HARNACK’S INEQUALITY AND THE STRONG p(--LAPLACITAN

TOMASZ ADAMOWICZ AND PETER HASTO*

ABSTRACT. We study solutions of the strong p(-)-Laplace equation. We show
that, in contrast to p(-)-Laplace solutions, these solutions satisfy the ordinary,
scale-invariant Harnack inequality. As consequences we derive the strong max-
imum principle and global integrability of solutions.

1. INTRODUCTION

During the last decade, function spaces with variable exponent have attracted
a lot of interest, as can be seen from the surveys [11, 37], the monograph [10] or
the recent papers [5, 12, 21, 29]. The impetus for these studies was both natural
theoretical developments and applications to electrorheological fluids [1, 36] and
image processing [8, 9, 24].

Partial differential equations related to variable exponent Sobolev spaces have
also been investigated by several researchers, see the surveys [15, 34] or papers
[2, 6, 13, 14, 19, 23, 33, 40]. The usual way of generalizing the p-Laplacian to the
setting of variable exponents is to start with the minimization problem

inf { f IVul” dx : u € up + WS’”(Q)},
Q

or the weak form of the differential equation — div(|Vu|’~2Vu) = 0. In the variable
exponent case these lead to non-equivalent, although closely related, problems,
namely,

1
f [VulPD2Vu - Vodx =0 or f —— |VulPY2Vy - Vo dx = 0.
Q o p(x)

Recently, we introduced a new variant of the p(-)-Laplacian in [3]. It is based on
the strong form of the p-Laplace equation div([Vu|’2Vu) = 0, i.e.
Apu = VulP[(p — 2) A u + |[Vul* Au] = 0,

where
Aot := Z Uy, Uy Uy, 5,
ij
and u,, denotes the partial derivative. If p is replaced by p(x), we arrive at yet
another generalization of the p-Laplace equation, the strong p(-)-Laplacian

Apey 1= IVulPO*(p(-) = 2) Ao e + [Vul? Au].
In order to state our problem in a weak form, we note that

Ay u = div(Vul?O2Vu) — VP92 log(\Vul)Vu - Vp
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when u € C*(Q). The weak formulation of AAdp(‘) u = 0 then requires that u € Wllo’ﬁ Q)
satisfies

(%) f IVulPD=2Vy - Vo dx + f IVulP~2 log(|Vul)Vu - Vpodx =0
Q Q

for all ¢ € Wé’p (')(Q). This equation, like the previous two generalizations, reduces
to the ordinary p-Laplace equation when p is constant. At first sight the strong
p(-)-Laplacian seems to have a distinct disadvantage over the earlier introduced
versions. For instance, we need to assume that Vp € L"log L"(Q2) for the second
term to make sense. (This can be weakened to Vp € LP0 log LPV(Q) if we only test
with ¢ € C7(Q).)
However, we found in [3] that solutions of (%) possesses some advantages over

p(-)-solutions:

o scalability: if u is a solution, then so is Au;

e geometric reqularity: if u is a solution in a planar domain, then the gradient

Vu is a mapping of finite distortion K,(x), with

i)
px) 1)
The former property is trivial for the case of constant p, while the later is a general-
ization of results by Bojarski and Iwaniec [7] (p > 2) and Manfredi [30] (1 < p < o0).
These results for the strong p(-)-Laplacian are noteworthy since neither of them hold
for the p(-)-Laplacian (see [3, Example 3.1]).

The scalability of Equation (%) is a very useful feature. A reflection of the
nonscalability of the (ordinary) p(-)-Laplacian is that the constant ¢ in the Harnack
inequality

1
K0 = 3 (p(x) -1+

(1.1) ess sup |u(x)| < ¢ (essinf |u(x)| + |BI%)
xeB xeB

cannot be chosen independent of the non-negative solution u of the A,.-equation

[17, Example 3.10]. In this paper we show that Equation (%) is better than the p(-)-

Laplacian also in this respect by establishing a Harnack inequality with constant

independent of u, and the term |B|'/" omitted.

Theorem 1.2 (The Harnack Inequality). Let Q C R" be a bounded domain and let
p € P°%(Q) satisfy either

(1) 1<p < p*<nandVpeL"logL"(Q); or

(2) 1 <p < pt<ooand Vp € L1(Q), where g > max{p,n} + & for some § > 0.
If u is a non-negative solution of (%), then

ess sup u(x) < c essinf u(x),
xeB xeB

for balls B with 2B € Q. The constant is independent of the function u.

Note that the assumptions of the theorem holds e.g. if p is Lipschitz with 1 <
p~ < p* < co. Further note that it suffices to assume that ||Vpllpiiogins) < ¢ for
every ball B with diam B < tdist(B, 9Q), T > 0, see Remark 4.4.

Our proof is based on Moser iteration. For the weak p(-)-Laplacian equation
this method was first used by Alkhutov [4]. The difficulty came from the use of
test functions of the type u?n?" with constant exponents. Now the exponent of the
test function will not exactly match the exponent of the equation, so one needs to
take care of the error term. In this paper, we use test functions more similar to
the classical constant exponent case, e.g. u!"*POprO)  Thus we avoid the error
terms from exponent mismatch, which led to the dependence of the constant on
u in (1.1). However, compared to the classical case we end up with several extra
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terms involving the gradient of p. Dealing with these terms is the major difficulty
in the proofs of the main lemmas.

The main difficulty with these additional terms is that they have “supercritical”
growth: they are of order #)~'logt while the “main term” has order only "I
The term with the logarithm in (%) has the same supercritical order of growth and
the proofs rely on combining all of these terms and using the scalability in a suitable
way. In fact, the special nature of our equation, especially the scalability, is crucial
for us: we would not be able to handle the equation

f IVulP““=2Vu - Vodx + f IVl =2 log |Vu| Vu - £ pdx = 0
Q Q

for arbitrary C' vector field ¢ even when p is constant.

On the other hand, once we do have a proper Harnack inequality, we immediately
obtain several corollaries by well-known paths. First, we have the following strong
minimum principle:

Corollary 1.3. Let Q and p be as in the previous theorem. If u is a non-negative
solution of (%), then either u >0 oru=0.

Again it is worth noting that this conclusion does not follow from the weaker
kinds of Harnack inequality (1.1) available for the p(-)-Laplacian (but see also [16]
for a new approach to this problem). With the Weak Harnack Inequality (Theo-
rem 4.6), we can actually prove the strong minimum principle for supersolutions.

As usual, it is possible to iterate the Harnack inequality in order to prove Holder
continuity, see, e.g., [18, Theorem 6.6]. In this case the procedure works also for
the weaker Harnack inequality (1.1) of the p(-)-Laplacian, although the constants
in that case will depend on u.

Corollary 1.4. Let Q and p be as in the previous theorem. If u is a solution of
(%), then u is Hélder continuous in D € Q. The Hélder constant and exponent
depend only on n, p and dist(D, 0Q).

Continuing to contrast with the p(-)-Laplacian case, we obtain a global integra-
bility result:

Theorem 1.5. Let Q be a Holder domain and let p be as in the previous theorem.
If u is a non-negative supersolution of (x), then there exists g > 0, depending only
on n, p and diam Q, such that
f ul dx < 0.
Q

Remark 1.6. The assumption Vp € L"log L*(Q) implies that p has modulus of
continuity (log 1)//=D_If n = 2, this implies the log-Hélder continuity. In higher
dimensions the assumption Vp € L" log L*"~(Q) would suffice for this.

Remark 1.7. In the last two years, several authors [26, 31, 32, 35] have considered
pi(-)-Laplacian type equations when p; — oo. This leads to equations somewhat
similar to our, namely

—p() Aot — |Vul* 1og |Vu| Vi - Vp = 0.

Also in this context, the Harnack inequality holds in the weaker form similar to p(-)-
Laplacian [26], as is to be expected due to the lack of scalability of the equation.
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2. PRELIMINARIES

By Q c R" we denote a bounded open set. By ¢ we denote a generic constant,
whose value may change between appearances even within a single line. By f4 we
denote the integral average of f over A. For a ball B ¢ R", we denote by ¢ B the
c-fold dilate with the same center.

For background on variable exponent function spaces we refer to the surveys
[11, 37] or the (forthcoming) monograph [10]. Most of the results in this section
were proved in [22]. The variable exponent Lebesgue space is a special case of a
Musielak—Orlicz space. For a constant function p, it coincides with the standard
Lebesgue space. Often it is assumed that p is bounded, since this condition implies
many desirable features for LPO(Q).

A measurable function p: Q — [1, o] is called a variable exponent, and we denote

pi=esssupp(x), p,:=essinfp(x), p*:=p, and p” :=pg
XA xeA

for A c Q. We define a (semi)modular on the set of measurable functions by setting

Qo) (1) 3=f|u(x)|p(x)dx;
Q

here we use the convention ™ = coy/(1,«0j(f) in order to get a left-continuous modular,
see [10, Chapter 3] for details. The variable exponent Lebesgue space LP©)(Q) consists
of all measurable functions u: Q — R for which the modular g;0(q)(#/1) is finite
for some A > 0. The Luxemburg norm on this space is defined as

lll oy = inf {2 > 0': oppoe(4) < 1}.

Equipped with this norm, LP©(Q) is a Banach space. There is no functional rela-
tionship between norm and modular, but we do have the following useful inequality:

. n n o n
min {QLP")(Q)(f )7L oo ()7 } < I fllpro@) < max {Qm-)(g)(f )7L oo ()7 }

In particular, the norm equals one if and only if the modular equals one.

If E is a measurable set of finite measure, and p > ¢ are variable exponents, then
LPY(E) embeds continuously into L{O(E). In particular, every function u € LP©(Q)
also belongs to L” (Q). The variable exponent Holder inequality takes the form

ffg dx < 2| fllro@llgllrog)
Q

where p’ is the point-wise conjugate exponent, 1/p(x) + 1/p’(x) = 1.
The function @ defined in a bounded domain Q is said to be log-Hdélder continuous
if there is constant L > 0 such that

L
log(e + 1/1x = yI)

for all x,y € Q. We write p € P°2(Q) if 1/p is log-Holder continuous; the smallest
constant for which ,l) is log-Holder continuous is denoted by cioe(p). If p € P€(Q),
then

la(x) — a(y)l <

B’ ~ B ~ |BIP ~ |BP"

for every ball Bc Q and x € B [10, Lemma 5.1.6]; here pp is the harmonic average,

1 J[ 1
— = —dx.
PB B P(X)

(Note that this is a special convention for the exponent, otherwise, f4 denotes the
usual, arithmetic average.) The constants in the equivalences depend on cjo(p) and
diam Q.
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The variable exponent Sobolev space WHPO(Q) consists of functions u € LPY(Q)
whose distributional gradient Vu belongs to L”(Q). The variable exponent Sobolev
space W'P0(Q) is a Banach space with the norm

lluell oy + IV ullrooy).-
In general, smooth functions are not dense in the variable exponent Sobolev space
[41], but the log-Hélder condition suffices to guarantee that they are [10, Sec-
tion 9.1]. In this case, we define the Sobolev space with zero boundary values,
Wy P(Q), as the closure of C(Q) in W'O(Q).
The Sobolev conjugate exponent is also defined point-wise, p*(x) := n"_p;g)
p* < n. If pis log-Holder continuous, then the Sobolev—Poincaré inequality

for

llu — uallzro@) < cllVullrow)
holds when Q is a nice domain, for instance convex or John [10, Section 8.2]. If
ue Wé’p(')(Q)7 then |lull+o@q) < cllVullpog) in any open set Q.

The Zygmund space L” log LY(Q) is defined for p > 1 and g € R by the modular

o1 tog @ (f) 1= fg P (log(e + /)" d.

The Luxemburg norm is defined from this as before. In Zygmund spaces we have
the following Holder inequality

k k
(2.1) L l_[ﬁdx S l_[ ”fi“m log L% (Q)°

i=1 i=1

where
k k

1 i
> —=1 and 94—
i-1 Pi io1 Pi

[20, (4.92), p. 77]. The inequality is based on point-wise Young-type inequalities,
and directly generalizes to the variable exponent case.

3. THE INFIMUM AND SUPREMUM ESTIMATES

In this section we prove two components of the Harnack inequality, namely, we
estimate the essential supremum of a subsolution by the y integral average from
above, and the essential infimum of a superpolution by the —y integral average from
below, y > 0. Let us recall the definition of these terms.

Definition 3.1. We say that u € Wllo’lc’(')(Q) is a supersolution (of (%)) if
f IVulP““=2Vu - Vodx + f [Vl log(|Vul)Vu - Vpodx > 0
Q Q

for all non-negative ¢ € W'*0(Q) with compact support. It is a subsolution, if —u
is a supersoluton; and a solution if it is both a sub- and a supersolution.

We start with the infimum-estimate; it is based on a Caccioppoli estimate, which
comes in two versions.

Lemma 3.2 (Caccioppoli estimate). Let Vp € L"log L"(Q) with 1 < p~ < p* < n,
and let u be a non-negative supersolution of (x). Then for everyy > 0 there exists
¢, depending only on p~ and p*, such that
\%
ok P
LPO(Q) u? NLro(Q) uY

for every non-negative Lipschitz function n € Cy(€2).

nVu
' ulty

Lp*(v)(Q)”Vp“L" log L"(supp 1)
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Proof. We consider first the function us := u + 6. It is still a supersolution, and
us > 6 > 0. For simplicity, we drop the subscript § from the notation.

Let n € Co(Q) be a non-negative Lipschitz function and set ¢ := u!~(14#P0OpP0),
Since u > &, ¢ is bounded; since n € Cy(Q), ¢ has compact support. Denoting
nu=1*) by £, we find that

Vo = —((1 +y)p() = DfFFOVu+ p(u™ 7OV + fPYulog f Vp.

Now f and u™ are bounded, and f?“ulog f = nu™ f*~!log f is thus also bounded;
hence Vg € LPO(Q). Therefore, ¢ € W(])’p “(Q), and can be used as a test function.
Using ¢ as a test function in Equation (), we obtain

(1 +y)p~ = 1) f Vul"® 79 dx
Q
< f [VulPO72Vu - [ p(x)u™ fPO71Vn + fPOulog £ Vp)
Q
+ [VulPD72 log [VulVu - Vp fPPu dx
< f VP~ ™ O p* [Vl + | log (£ 1Vul)| 1V pl| dx.
Q

Denoting further g := f|Vul|, we rewrite this as:

(3.3) fg”(x) dx < cfg”(x)_lu_7 [IVhl +nllog gl IVpl] dx.
Q o

Here we used also that (1 +y)p —=1>p~-1>0.
Let us assume for the moment that ||gll,.) = 1. Then

”gp(~)—1 “LP"')(Q) =1 and ||g”(')_1 log 8||Lp'<~) log L70@) S €

with constant depending on p~ and p*; to establish the latter we calculate

- _ , _ -px)
010 t0g 17087 log g) = f (8" " log g)*™ (log (e + gV loggl)) * dx
Q

= f gp(x)( |log gl )pm/ dx
Q log(e + g7™~![log gl)

Scop(@tce=c,

where we used that p~ > 1 and that the modular of g equals 1. Using that the
norm equals one if and only if the modular equals one and Holder’s inequality for
Zygmund spaces (2.1) in (3.3), we find that

Vi
- PO g < o ||oPO-1 ”_H
lgllLro @) ‘fs;g dx<c ”g “LI"(')(Q) w? lLro)

pO)-1 n
t+c ”g log g“U/M log L7 OQ) H wr LI,*(_)(Q)”VPHL“ log L"(supp 1)
Vi n
<cl|= - " log [ )
S¢ H u ”Lm-)(gz) te |lm“u*(->(9)”Vp”L log L*(supp7)

This proves the claim for the case ||gll,) = 1. Since u is a non-negative supersolution
if and only if Au is a non-negative supersolution, and since the claim we are proving
is homogeneous (of order —y < 0), we obtain from this the general case by scaling.

This completes the proof for u > §. Since the constants do not depend on 6,
we may replace us by u on the right hand side of the inequality, possibly obtaining
infinite norms (in which case the claim is trivially true). Since us \, u and u appears
with negative powers, we obtain the final claim from this by monotone convergence
as 0\, 0. |
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To deal with the case p* > n, we use the following variant of the Caccioppoli
estimate. The derivation is the same as above, except we use the Holder inequality
with exponent (p —’)* in the last stage of the proof.

Lemma 3.4 (Caccioppoli estimate 2). Let Vp € LYO(Q) with 1 < p~ < pt <n+¢',
where g > max{p,n} + 6 for some § > 0. Here & >0 depends on 6, p~ and n. Let u
be a non-negative supersolution of (x). Then there exists ¢, depending on p~ and
p*, such that

nVu
| ul+y

1\% p“L‘I(')(supp n)

LrO) (Q) “ LrC )(Q) H ||L(P *O(Q)

for every non-negative Lipschitz function n € Co(Q) and y > 0.

Now we can prove the first part of the Harnack estimate, by the usual Moser
iteration scheme.

Theorem 3.5 (The essinf-estimate). Let p € P°¢(Q) be as in Theorem 1.2 and let
u be a non-negative supersolution of (x). Then for every a > 0 there exist ¢,c’ > 0
depending on p~, p*, n, Q and ciog(p) such that

(JC u @ dx) " < cessinf u(x),

2B xeB

for balls B with 2B € Q so small that ||V plliriog 12 < ¢ (if p* < n) or ||Vplloes) < ¢
(if p* < ).

Proof. We consider first the case p* < n and ||Vpllpriog 1728y < ¢’. Let v > 0. Then
by Lemma 3.2 we conclude that

nVu
ul+y

NG oy < | o

LrO(Q) “ LrO(Q)

|| HWQ) |j 1|L,,()(Q)quuUbgLn(suP,,,,).

We choose 1 with support in rB" C 2B, nl,g = 1 and [Vl < 4/R(r — 0), where
1 <o <r<3andR:=damB’. Using the Sobolev inequality [10, Theorem 8.3.1]
for the first inequality, we obtain

IV pllzrog 2 2B)-

Hoon
“m LP*U(zB) ” (u U)HLP()(Q) ” uy Lp(-)(zs) u? 1LP"O2B)

Assuming now that ¢y ¢’ < 2, we can absorb the second term on the right hand side
into the left, obtaining |lqu™ |0 < clIVRu™|loes). Using this for the third
inequality, we find that

<c”u

_ c _
”u y“Ln’pH(QB/) ”Lp*()(gg/ H HL,, ()(Q) ”u_VHL”(')(Q) < R(r——Q)“u 7||Lm-)(rB')'

We are now in a position to apply the iteration scheme. Let r; := 0 + 27(r — o)
and &; = (n') for j =0,1,2,... We apply the inequality with the balls ri.1B’ and
r;B" and y = ¢;. This gives

£ ||
LPO(rjy1 B')

- [

c &
“” LGBy S m”“ Se’”Lm-)(r,Br)'

We then multiply this inequality by R'™", raise it to the power of EL and use the
SJ

definition of r;:

2/¢ o
I P()(r/HB’) < (r— ) ”R n o~ ”Lp()(r By

R

f/+| ” 1-n —f
LPO(rj 1 B) R
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Therefore

e8]

) A 2Die ey o
(87) Jlgg ”R u fj”zll’(')(r/-B') < l_[ (,,_Cg)fj ”R "u §0||Zoﬁ<->(r03') = c||R u 1||L1’<'>(rB’)'
=0

The inequality || - [y < cll-llp¢) and a trivial estimate give

1 =& é -n =& % —n % : -1

ol JS x]RS IR o eSS )™

Since the left and right hand sides of the inequality tend to (essinf,eop u(x))™ as
& — oo, we see that the left hand side of (3.7) equals (ess inf eop u(x))~'. Thus

a1
1-L _pt pt

<cl|rB'| 7 u? dx
LBy IrB'l B ’

.

which is the claim of the theorem with @ = p*, since |[rB’| " 7" < |Q|1_WL* can be
absorbed in the constant. From this the case of general @ > 0 is obtained in the
usual way, see, e.g., [28, Corollary 3.10]. This completes the proof in the case
pt<n.

(essintu)™ < By <70

We consider then the case p* < co when the gradient satisfies the stronger as-
sumption Vp € LI1Y(Q), where ¢ > max{p,n} + 6 for some 6 > 0. If 2B is a ball
in which p < n+ ¢ (8 is from Lemma 3.4), then the same argument as before
works when we use Lemma 3.4 instead of Lemma 3.2 and the Sobolev inequality
™ nll ooy < € V@D Lro().-

If p>n+ % in 2B, then we estimate in (3.6) instead

I

<c ||V(u‘777)

Le(Q) %@

< c||V(u yn)”u’(ﬂ(g)
<elilm <l
u? 1ILroO(Q) u”
here we used Morrey’s embedding theorem. As before, we absorb the second term
on the right hand side into the left. Then we raise both sides to the power }y In
this case the claim follows directly with vy = @, without the need for any iteration.
Finally, we consider the case when 2B satisfies neither of the conditions in the
previous two paragraphs. By the log-Holder condition, the sets {p > n + ¢’} and
{p<n+ %} are a positive distance R apart, and this distance is determined only by
Clog(p). We cover 2B by balls B; of diameter %R. The number of such balls needed

depends only on R and n. By the preceding argument, the claim holds in each small
ball 2B;. Thus

1 1
T 2B; T
(JC u @ dx) < c( Z u u @ dx)
3B 12B] Jos,

i

LW(Q)”VPHL‘I(')(supp L

2B;| . o) .
c( —— (essinf u(x)) “) = ¢ essinf u(x).
; xeB xeB

This is the claim with the ball 2B replaced by 3B. By carrying out the preceding
steps for %‘B instead of 2B, we obtain the claim for 2B as stated in the theorem. 0O

We then prove an estimate for the essential supremum. The proof follows [28,
Theorem 3.11].
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Theorem 3.8 (The esssup-estimate). Let p € P°¢(Q) satisfy the conditions of
Theorem 8.5 and let u be a non-negative subsolution of (x). Then for every a > 0
there exist ¢,c’ > 0 depending only on p~, p*, n and ciog(p) such that

1
ess sup u(x) < c(JC u® dx)u
xeB 2B
for balls B with 2B € Q so small that |[Vpllps10g 1728y < ¢” o7 IVpllpsop < ¢’
Proof. We consider first the case p* <n. Let y > 1, [ > 1 and define
ip, t€[0,0),
Gi(t):==17 , |
==, 1>l

Note that G; € C'([0, 0)) and G (1) = min{z, 1y~ We further define

Hi(x, &) = f G (t)'™ dt.
0
Let 7 € C°(Q2) and define
¢ == Hi(,uyn’*.
Since H)(x, &) < [07DPW¢ it is clear that ¢ € LPO(Q). For the gradient we obtain
Vo = Hi(-.u)p()n”~ Vi + Hi(-,upm™ logn Vp

u(x)
+ P0G )P Vu + P fo Gy’ log G;(1)dt Vp

= Hi(, "™ [p()Vn + nlog(nGy(w) Vp]
o G;(1)
+ 770G W) OVu + ¥ f G)(H)" log ———dt V
o b T R G

Since G is bounded, we see that |Ve| < cu|Vp| + ¢|Vul, so that Vo € LFO(Q). Let
us denote the integral on the right hand side of the previous equality by L;(x, u(x)).
Testing with ¢ in Equation (%), we obtain that

0> f H(x, wynP @~ Vul? 72 p(x)Vu - V7 + log(nG)(u)) Vu - Vp)
Q
+1"OG WO NVul” + 7P Ly(x, w(x)) [Vul" O Vu - Vp
+ |VulPD =2 log |Vu| Vu - Vp Hy(x, u) n”™ dx.

From this we conclude that

f G; (u)P(x) |VM|P(X),7P(X) dx
Q

(3.9) < fg Hyx, Va7~ p* (93] + iV pl | log (G}w)|Vul )
+ ¢ [Vul" ™ POV pl |Ly(x, w)] dox.
A somewhat lengthy but elementary computation shows that
Hx &) _ {‘9 £<l,
G-t \rle-a -, €21,

where a := (y — 1)p(x) + 1. The right hand side of the previous inequality is a
decreasing expression in a, and hence we see that it is less than or equal to G;(&)
since ¥ < a. Thus

H(x,&) < Gj(&"V7'G(é).
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Similarly, using the expression for G; and the substitution s = é we derive that
Gi(&)
ILi(x, )| = fG,(t)p(X) log G’(f) = Cp(oyy max{g, [fO PO

where

1
1
— (y=Dp(x)
Cpry = L s log o ds.

Since p~ > 1, we see that the integrand is a bounded function, so that c,u), < ¢;
on the other hand with the change of variables o = s*! we conclude ¢, <
Combined, these estimates yield ¢y, < 7. Hence

_c_
y-1-

ILi(x, &)| < max{f Y Gi&" < cGHOMIGi@).
Using these estimates in (3.9), we find that
fG;(”)p(x)|V"‘|p(x)77p(x) dx < CfG;(M)P(x)—lGl(u)lvmp(x)—lnp(x)—l.
Q Q

- [19n1 + 0Vl |log (G} w)|Vul )| + 1V pl| dx.

Next we denote v := G;(u) and note that Vv = G;(u)Vu by the chain rule. Hence the
previous inequality can be written as

f VPO dx < ¢ f vV PO @)+ gVl (14 [log ((VvIn)]) | dx.
Q Q

This inequality is analogous to (3.3), albeit slightly more complicated because G,
ruins the (immediate) possibility of scaling. Assume first that ||gll,.) € (%, 1], where
g :=1n|Vv|. Then

18" Mo <1 and 1§77 (1 +10g @)lle jog -0 < €

by the same reasoning as in Theorem 3.5. Hence it follows by Hoélder’s inequality
that

fg”(x) dx < cfvg”(")_l[anI +0IVpI(1 + [log g|)|dx
) Q

<cllg" liprolvnlly
+¢1g”7 (1 +10g )0 10g L0 IVAll Lo IV Pl tog Lr(supp
< clvVallpe + clvallLo IV Pl tog 2 (supp -
Since |Igllp) € (%, 1], the left hand side is estimated from below by c|Igll,(.)-

Taking into account also that ”V(nv)” Lo@) S ||77Vv“ oyt ||vVn“ Loy We further
obtain

Gy < e vVl oy * €llvrll o192
By the Sobolev inequality [10, Theorem 8.3.1],
[l oy < €9 oy < €99 oy * € Il oo 19

If [IVpller 1og z2supp yy 1s sufficiently small, the last term on the right hand side can be
absorbed in the left hand side, and we obtain

”Gl(u)r]”Ll’()(Q) “Vn”LI’(J(Q) C”VVUHLD()(Q) c”Gl(u)Vn”L!’()(Q)

L log L"(suppm)”

L log L"(suppn)”

in the case |gll,) € (5, 1].

We then use the scalability of (x) and the claim and thus may assume without
loss of generality that |[§VGe(@llpy = 1 where Goo(f) = %ty. Since |VG;(w)| /
[VGoo(u)l, it follows that there is a bound /y such that |[nVG(w)lly.) € (%, 1] whenever
[ > ly. Thus the previous inequality holds for this range of [. Since also G;
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G point-wise, ||Gl(“)'7”u*<->(g) < c”Gm(u)Vn”m)(Q). Then it follows by monotone
convergence that

”;l/uyn”LP*(-)(Q) Sc¢ ||%“yv’7||m-><g)-
On the left hand side we use LP"O(Q) — L"PO(Q):
||uyn“L“'l’<'>(Q) sc ”uyvnnu(-)(g)'

We can now perform the iteration as in the proof of Theorem 3.5 to yield the
claim for any @ > 0. Also the proof for the case p* > n follows the same scheme as
in that proof. O

4. CROSSING ZERO

In this section we derive the remaining part of the Harnack inequality, i.e. we
connect the a-integral averages for positive and negative @. For this we need yet
another Caccioppoli estimate, which is based on the following Young-type inequal-

ity.
Lemma 4.1 (Young-type inequality). For s,t >0 and g > 1 we have
ts97" [log s| < 257 + (t|log ) + c,.

Proof. If s < 1, then the left hand side is at most ct, and the claim is clear. If t < 1,
then the claim follows from s?~!log s < 257 +c¢. So we may assume s, > 1, and work
with log instead of |log|.

For s, > 1 we prove that

ts7  log s < 257 + (tlog 1),
We divide both sides by s? and denote z := t/s:
zlog(t/z) < 2 + (zlogr)?.
Denoting further w := zlogt, we rewrite this as
0<2+zlogz+w!—w.

Since zlogz > —e~! and w¥—w > —1, this inequality is clear, and the claim follows. O

Lemma 4.2 (Caccioppoli estimate 3). Let Vp € LPY log L(Q) with 1 < p~ < p* <
oo, and let u be a non-negative supersolution of (x). Then

f (IVlogulm)"™ dx < ¢ f IVaIP® + (7 1V pl 1 1og( IV pDIY™ + x (0 dx
Q Q

for non-negative Lipschitz functions n € Co(Q). The constant depends only on p~
and p*.

Proof. The assertion follows from (3.3) with y = 0 once we use Young’s inequality
and the previous lemma. O

Corollary 4.3. Let p € P%(Q) with Vp € L’V log LPO(Q) and 1 < p~ < p* < oo;

let also 2B € Q be a ball with radius r. Assume further that op0p(Vplog|Vpl) <
cFPs . Ifu is a non-negative supersolution of (%), then

fllogu — (log w)plP™M dx < c.
B

The constant depends only on ¢’, diamQ, p~, p* and cioe(p).
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Proof. We choose in the previous lemma n with 0 < < 1, n|p = 1, support in 2B
and |Vn| < 2/r. Then

f (IV log ul )™ dx < c 0pam)(2/7) + € 0uroap(Vplog IVpl) + ¢ 7" < e P,
Q

since r’™ ~ rP2# for x € 2B. By the Poincaré inequality [10, Proposition 8.2.8],

_ p(x)
f(u) dx < cfleIp(x) dx + c|B|
B r B

for v € WHPO(B). We apply this to the function v := log u:

1 — (1 px)
JC(M) dx < CJCW log u|p(X) dx + ¢
B B

r

< CJC (IVlog ul 7)™ dx + ¢ < cr P,
Q

Using again #*™® =~ 1”5 on the left hand side, we obtain the claim. O

Remark 4.4. Suppose that p € P°¢(Q). Then we may use Young’s inequality in the
ball B of radius r:

f /1P dx < f PRI+ () dx f |fI dx + 7
B B B

Now we apply this with f = [Vp|log|Vp| and a = %B(n — pg). Then we see that
oroep(Vplog|Vpl) < /77> if Vp € L"log L'(Q), with constant depending on the
L"log L" norm of Vp. For simplicity we therefore move to the latter condition, al-
though also the slightly more general condition gz,0025/(Vplog|Vpl) < ¢’'r"772# would
suffice.

Theorem 4.5. Let p € P°2(Q) with Vp € L"log L"(Q) and 1 < p~ < p* < oco. Ifu is
a non-negative supersolution of (%), then there exists a > 0 such that

1 1

(fBua dx); < c(ﬁu—“dx)ﬁ

for every ball B with 3B € Q. The constants ¢ and a depend only on diamQ, p~,
P*, ciog(p) and the norm of Vp.

Proof. By Remark 4.4, the conditions of the previous corollary are satisfied, so we
obtain

fllogu — (log u)3| dx < f|logu — (log u)3|pm +ldx<ec.
B B

Therefore, logu € BMO(B) uniformly whenever 3B € Q. Thus the standard proof
applies. For completeness we include some details.

The measure theoretic John—Nirenberg Lemma (see for example [18, Corol-
lary 19.10, p. 371 in Dover’s edition] or [28, Theorem 1.66, p. 40]) implies that
there exist positive constants @ and ¢ depending on the BMO-norm such that

fe(llf—fsl dx <c,
B

where f :=logu. Using this we can conclude that

2
fe"f dxfe’“f dx = JCe”(f’f’*) dxfe’“(f’f’*) dx < (JCe”'f’f'" dx) <c,
B B B B B

which implies that

1/a 1/a —1/a -1/a
(qu”dx) =(fe“fdx) <c(fe_“fdx) =c(fu_"dx) . |
B B B B
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Proof of the Harnack Inequality, Theorem 1.2. If B is so small that the conditions
of Theorem 3.5 and Theorem 3.8 hold, then the claim follows immediately from
these two results and Theorem 4.5. If this is not the case, B can nevertheless be
covered by a finite number of balls in which the conditions hold. Moreover, the
number of balls needed depends only on the given parameters, n, p~, p* and ciog(p).

Therefore we obtain the claim in this case by combining the claims over the small
balls. O

If we only combine Theorems 3.5 and 4.5, then we arrive at the weak Harnack
inequality for supersolutions:

Theorem 4.6 (The Weak Harnack Inequality). Let Q c R" be a bounded domain;
let p € P°%(Q) be as in Theorem 1.2. Then there exists @ > 0 such that

1

( u® dx) < ¢ essinf u(x),
2B xeB

for balls B with 2B € Q and non-negative supersolutions u of (x). The constant ¢
is independent of the function u.

If u(xp) = 0, then the Weak Harnack Inequality implies that JCZB u®dx = 0, hence
u =0 in 2B since u > 0. Thus the set {u = 0} is open. As in [17, Theorem 4.1],
we can prove that the supersolution is lower semi-continuous, so that {# = 0} is
closed. This directly implies the strong minimum principle, Corollary 1.3 also for
supersolutions.

5. GLOBAL INTEGRABILITY

Now we also have all the tools necessary to prove global integrability of non-
negative supersolutions of (%). Recall that this result is not known for the p(:)-
Laplacian; it cannot be derived from (1.1), since the constant in this inequality
depends on the norm of u in the first place.

In fact, all the arguments have already been laid out by Lindqvist in [25]. For
completeness, we reiterate the most pertinent parts.

A Hélder domain Q is a proper subdomain of R” in which

dist(xg, 0Q)
dist(x, 0Q)
for some xp € D and every x € D. Here kg denotes the quasihyperbolic metric,

. ds(z)
=inf | ———
ka(x,y) = in fy T,

where the infimum is taken over rectifiable paths in Q joining x and y and the
integration is with respect to arc-length. We refer to [27] for an up-to-date overview
of this class of domains; but note that for instance every John domain is a Holder
domain. The name comes from the fact that in the plane a simply connected domain
is a Holder domain if and only if its Riemann mapping is Holder continuous.

For our purposes we only need a result by Lindqvist, which relies on a character-
ization of Hélder domains by Smith and Stegenga [38]. The BMO norm is defined
for f € LIIOC(Q) by

ka(x, x0) < c log

1l = sup f f — faldx.
BeQ JB

Lemma 5.1 (Lemma 3.7, [25]). Suppose that Q c R" is a Holder domain. If
feLl (Q) and||fll.q < o, then f € L'(Q) and

loc
feoleistlocs
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for some a depending on n and the Hélder domain constant.
Thus we are prepared to prove the global integrability.

Proof of Theorem 1.5. Following Lindqvist [25], we observe that it was shown in
[39, Corollary 2.26] that

Ifll.o < sup f!f ~ foldx
2BcQ JB

for some constant ¢ depending on n. We saw in the proof of Theorem 4.5 that the
right hand side of this inequality is bounded for f = logu. Therefore ||logu|l.q <
Q < oo. Thus, by Lemma 5.1,

f exp(%llogu — (log w)a)dx < 2.
Q

In particular, it follows that (logu)q is finite. Thus we obtain

Ji;u% dx = Jgexp(%logu)dx < Jgexp(%llogu— (logu)gl)exp<%|(logu)gl)dx
< 26Xp(%|(10g u)g|). |
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