gl(u)‖p(·) ∈ ( 1
2 , 1] whenever

l > l0. Thus the previous inequality holds for this range of l. Since also Gl ↗
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G∞ point-wise,
∥∥∥Gl(u)η

∥∥∥
Lp∗ (·)(Ω) 6 c

∥∥∥G∞(u)∇η
∥∥∥

Lp(·)(Ω). Then it follows by monotone

convergence that ∥∥∥ 1
γ
uγη

∥∥∥
Lp∗ (·)(Ω) 6 c

∥∥∥ 1
γ
uγ∇η

∥∥∥
Lp(·)(Ω).

On the left hand side we use Lp∗(·)(Ω) ↪→ Ln′p(·)(Ω):∥∥∥uγη
∥∥∥

Ln′ p(·)(Ω) 6 c
∥∥∥uγ∇η

∥∥∥
Lp(·)(Ω).

We can now perform the iteration as in the proof of Theorem 3.5 to yield the
claim for any α > 0. Also the proof for the case p+ > n follows the same scheme as
in that proof. �

4. Crossing zero

In this section we derive the remaining part of the Harnack inequality, i.e. we
connect the α-integral averages for positive and negative α. For this we need yet
another Caccioppoli estimate, which is based on the following Young-type inequal-
ity.

Lemma 4.1 (Young-type inequality). For s, t > 0 and q > 1 we have

t sq−1 | log s| 6 2sq + (t | log t|)q + cq.

Proof. If s < 1, then the left hand side is at most ct, and the claim is clear. If t < 1,
then the claim follows from sq−1 log s 6 2sq +c. So we may assume s, t > 1, and work
with log instead of | log |.

For s, t > 1 we prove that

t sq−1 log s 6 2sq + (t log t)q.

We divide both sides by sq and denote z := t/s:

z log(t/z) 6 2 + (z log t)q.

Denoting further w := z log t, we rewrite this as

0 6 2 + z log z + wq − w.

Since z log z > −e−1 and wq−w > −1, this inequality is clear, and the claim follows. �

Lemma 4.2 (Caccioppoli estimate 3). Let ∇p ∈ Lp(·) log Lp(·)(Ω) with 1 < p− 6 p+ <
∞, and let u be a non-negative supersolution of (?). Then∫

Ω

(
|∇ log u| η

)p(x) dx 6 c
∫

Ω

|∇η|p(x) +
(
η |∇p| | log(η |∇p|)|

)p(x)
+ χ{η>0} dx

for non-negative Lipschitz functions η ∈ C0(Ω). The constant depends only on p−

and p+.

Proof. The assertion follows from (3.3) with γ = 0 once we use Young’s inequality
and the previous lemma. �

Corollary 4.3. Let p ∈ Plog(Ω) with ∇p ∈ Lp(·) log Lp(·)(Ω) and 1 < p− 6 p+ < ∞;
let also 2B b Ω be a ball with radius r. Assume further that %Lp(·)(2B)(∇p log |∇p|) 6
c′rn−p2B . If u is a non-negative supersolution of (?), then?

B
| log u − (log u)B|

p(x) dx 6 c.

The constant depends only on c′, diam Ω, p−, p+ and clog(p).
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Proof. We choose in the previous lemma η with 0 6 η 6 1, η|B = 1, support in 2B
and |∇η| 6 2/r. Then∫

Ω

(
|∇ log u| η

)p(x) dx 6 c %Lp(·)(2B)(2/r) + c %Lp(·)(2B)(∇p log |∇p|) + c rn 6 c rn−p2B ,

since rp(x) ≈ rp2B for x ∈ 2B. By the Poincaré inequality [10, Proposition 8.2.8],∫
B

(
|v − vB|

r

)p(x)

dx 6 c
∫

B
|∇v|p(x) dx + c |B|

for v ∈ W1,p(·)(B). We apply this to the function v := log u:?
B

(
| log u − (log u)B|

r

)p(x)
dx 6 c

?
B
|∇ log u|p(x) dx + c

6 c
?

Ω

(
|∇ log u| η

)p(x) dx + c 6 c r−p2B .

Using again rp(x) ≈ rp2B on the left hand side, we obtain the claim. �

Remark 4.4. Suppose that p ∈ Plog(Ω). Then we may use Young’s inequality in the
ball B of radius r:∫

B
| f |p(x) dx 6

∫
B

rα
n

p(·) | f |n +
(
r−α

) n
n−p(·) dx ≈ rα

n
pB

∫
B
| f |n dx + rn−α n

n−pB

Now we apply this with f = |∇p| log |∇p| and α =
pB
n (n − pB). Then we see that

%Lp(·)(2B)(∇p log |∇p|) 6 c′rn−p2B if ∇p ∈ Ln log Ln(Ω), with constant depending on the
Ln log Ln norm of ∇p. For simplicity we therefore move to the latter condition, al-
though also the slightly more general condition %Lp(·)(2B)(∇p log |∇p|) 6 c′rn−p2B would
suffice.

Theorem 4.5. Let p ∈ Plog(Ω) with ∇p ∈ Ln log Ln(Ω) and 1 < p− 6 p+ < ∞. If u is
a non-negative supersolution of (?), then there exists α > 0 such that(?

B
uα dx

) 1
α

6 c
(?

B
u−α dx

)− 1
α

for every ball B with 3B b Ω. The constants c and α depend only on diam Ω, p−,
p+, clog(p) and the norm of ∇p.

Proof. By Remark 4.4, the conditions of the previous corollary are satisfied, so we
obtain ?

B

∣∣∣ log u − (log u)B

∣∣∣ dx 6
?

B

∣∣∣ log u − (log u)B

∣∣∣p(x)
+ 1 dx 6 c.

Therefore, log u ∈ BMO(B) uniformly whenever 3B b Ω. Thus the standard proof
applies. For completeness we include some details.

The measure theoretic John–Nirenberg Lemma (see for example [18, Corol-
lary 19.10, p. 371 in Dover’s edition] or [28, Theorem 1.66, p. 40]) implies that
there exist positive constants α and c depending on the BMO-norm such that?

B
eα | f− fB | dx 6 c,

where f := log u. Using this we can conclude that?
B

eα f dx
?

B
e−α f dx =

?
B

eα( f− fB) dx
?

B
e−α( f− fB) dx 6

(?
B

eα| f− fB | dx
)2
6 c,

which implies that(?
B

uα dx
)1/α

=

(?
B

eα f dx
)1/α
6 c

(?
B

e−α f dx
)−1/α

= c
(?

B
u−α dx

)−1/α
. �



HARNACK’S INEQUALITY AND THE STRONG p(·)-LAPLACIAN 13

Proof of the Harnack Inequality, Theorem 1.2. If B is so small that the conditions
of Theorem 3.5 and Theorem 3.8 hold, then the claim follows immediately from
these two results and Theorem 4.5. If this is not the case, B can nevertheless be
covered by a finite number of balls in which the conditions hold. Moreover, the
number of balls needed depends only on the given parameters, n, p−, p+ and clog(p).
Therefore we obtain the claim in this case by combining the claims over the small
balls. �

If we only combine Theorems 3.5 and 4.5, then we arrive at the weak Harnack
inequality for supersolutions:

Theorem 4.6 (The Weak Harnack Inequality). Let Ω ⊂ Rn be a bounded domain;
let p ∈ Plog(Ω) be as in Theorem 1.2. Then there exists α > 0 such that(?

2B
uα dx

) 1
α

6 c ess inf
x∈B

u(x),

for balls B with 2B b Ω and non-negative supersolutions u of (?). The constant c
is independent of the function u.

If u(x0) = 0, then the Weak Harnack Inequality implies that
>

2B uα dx = 0, hence
u ≡ 0 in 2B since u > 0. Thus the set {u = 0} is open. As in [17, Theorem 4.1],
we can prove that the supersolution is lower semi-continuous, so that {u = 0} is
closed. This directly implies the strong minimum principle, Corollary 1.3 also for
supersolutions.

5. Global integrability

Now we also have all the tools necessary to prove global integrability of non-
negative supersolutions of (?). Recall that this result is not known for the p(·)-
Laplacian; it cannot be derived from (1.1), since the constant in this inequality
depends on the norm of u in the first place.

In fact, all the arguments have already been laid out by Lindqvist in [25]. For
completeness, we reiterate the most pertinent parts.

A Hölder domain Ω is a proper subdomain of Rn in which

kΩ(x, x0) 6 c log
dist(x0, ∂Ω)
dist(x, ∂Ω)

+ c

for some x0 ∈ D and every x ∈ D. Here kΩ denotes the quasihyperbolic metric,

kΩ(x, y) := inf
∫
γ

ds(z)
dist(z, ∂Ω)

,

where the infimum is taken over rectifiable paths in Ω joining x and y and the
integration is with respect to arc-length. We refer to [27] for an up-to-date overview
of this class of domains; but note that for instance every John domain is a Hölder
domain. The name comes from the fact that in the plane a simply connected domain
is a Hölder domain if and only if its Riemann mapping is Hölder continuous.

For our purposes we only need a result by Lindqvist, which relies on a character-
ization of Hölder domains by Smith and Stegenga [38]. The BMO norm is defined
for f ∈ L1

loc(Ω) by

‖ f ‖∗,Ω = sup
BbΩ

?
B
| f − fB| dx.

Lemma 5.1 (Lemma 3.7, [25]). Suppose that Ω ⊂ Rn is a Hölder domain. If
f ∈ L1

loc(Ω) and ‖ f ‖∗,Ω < ∞, then f ∈ L1(Ω) and?
Ω

exp
(
α
| f − fΩ|
‖ f ‖∗,Ω

)
dx 6 2
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for some α depending on n and the Hölder domain constant.

Thus we are prepared to prove the global integrability.

Proof of Theorem 1.5. Following Lindqvist [25], we observe that it was shown in
[39, Corollary 2.26] that

‖ f ‖∗,Ω 6 c sup
2B⊂Ω

?
B

∣∣∣ f − fB

∣∣∣ dx

for some constant c depending on n. We saw in the proof of Theorem 4.5 that the
right hand side of this inequality is bounded for f = log u. Therefore ‖ log u‖∗,Ω <
Q < ∞. Thus, by Lemma 5.1,?

Ω

exp
(
α
Q | log u − (log u)Ω|

)
dx 6 2.

In particular, it follows that (log u)Ω is finite. Thus we obtain?
Ω

u
α
Q dx =

?
Ω

exp
(
α
Q log u

)
dx 6

?
Ω

exp
(
α
Q | log u − (log u)Ω|

)
exp

(
α
Q

∣∣∣(log u)Ω

∣∣∣) dx

6 2 exp
(
α
Q

∣∣∣(log u)Ω

∣∣∣). �
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12. L. Diening, P. Hästö, and S. Roudenko, Function spaces of variable smoothness and integra-

bility, J. Funct. Anal. 256 (2009), no. 6, 1731–1768.
13. X.-L. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form,

J. Differential Equations 235(2) (2007), 397–417.



HARNACK’S INEQUALITY AND THE STRONG p(·)-LAPLACIAN 15

14. R. Fortini, D. Mugnai, and P. Pucci, Maximum principles for anisotropic elliptic inequalities,

Nonlinear Anal. 70 (2009), no. 8, 2917–2929.
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32. , Limits as p(x)→ ∞ of p(x)-harmonic functions, Nonlinear Anal. 72 (2010), 309–315.
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