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Abstract

The Phragmén-Lindelöf theorem on unbounded domains is studied for subsolutions of variable expo-
nent p(·)-Laplace equations of homogeneous and nonhomogeneous types. The discussion is illustrated by
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at infinity. Our approach gives some new results also in the setting of p-Laplacian and harmonic operator.
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1 Introduction

In this paper we study the growth of p(·)-harmonic subsolutions on unbounded domains in Rn. Let u be a
local weak subsolution in an unbounded domain Ω of either

div(|∇u|p(·)−2∇u) = 0 (1.1)

or
div(|∇u|p(·)−2∇u) = f(x, u,∇u),

under suitable assumptions on function f . For solutions of such equations we investigate the asymptotic
behavior of u in Ω∩BR for large radii R, where BR denotes the ball of radius R centered at the origin. The
prototype for our studies is the following classical Phragmén-Lindelöf theorem in the plane [26].

Let u be a subharmonic in the upper half plane and let limz→R+ u(z) ≤ 0. Then either u ≤ 0 in the whole
upper plane or it holds that

lim inf
R→∞

sup|z|=R u(z)

R
> 0.

This result was extended to the setting of elliptic equations of second order in [11, 29], has been studied
for elliptic equations in general domains [30], fully nonlinear equations [4, 5], as well as in the context
of Riemmanian manifolds [24], see also [16, 17] for some further generalizations of the Phragmén-Lindelöf
alternative. As for relation to applied sciences let us mention that the Phragmén-Lindelöf principle is
connected to the so-called Saint-Venants Principle in elasticity theory (for more details see e.g. [15]).

One of the most fundamental equations of nonlinear analysis is the p-harmonic equation:

div(|∇u|p−2∇u) = 0 1 ≤ p ≤ ∞.

The importance of this equation comes among others from the fact that it is a natural nonlinear generalization
of harmonic functions (p = 2), has variational characterization in terms of p-Dirichlet energy; also appears
in numerous areas of pure and applied mathematics to mention for example differential geometry, viscosity
solutions (especially the case p = ∞), relation to quasiregular mappings, nonlinear eigenvalue problems.
One also studies generalizations of p-harmonic functions on metric spaces. As for applied sciences p-Laplace
equation is used as a model equation in nonlinear elasticity theory, glaciology, stellar dynamics, description
of flows through porous medias.

∗Most of the work was done during the authors appointment at Department of Mathematics, Linköping University, Linköping,
Sweden
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Another recently blooming area in nonlinear analysis is the theory of PDEs with nonstandard growth
(variable exponent analysis) and related energy functionals. Equation (1.1) serves as the model example.
Here p is a measurable function p : Ω → [1,∞] called variable exponent while solutions naturally belong
to appropriate Musielak-Orlicz space (see Preliminaries). Apart from interesting theoretical considerations
such equations naturally arise, for instance, as a model for thermistor [32], in fluid dynamics [8], in the study
of image processing [6] and electro-rheological fluids [1]; see [13] for a recent survey and further references,
see also the monograph [28], where the role of (non)homogeneous p(·)-Laplace equations in applications
is discussed in more details. Despite the symbolic similarity to the constant exponent equations, various
unexpected phenomena may occur when the exponent is a function, for instance the minimum of the p(·)-
Dirichlet energy may not exist even in the one-dimensional case for smooth functions p; also smooth functions
need not to be dense in the corresponding variable exponent Sobolev spaces.

Several features of equation (1.1) have been studied, for example the regularity theory, potential theory,
Harnack type estimates and boundary regularity to mention just few (see [13] and references therein). Such an
equation has, however, many disadvantages comparing to the p = const case, for instance: lack of scalability
of solutions, nonhomogeneous Harnack inequality with constant depending on solution. These often make the
analysis of nonstandard growth equation difficult and lead to technical and nontrivial estimates (nevertheless,
see [2, 3] and Remark 3.4 below for a variant of equation (1.1) that overcomes some of the described difficulties,
the so-called strong p(·)-harmonic equation).

We would like now to discuss the state of art for the problem in the case of the Phragmén-Lindelöf
principle for p-Laplacian and explain some difficulties arising when extending known approaches to the
variable exponent setting. Lindqvist in [21] proved the principle for special domains of type Rn \ Hq,
where Hq is a q-dimensional hyperplane. This approach relies on n-harmonic measures and the comparison
principle. Unfortunately, the same technique cannot be applied in our setting due to the lack of scalability
for p(·)-harmonic equation and lack of similar relations between n-harmonic measures and p(·)-harmonic
operator. Nevertheless, by using our approach, in Corollary 3.5 we retrieve part of Theorem 4.6 in [21] as a
special case of one of our main results, Theorem 3.3. Another interesting approach toward the Phragmén-
Lindelöf principle was taken by Granlund [12] and is based on de Giorgi type estimates and their iterations.
The corresponding estimates for the p(·)-harmonic operator are non-homogeneous and their iterations do
not lead to the desired result as in [12]. Results by Jin and Lancaster discussed in [16], although applicable
to wide class of quasilinear elliptic equations with C2 solutions, cannot be directly used in our setting as the
p(·)-harmonic functions are, in general, C1,α regular (cf. [9]). As for p-harmonic equations with nontrivial
right-hand side we mention work of Kurta [20], where the Phragmén-Lindelöf theorem is proven for |∇u|
together with existence results for nontrivial solutions (see also [22]).

Organization of the paper

In Section 2 we recall basic facts and properties of variable exponent spaces, variational capacities and
p(·)-harmonic functions.

Section 3 is devoted to studying the main result of the paper, namely the Phragmén-Lindelöf theorem
for subsolutions of homogeneous p(·)-harmonic equation. Our approach is based on developing an energy
estimate for the norm of the gradient of p(·)-harmonic subsolution. Such estimate carries information about:
(a) impact of the rate of growth of variable exponent p(·); (b) size of the underlying domain expressed in
terms of capacity; (c) porosity of the domain. Under growth assumptions on the exponent we provide a
general condition implying the assertion of theorem and illustrate discussion by a number of corollaries for
domains typically appearing in the context of the Phragmén-Lindelöf alternative: a half space, an angular
sector, a domain narrowing at infinity.

In Section 4 we present the corresponding results for nonhomogeneous p(·)-harmonic equation. Our
approach gives some new results also in the setting of p-Laplacian and harmonic functions, see Corollaries 4.4
and 4.5.

To the best of our knowledge the Phragmén-Lindelöf theorem has not been studied before in the context
of p(·)-harmonic functions. With our work we hope to start the studies of the maximum principles in
unbounded domains for equations with nonstandard growth.

2 Preliminaries

Let Ω be an unbounded open set in Rn. Denote Br = B(0, r) an open ball in Rn centered at the origin
with radius r > 0. Furthermore, let dx stand for the n-dimensional Lebesgue measure, λn−1(A) denotes the
(n− 1)-dimensional measure of a set A, while by fA we denote the integral average of function f over set A,
that is

fA :=

∫
A

fdx =
1

|A|

∫
A

fdx.
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A measurable function p : Ω → [1,∞] is called a variable exponent, and we denote

p+A := ess supx∈A p(x), p−A := ess infx∈A p(x), p+ := p+Ω and p− := p−Ω

for A ⊂ Ω. If A = Ω or if the underlying domain is fixed, we will often skip the index and set pA = pΩ = p.
For background on variable exponent function spaces we refer to the monograph [7].

In this paper we deal with bounded variable exponent functions, that is we assume that

1 < p− ≤ p(x) ≤ p+ <∞ for almost every x ∈ Ω.

The set of all such exponents in Ω will be denoted P(Ω). We define a (semi)modular on the set of measurable
functions by setting

ϱLp(·)(Ω)(u) :=

∫
Ω

|u(x)|p(x) dx;

here we use the convention t∞ = ∞χ(1,∞](t) in order to get a left-continuous modular, see [7, Chapter 2]

for details. The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable functions u : Ω → R for
which the modular ϱLp(·)(Ω)(u/µ) is finite for some µ > 0. The Luxemburg norm on this space is defined as

∥u∥Lp(·)(Ω) := inf
{
µ > 0 : ϱLp(·)(Ω)

(
u
µ

)
≤ 1
}
.

Equipped with this norm, Lp(·)(Ω) is a Banach space. The variable exponent Lebesgue space is a special
case of Musielak-Orlicz space, cf. [19]. For a constant function p it coincides with the standard Lebesgue
space. Often it is assumed that p is bounded, since this condition is known to imply many desirable features
for Lp(·)(Ω).

There is no functional relationship between norm and modular, but we do have the following useful
inequality:

min
{
ϱLp(·)(Ω)(u)

1

p− , ϱLp(·)(Ω)(u)
1

p+

}
≤ ∥u∥Lp(·)(Ω) ≤ max

{
ϱLp(·)(Ω)(u)

1

p− , ϱLp(·)(Ω)(u)
1

p+

}
. (2.1)

If E is a measurable set of finite measure and p and q are variable exponents satisfying q ≤ p, then Lp(·)(E)

embeds continuously into Lq(·)(E). In particular, every function u ∈ Lp(·)(Ω) also belongs to Lp−
Ω (Ω). The

variable exponent Hölder inequality takes the form∫
Ω

uv dx ≤ 2 ∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω), (2.2)

where p′ is the point-wise conjugate exponent, 1/p(x) + 1/p′(x) ≡ 1.
For the sake of completeness of discussion let us also observe that both the pointwise Young inequality

and its parameter variant hold also in the variable exponent setting for a fixed ϵ ∈ (0, 1]:∫
Ω

u(x)v(x) dx ≤
∫
Ω

ϵp(x)

p(x) u(x)
p(x) dx+

∫
Ω

ϵ−p′(x)

p′(x) v(x)
p′(x) dx. (2.3)

A function α defined in a domain Ω is said to be locally log-Hölder continuous if there is constant c1 > 0
such that

|α(x)− α(y)| ≤ c1
log(e+ 1/|x− y|)

for all x, y ∈ Ω. We also assume that α satisfies log-Hölder decay condition if there exist constants α∞ and
c2 > 0 such that

|α(x)− α∞| ≤ c2
log(e+ |x|)

for all x ∈ Ω. We say that α is globally log-Hölder continuous if it is both locally log-Hölder continuous and
satisfies the decay condition. The maximum max{c1, c2} is called the log-Hölder constant. In what follows
for the sake of simplicity we will omit word globally and use term log-Hölder continuous instead.

We denote p ∈ P log(Ω) if 1/p is log-Hölder continuous and the log-Hölder constant is denoted by clog(p).
By [7, Remark 4.1.5] we know that, since variable exponent p is assumed to be bounded, p ∈ P log(Ω) if and
only if p is log-Hölder continuous.

The variable exponent Sobolev space W 1,p(·)(Ω) consists of functions u ∈ Lp(·)(Ω) whose distributional
gradient ∇u belongs to Lp(·)(Ω). The variable exponent Sobolev space W 1,p(·)(Ω) is a Banach space with
the norm

∥u∥Lp(·)(Ω) + ∥∇u∥Lp(·)(Ω).
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In general, smooth functions are not dense in the variable exponent Sobolev space [7, Section 9.2], but the
log-Hölder condition suffices to guarantee that they are [7, Section 8.1]. In this case, we define the Sobolev

space with zero boundary values, W
1,p(x)
0 (Ω), as the closure of C∞

0 (Ω) in W 1,p(·)(Ω).
Below we will also use the notion of variational capacity (capacity of condenser) of a subset considered

with respect to a surrounding set. We refer to [14, Chapter 2] for a comprehensive discussion of capacity
in the constant exponent case and to [7, Chapter 10] for a corresponding presentation of capacities in the
variable exponent setting.

Suppose that K is a compact subset of Ω. We denote

W (K,Ω) := {u ∈ C∞
0 (Ω) : u ≥ 1 on K}.

Let p = const. We define

capp(K,Ω) := inf
u∈W (K,Ω)

∫
Ω

|∇u|p dx. (2.4)

Among properties of such a capacity let us mention that it is a monotone and subadditive set function. Also
a set of zero capacity has zero measure. However, the opposite need not to hold and hence capacity provides
us with a finer tool to discuss the measure theoretic properties of Sobolev functions than the Lebesgue
measure. In Section 3 we will use capacity estimates for annuli in Rn. For the readers convenience we recall
them now (cf. 2.11 in [14]).

Let 0 < r < R <∞. Then for x0 ∈ Rn it holds that

capp(B(x0, r), B(x0, R)) ≤

{
ωn−1(

|n−p|
p−1 )p−1|R

p−n
p−1 − r

p−n
p−1 |1−p p ̸= n

ωn−1(log
R
r )

1−n p = n.

In particular for R = 2r we have that

capp(B(x0, r), B(x0, 2r)) ≤ c1(n, p)r
n−p (2.5)

for all p > 1.
The main differential operator studied in this paper is the so-called p(·)-Laplacian ( p(·)-harmonic oper-

ator) ∆p(·).

Definition 2.1. We say that a function u : Ω → R such that u ∈ W
1,p(·)
loc (Ω) is p(·)-harmonic if it satisfies

p(·)-harmonic equation
−∆p(·)u := −div(|∇u|p(·)−2∇u) = 0 in Ω

in the weak sense, i.e. ∫
Ω

|∇u(x)|p(x)−2⟨∇u(x),∇ϕ(x)⟩ dx = 0, (2.6)

for all ϕ ∈ C∞
0 (Ω).

For a survey of results for p(·)-harmonic equation and for further references see e.g. [13].
In a similar way we define a weak subsolution of p(·)-harmonic equation (called for short p(·)-subsolution)

as satisfying ∫
Ω

|∇u(x)|p(x)−2⟨∇u(x),∇ϕ(x)⟩ dx ≤ 0, (2.7)

for all ϕ ∈ C∞
0 (Ω) such that ϕ ≥ 0 in Ω.

Throughout the paper by c and C we denote generic constants, whose values may change between
appearances even within a single line.

3 A Phragmén-Lindelöf theorem for p(·)-harmonic subsolutions

The purpose of this section is to discuss one of the main results of the paper, a Phragmén-Lindelöf type
theorem for p(·)-subsolutions on unbounded domains (see Remark 3.4 for a variant of this result for the strong
p(·)-Laplacian). Upon showing theorem we discuss number of its applications including domains previously
studied in the literature. We also compare our results to these known in the case p = const. Our results
are new in the variable exponent case and generalize these for the constant exponent case. Furthermore, for
some domains discussed previously we partially retrieve assertions known for p = const and obtain results
not known even in that case, see Section 3.3 and Remark 3.8.
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3.1 Function τ

The growth of a solution to PDE considered on an unbounded set depends among others on the geometry of
this set. For instance, we expect that there should be a difference in the behavior of solution depending on
how porous a domain Ω is or on the ratio of volume of Ω to the volume of ball BR for large radii R. Below
we propose a candidate for a function that captures some density properties. Such a function will be used
in constructing test functions in the proof of Phragmén-Lindelöf theorem for p(·)-harmonic equation.

Fix R > 1 and c > 0. We define

τ cR(|x|) := R
−

∫ |x|
0

λn−1(Ω∩St)

λn−1(St)
dt

for |x| ≥ c (3.1)

and set τ cR(|x|) := τ cR(c) for |x| < c. In what follows R and c will be often fixed or their values will be clear
from the context of the presentation, and so we will omit them in the definition of τ and write τ cR = τ . Next,
denote

ρΩ(t) :=
λn−1(Ω ∩ St)

λn−1(St)
,

ρ−Ω(|x|) := ess inf0≤t≤|x|
λn−1(Ω ∩ St)

λn−1(St)
and ρ+Ω(|x|) := ess sup0≤t≤|x|

λn−1(Ω ∩ St)

λn−1(St)
.

One can interpret ρ−Ω(|x|) and ρ
+
Ω(|x|) as, respectively, lower and upper density functions of (n−1)-dimensional

cross-cuts of Ω by the sphere of radius t.
In our studies we will be mainly interested in behavior of solutions for large radii. Therefore, without

much loss of generality we may assume that domain Ω satisfies that

ρ−Ω(c) = ρ+Ω(c) = ρΩ(c), (3.2)

which holds if ρΩ(t) is constant for t ≤ c (see Example 3.2).

Since λn−1(Ω∩St)
λn−1(St)

∈ [0, 1] for all t > 0, it holds that

1

R
≤ τ(|x|) < 1 for all x ∈ Ω. (3.3)

Remark 3.1. The definition of τ was inspired by a work of Miklyukov, who also proved a variant of the
Phragmén-Lindelöf principle for a class of A-harmonic equation, see [23].

Let us illustrate the presentation by computing τ for some domains.

Example 3.2. Denote x = (x1, . . . , xn) a point in Rn.

(1) Let Ω be a half-space in Rn, i.e. Ω = {x ∈ Rn : x1 ≥ 0}. Then λn−1(Ω∩St)
λn−1(St)

= 1
2 for all t > 0. Hence

τ(|x|) = R− 1
2 for all x ∈ Ω and c = 0.

(2) Let Ω be an angular sector in Rn with angle α, then τ(|x|) = R−α.

(3) If Ω is a cone in Rn with angle 0 < α ≤ π, then τ(|x|) = R
1
2 (1−cos α

2 ).
(4) Let Ω be an infinitely long strip in R2 of width h ≥ 1, Ω = {x ∈ R2 : 0 ≤ x2 ≤ h}. Then

τhR(|x|) = τ(|x|) =

{
R− 1

2 , 0 ≤ |x| ≤ h,

R− 1
2

h
|x|−

1
|x|

∫ |x|
h

1
π arcsin h

t dt, |x| > h.

In the proof of Theorem 3.3 below we will use ∇τ and an estimate for |∇τ |. If |x| ≥ c, then

∇τ(|x|) = τ(|x|) lnR

[
1

|x|

∫ |x|

0

λn−1(Ω ∩ St)

λn−1(St)
dt− 1

|x|
λn−1(Ω ∩ S|x|)

λn−1(S|x|)

]
x

|x|
. (3.4)

With the above notation we have that

|∇τ(|x|)|
τ(|x|)

≤ max{ρ+Ω(|x|)− ρΩ(|x|), ρΩ(|x|)− ρ−Ω(|x|)}
lnR

|x|
≤
(
ρ+Ω(|x|)− ρ−Ω(|x|)

) lnR
|x|

for |x| ≥ c. (3.5)

By (3.3) and (3.5) we have that τ,∇τ ∈ L∞
loc(Ω). By (3.2) and (3.5) we see that lim|x|→c+ |∇τ(|x|)| = 0.

Note also, that under assumption (3.2) it holds that |∇τ(|x|)| ≡ 0 for |x| < c. Hence, we conclude that
τ ∈W 1,∞

loc (Ω).
Estimate in (3.5) can be improved if we additionally use the fact that lnR ≤ Rα for some 0 < α < 1 and

R large enough (in fact for R ≥ α− 1
α ). In what follows we will take α = 1

2 . Hence (3.5) becomes

|∇τ |
τ

≤ 1

|x|
Rα(ρ+

Ω(|x|)−ρ−
Ω (|x|)) =

1

|x|
R

1
2

(
ρ+
Ω(|x|)−ρ−

Ω (|x|)
)
. (3.6)
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3.2 The main theorem

In this section we prove the main result of this paper, namely the Phragmén-Lindelöf theorem for p(·)-
subsolutions in an unbounded domain.

Let p : Ω → (1,∞) be a bounded log-Hölder continuous variable exponent function such that p− ̸= n−1.
Furthermore, suppose that p ≡ const on Bc, where c is a constant in (3.1), and ∇p satisfies the following
decay condition for some given cp > 0 and 0 ≤ αp <∞ such that αp ̸= n

p− :

|∇p(x)| ≤ cp|x|−αp for all |x| > c, x ∈ Ω. (3.7)

Theorem 3.3. Let Ω be an unbounded domain in Rn and u be a p(·)-subsolution as in (2.7). Moreover, let
p satisfy conditions (3.7) and suppose that limΩ∋x→∂Ω u(x) ≤ 0. Denote

mR := ess supx∈Ω∩BR
τ(|x|)(u+(x))

p(x).

Then either u ≤ 0 in Ω or

lim inf
R→∞

mR

Rγ
> 0, (3.8)

for any γ such that limR→∞ Γ(R) = 0, where

Γ(R) := R1+γ
(
Rn−p−αp +R

1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
+n−p−

(3.9)

+ max
{
cap

p−/p+

p+ (Ω ∩BR,Ω ∩B2R), capp+(Ω ∩BR,Ω ∩B2R)
}
R

n−n p−

p+
)
.

Proof. Suppose that u(x0) > 0 for some x0 ∈ Ω. By the maximum principle for p(·)-Laplacian (cf. Theorem
3.4 in [10]) and the assumption that limΩ∋x→∂Ω u(x) ≤ 0, we know that there exists an unbounded component
of Ω containing x0 such that u > 0 inside. For the sake of simplicity of notation denote this component Ω.
Define a test function

ϕ(x) = η(x)p(x)τ(|x|)u+(x),

where:

1. η ∈ C∞
0 (Ω ∩B2R);

2. 0 ≤ η ≤ 1, and η ≡ 1 on BR ∩ supp η.

It is easy to see, that

∇ϕ = u
+
τηp(·) ln η∇p+ p(·)u

+
τηp(·)−1∇η + ηp(·)τ∇u

+
+ u

+
ηp(·)∇τ. (3.10)

Using ϕ as a test function in (2.7) we obtain the following inequality:∫
Ω∩B2R

|∇u+ |p(x)τ(|x|)ηp(x) ≤
∫
Ω∩B2R

|∇u+ |p(x)−1|ηp(x) ln η|u+ |∇p|τ(|x|)

+

∫
Ω∩B2R

p(x)|∇u+ |p(x)−1ηp(x)−1|∇η|u+τ(|x|) (3.11)

+

∫
Ω∩B2R

|∇u+ |p(x)−1ηp(x)−1u+ |∇τ |η.

Denote integrals on the right-hand side of (3.11) by I0, I1 and I2 respectively. Using the Young inequality
(2.3) for some ϵ ∈ (0, 1), whose value will be determined later in the proof, we easily estimate I0 as follows.

I0 ≤
∫
Ω∩B2R

(
ϵ|∇u+ |p(x)−1ηp(x)−1τ

p(x)−1
p(x)

)(
ϵ−1η

1
2u+ |∇p|τ

1
p(x)
)

(3.12)

≤
∫
Ω∩B2R

ϵ
p(x)

p(x)−1
p(x)

p(x)−1 |∇u+ |p(x)τ(|x|)ηp(x) +
∫
Ω∩B2R

ϵ−p(x)

p(x) u
p(x)
+

|∇p|p(x)τη
p(x)
2 .

In order to estimate integral I1 we use again the Young inequality.

I1 ≤
∫
Ω∩B2R

p(x)
(
|∇u+ |p(x)−1ηp(x)−1τ

p(x)−1
p(x)

)(
u+τ

1
p(x) |∇η|

)
(3.13)

≤
∫
Ω∩B2R

δ
p(x)

p(x)−1 (p(x)− 1)|∇u+ |p(x)τηp(x) +
∫
Ω∩B2R

δ−p(x)up(x)
+

τ |∇η|p(x).
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Similarly, we obtain that

I2 ≤
∫
Ω∩B2R

(
|∇u+ |p(x)−1ηp(x)−1τ

p(x)−1
p(x)

)(
u+ |∇τ |τ

1−p(x)
p(x) η

)
(3.14)

≤
∫
Ω∩B2R

σ
p(x)

p(x)−1
p(x)−1
p(x) |∇u+ |p(x)τηp(x) +

∫
Ω∩B2R

σ−p(x)

p(x) u
p(x)
+

ηp(x)|∇τ |p(x)τ1−p(x).

We use inequalities (3.12)-(3.14) in estimate (3.11) and choose ϵ, δ, σ ∈ (0, 1) so that integrals with |∇u+ |p(x)
can be included into the left-hand side of (3.11). Hence, we arrive at the following inequality:

c(p−, p+)

∫
Ω∩B2R

|∇u+ |p(x)τηp(x) ≤
∫
Ω∩B2R

up(x)
+

|∇p|p(x)τη
p(x)
2

+

∫
Ω∩B2R

up(x)
+

τ |∇η|p(x) (3.15)

+

∫
Ω∩B2R

up(x)
+

τ

(
|∇τ |
τ

)p(x)

ηp(x).

Next, we estimate three integrals in (3.15). Each of them corresponds to a different feature of the
discussed problem: the first integral captures impact of the rate of growth of variable exponent, the second
integral describes the size of set Ω expressed in terms of capacity (see below). Finally, the third integral
carries information about change in amount of Ω contained in ball B2R expressed in terms of function τ.

Definition of mR results in the following inequality:∫
Ω∩B2R

u
p(x)
+ |∇p|p(x)τη

p(x)
2 (3.16)

≤ m2R

∫
Ω∩B2R

|∇p|p(x) dx

≤ m2R cp

∫ 2R

c

λn−1(Ω ∩ Sn−1
t )t−p−αpdt,

where in the last estimate we have used spherical coordinates and the growth condition (3.7) for ∇p. Simple
integration gives us that (3.16) is bounded by the following expression.∫

Ω∩B2R

up(x)
+

|∇p|p(x)τη
p(x)
2 ≤

{
cm2RR

n−p−αp if αp ̸= n
p−

cm2R lnR if αp = n
p− .

(3.17)

Here, constant c depends on cp, p
−, αp, n and ωn−1, the measure of the unit (n− 1)-dimensional sphere.

In order to estimate the second integral we employ variational capacity (see Preliminaries (2.4)). By the
variable exponent Hölder inequality (2.2) and the unit ball property (2.1), applied to norms of ∇η and a
unit constant function, we have that∫

Ω∩B2R

|∇η|p(x) ≤ 2∥∇η∥
L

p+

p(·) (Ω∩B2R)

∥1∥
L

p+

p+−p(·) (Ω∩B2R)

(3.18)

≤ 2max
{( ∫

Ω∩B2R

|∇η|p
+)p−/p+

,

∫
Ω∩B2R

|∇η|p
+}

max
{
1, |Ω ∩B2R|

p+−p−

p+
}
.

Here we have also used the convention that 1
∞ := 0. Since this estimate holds for any test function η defined

in the beginning of this proof it holds also if we take infimum over all such η. Thus for R ≥ 1 we obtain:∫
Ω∩B2R

|∇η|p(x)≤ 2cmax
{
cap

p−/p+

p+ (Ω ∩BR,Ω ∩B2R), capp+(Ω ∩BR,Ω ∩B2R)
}
R

n(1− p−

p+
)
. (3.19)

Notice that a priori we cannot improve the above capacity estimate, since we do not have any additional
information about how substantial is an amount of Ω contained in large balls. For this reason we will leave
estimate (3.19) in that form and instead be more specific in the illustrative results (see Section 3.3). In order
to improve the clarity of the presentation we denote the expression on the right hand side of inequality (3.19)
by capR.

Finally we estimate the third integral in (3.15). Using properties (3.2) and (3.6) of τ we have that∫
Ω∩B2R

up(x)
+

τ
|∇τ |p(x)

τp(x)
ηp(x) ≤ m2R

∫
Ω∩B2R\(Ω∩Bc)

(
1

|x|
R

1
2

(
ρ+
Ω(|x|)−ρ−

Ω (|x|)
))p(x)

. (3.20)
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We integrate (3.20) using spherical coordinates to obtain that∫
Ω∩B2R

up(x)
+

τηp(x)
|∇τ |p(x)

τp(x)
≤ m2R

∫
Ω∩B2R\(Ω∩Bc)

R
p(x)
2 (ρ+

Ω(|x|)−ρ−
Ω (|x|))|x|−p(x)

≤ m2RR
1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
) ∫ 2R

c

λn−1(Ω ∩ Sn−1
t )t−p−

dt

≤

Cm2RR
1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
+n−p−

p− ̸= n− 1

Cm2RR
1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
lnR p− = n− 1.

(3.21)

Here, constant C depends only on p+, p−, n and the measure of the unit sphere in Rn. Note that by the
properties of τ and η we have that

1

R

∫
Ω∩BR

|∇u+ |p(x) ≤
∫
Ω∩B2R

|∇u+ |p(x)τ(|x|)ηp(x).

Combining this observation together with (3.15), (3.17), (3.19) and (3.21) we arrive at the following inequality.∫
Ω∩BR

|∇u+ |p(x) ≤ c
m2R

Rγ
Γ(R), (3.22)

where

Γ(R) =R1+γ

(
Rn−p−αp +R

1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
+n−p−

+ capR

)
(3.23)

for αp ̸= n
p− and p− ̸= n− 1;

Γ(R) =R1+γ

(
lnR+R

1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
+n−p−

+ capR

)
for αp = n

p− and p− ̸= n− 1;

Γ(R) =R1+γ

(
Rn−p−αp +R

1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
lnR+ capR

)
for αp ̸= n

p− and p− = n− 1;

Γ(R) =R1+γ

(
lnR+R

1
2p

+
(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
lnR+ capR

)
for αp = n

p− and p− = n− 1.

Recall that in the beginning of the proof we have assumed that u(x0) > 0 for some x0 ∈ Ω. First, let
us consider the case αp ̸= n

p− and p− ̸= n − 1. Suppose now, on the contrary to assertion of theorem that

lim infR→∞
m2R

Rγ = 0 and denote {Ri}∞i=1 a sequence of radii along which the liminf is attained. Then for
γ and Γ(R) as in assumption (3.9), and hence (3.23), we have that Γ(Ri) → 0 for Ri → ∞ which gives
the contradiction, since then by (3.22) we get that limRi→∞

∫
Ω∩BRi

|∇u+ |p(x) = 0. Hence ∇u+ ≡ 0 in Ω

and so u+ ≡ const. In a consequence we obtain that u ≤ 0 in Ω (u is locally continuous and our standing
assumption is that the limit of u at the boundary of the underlying domain is non-positive). This contradicts
our initial assumption and completes the proof of theorem in this case.

In order to discuss cases when αp = n
p− or p− = n−1, let us start with observation that using definitions

of m2R and τ we may further estimate (3.22) as follows:

m2R

Rγ
Γ(R) ≤

ess supx∈Ω∩B2R
τ(|x|)(u+(x))

p(x)

Rγ
Γ(R)

≤
ess supx∈Ω∩B2R

(u+(x))
p(x)

Rγ+ρ−
Ω (2R)

Γ(R). (3.24)

If γ + ρ−Ω(2R) is negative for all sufficiently large radii R, then clearly assertion (3.8) is trivially true since
u+ > 0 in Ω. Hence, in order to obtain nontrivial assertion we need to have that γ > − supR ρ

−
Ω(2R) which

is necessary greater than -1, as 0 ≤ ρΩ(t) ≤ 1 for all t.
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However, observe that if αp = n
p− or p− = n − 1 in one of the three above expressions for Γ(R), then

conditions Γ(R) → 0 and γ > −1 cannot both be satisfied. Indeed, having

lim
R→∞

R1+γ lnR = 0 or lim
R→∞

R1+γ+ p+

2

(
ρ+
Ω(2R)−ρ−

Ω (2R)
)
lnR = 0

requires γ < −1. This observation results in the trivial assertion in both cases αp = n
p− or p− = n − 1.

Therefore, theorem holds only for Γ(R) as in (3.23) and so the proof of Theorem 3.3 is completed.

Remark 3.4. In [2] the authors introduced the so-called strong p(·)-Laplacian denoted ∆̃p(·) and studied
the related homogeneous equation and its weak solutions

∆̃p(·) u := div(|∇u|p(·)−2∇u)− |∇u|p(·)−2 ln |∇u|⟨∇u,∇p⟩
= |∇u|p(·)−4

[
(p(·)− 2)∆∞ u+ |∇u|2 ∆u

]
= 0, (3.25)

where ∆∞ stands for the infinity Laplacian. The weak formulation of ∆̃p(·) u = 0 then requires that∫
Ω

|∇u|p(x)−2⟨∇u,∇ϕ⟩ dx+

∫
Ω

|∇u|p(x)−2 log(|∇u|)⟨∇u,∇p⟩ϕdx = 0 (3.26)

for all ϕ ∈ W
1,p(·)
0 (Ω). This equation, like the p(·)-harmonic, reduces to the ordinary p-Laplace equation

when p is constant.
Such an equation has many advantages comparing to the p(·)-harmonic one studied here: scalability of

solutions, homogeneous Harnack inequality with constant independent on solution [3], relations to quasireg-
ular mappings in the plane, the infinity Laplacian and viscosity solutions [2] (see also [18], [25] and [31] for
some further studies on this equation).

The theorem of Phragmén-Lindelöf type can also be proven for subsolutions of the strong p(·)-Laplace
equation − ∆̃p(·) ≤ 0. The formulation and the proof are similar to these of Theorem 3.3 and, therefore, we
will not present the details. Instead, we will comment the major changes one has to introduce in the proof
of Theorem 3.3.

Consider test function ϕ as defined in the proof of Theorem 3.3 with∇ϕ as in (3.10). The weak formulation

of − ∆̃p(·) ≤ 0 for ϕ reads∫
Ω∩B2R

|∇u|p(x)−2⟨∇u,∇ϕ⟩ ≤ −
∫
Ω∩B2R

|∇u|p(x)−2 ln |∇u|⟨∇u,∇p⟩ηp(x)u+τ. (3.27)

Hence, the counterpart of inequality (3.11) has one additional term∫
Ω∩B2R

|∇u+ |p(x)−1+ϵ|∇p|ηp(x)u+τ. (3.28)

Here we have estimated ln |∇u| ≤ |∇u|ϵ for some fixed 0 < ϵ ≤ 1. Applying the Young inequality we obtain
the following estimate of (3.28)

δ

∫
Ω∩B2R

|∇u|p(x)τηp(x) + δ
− p+

1−ϵ

∫
Ω∩B2R

(u− k)

p(x)
1−ϵ
+ |∇p|

p(x)
1−ϵ τηp(x) (3.29)

for some 0 < δ < 1. The resulting estimates of (3.29) are then similar to these for integral I0, cf. (3.16) and
(3.17).

3.3 Applications of Theorem 3.3

In the previous section we formulate and prove Theorem 3.3, a variable exponent analog of the classical
Phragmén-Lindelöf theorem, where the growth condition at infinity for a p(·)-harmonic function u on an
unbounded domain Ω has been expressed in terms of a general condition (3.9). The purpose of this section is
to illustrate Theorem 3.3 with examples of domains typically appearing in the context of Phragmén-Lindelöf
theorem, such as half-space, sectors and domains narrowing at infinity.
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3.3.1 The Phragmén-Lindelöf principle for a half-space

Denote Rn
+ the half-space in Rn, i.e. set Rn

+ = {(x1, . . . , xn) ∈ Rn : x1 ≥ 0} (see also Example 3.2).

Corollary 3.5. Let u be a p(·)-subsolution of (2.7) in Rn
+. Suppose that variable exponent p, ∇p and αp

satisfy set of assumptions (3.7), u(x0) > 0 for some x0 ∈ Ω and limΩ∋x→∂Ω u(x) ≤ 0.
If p+ ≥ n and αp satisfies

0 ≤ αp ≤ p+

p− + n
p−

(
p−

p+ − 1
)

(3.30)

then

lim inf
R→∞

ess supx∈Ω∩B2R
(u+(x))

p(x)

Rγ
> 0, (3.31)

for any γ ≤ p−αp − n− 1
2 . A necessary condition for γ > 0 is that αp >

2n+1
2p− . In particular, if αp >

2n+3
2p− ,

then one can take γ = 1.

If p+ < n and (3.30) is satisfied, then theorem holds under additional assumption that 1 ≤ p−

p+ + p+

n .
Otherwise, if

αp >
p+

p− + n
p−

(
p−

p+ − 1
)
, (3.32)

then the assertion of theorem holds for γ < p+ − 1
2 + n(p

−

p+ − 2). A necessary condition for γ > 0 is that
p−

p+ > 2 + 1
2n − p+

n .

In particular, if n = 2 and p− > max{ 7
2αp

, p
+

4 (11−2p+)}, then γ = 1 and we retrieve the growth condition

of classical Phragmén-Lindelöf theorem for harmonic functions in R2
+.

In the special case p− = p+ = p = const, we have that γ = 1 provided that p > n + 3
2 , obtaining part of

the Phragmén-Lindelöf theorem for p-harmonic functions in Rn
+ (Theorem 4.6 in [21]).

Proof. If Ω = Rn
+, then τ ≡ R− 1

2 (cf. Example 3.2) and so ∇τ ≡ 0 and ρ+Ω(2R) = ρ−Ω(2R) = R− 1
2 for all

positive R. Thus, integral (3.20) vanishes and estimate (3.15) consists of only two integrals (also Γ(R) in
(3.9) has only two terms). The capacity estimate for Euclidean annuli (cf. (2.5) and [14, Section 2.11]) reads:

capp+(Rn
+ ∩BR,Rn

+ ∩B2R) ≤

{
cRn−p+

for p+ ̸= n,

(log 2)1−n for p+ = n.
(3.33)

Hence, condition (3.9) in Theorem 3.3 becomes as follows.

R− 1
2Γ(R) = R

1
2+γ+n−p−αp +R

1
2+γ+2n−p+−n p−

p+ → 0 for R→ ∞ and p+ ̸= n,

R− 1
2Γ(R) = R

1
2+γ+n−p−αp +R

1
2+γ+n(1− p−

p+
) → 0 for R→ ∞ and p+ = n.

Therefore for p+ ̸= n it holds that {
γ < − 1

2 − n+ p−αp

γ < − 1
2 − 2n+ p+ + np−

p+ .
(3.34)

Similarly, for p+ = n we have that {
γ < − 1

2 − n+ p−αp

γ < − 1
2 + n(p

−

p+ − 1).
(3.35)

The analysis of systems (3.34) and (3.35) leads to two cases (3.30) and (3.32). If p+ ≥ n, then the upper

bound in (3.30) is always positive. If p+ < n, then one additionally needs to assume that 1 ≤ p−

p+ + p+

n .

Then, the assertion of theorem follows immediately from (3.34) by computations.
By taking n = 2 and γ = 1 in (3.34) we obtain the assertion in the planar case.
If p− = p+ = p = const, then ∇p ≡ 0 and so integral (3.16) vanishes. In such a case the right hand side

of (3.15) consists of one integral only (and hence (3.9) has only one term). As a result system of equations
(3.34) reduces to the second inequality, which reads

γ < − 1
2 − n+ p.

Requiring p > n+ 3
2 allows us to take γ = 1 and the classical p-harmonic case follows immediately.
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Remark 3.6. The above corollary can be given shorter and more compact formulation by the price of the
lesser transparency of the mutual relations between p+, p−, n, αp and γ.

Let u be a p(·)-subsolution of (2.7) in Rn
+. Suppose that variable exponent p, ∇p and αp satisfy set of

assumptions (3.7), u(x0) > 0 for some x0 ∈ Ω and limΩ∋x→∂Ω u(x) ≤ 0. Then (3.31) holds for γ satisfying
the following condition:

γ < min{− 1
2 − n+ p−αp , − 1

2 + p+ + n(p
−

p+ − 2)}. (3.36)

In particular for n = 2 condition (3.36) reads: γ < min{− 5
2 + p−αp , − 9

2 + p+ + 2p−

p+ }, while for p = const

we obtain γ < −1
2 − n+ p.

3.3.2 The Phragmén-Lindelöf principle for an angular sector

In the next observation we discuss the case of an angular sector. For the sake of simplicity and clarity of the
presentation we restrict our discussion to the planar case. Fix 0 < α ≤ 1 and let

Sα := {reit ∈ C : 0 ≤ t ≤ απ}.

Corollary 3.7. Let u be a p(·)-subsolution of (2.7) in Sα. Suppose that variable exponent p and ∇p are as
in (3.7), u(x0) > 0 for some x0 ∈ Ω and limΩ∋x→∂Ω u(x) = 0.
If αp satisfies

4−α
p− < αp ≤ p+

p− + 2
p−

(
p−

p+ − 1
)
, (3.37)

then assertion (3.31) holds for γ < α− 3 + p−αp. A necessary condition for γ > 0 is that αp >
4−α
p− .

If instead αp >
p+

p− + 2
p−

(
p−

p+ − 1
)
, then (3.31) holds for a positive γ provided that

γ < p+ + 2p−

p+ − 9
2 and p− > ( 92 − p+)p

+

2 .

In particular, by (3.37) we have that if αp > (3−α+ 1
α )

1
p− , then γ = 1

α and we retrieve the growth condition

of classical Phragmén-Lindelöf theorem for harmonic functions in Sα, see e.g. [27, Theorem 18, Section 9].

If αp satisfies (3.32), then we get γ = 1
α provided p− > p+

2 ( 92 + 1
α − p+).

In the special case when p− = p+ = p = const, we have that γ = 1
α provided that p > 3− α+ 1

α .

Remark 3.8. The above corollary is new also in the constant exponent case.

Proof of Corollary 3.7. Let Sα be a sector in R2. Then τ ≡ R−α and so ∇τ ≡ 0. The capacity estimate is
the same as in (3.33) with constant c depending additionally on the angle α. The remaining details of the
reasoning are similar to these in Corollary 3.5 and, therefore, are omitted.

Remark 3.9. Similarly to Remark 3.6 we provide an alternative formulation of the above corollary.
Let u be a p(·)-subsolution of (2.7) in Rn

+. Suppose that variable exponent p, ∇p and αp satisfy set of
assumptions (3.7), u(x0) > 0 for some x0 ∈ Ω and limΩ∋x→∂Ω u(x) ≤ 0. Then (3.31) holds for γ satisfying
the following condition:

γ < min{α− 3 + p−αp , α− 5 + p+ + 2p−

p+ }. (3.38)

In particular for p = const we have that γ < α− 3 + p.

3.3.3 The Phragmén-Lindelöf principle for domains narrowing at infinity

In this section we illustrate Theorem 3.3 by discussing the case of a set narrow at infinity. It will turn out
that for such a set impact of capacity term (3.19) on the growth of u for large x is negligible.
Let

Ω = {(x, y) ∈ R2 : x ≥ 0 , −e−x ≤ y ≤ e−x}.

If α denotes angle between the line segment joining the intersection point of the circle St with the curve

y = e−x and x-axis, then tanα = e−t

t and hence

ρΩ(t) =
λn−1(Ω ∩ St)

λn−1(St)
= 2 arctan e−tt−1,

ρ+Ω(2R) = 2 arctan e−1, (3.39)

ρ−Ω(2R) = 2 arctan e−2R(2R)−1.

The Phragmén-Lindelöf theorem for Ω takes the following form.
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Corollary 3.10. Let u be a p(·)-subsolution of (2.7) in Ω. Suppose that variable exponent p and ∇p are as
in (3.7), u(x0) > 0 for some x0 ∈ Ω and limΩ∋x→∂Ω u(x) = 0.
If αp satisfies

0 ≤ αp ≤ 1− p+

p− arctan 1
e (3.40)

then claim (3.31) holds for γ < p−αp − 3. A necessary condition for γ > 0 is that αp >
3
p− .

If αp > 1− p+

p− arctan 1
e , then (3.31) holds for γ < p− − 3− p+ arctan 1

e . A necessary condition for γ > 0

is that p+ < p−−3

arctan
1
e

.

Proof. Using the definition of capacity (2.4) we obtain the following estimate:

capp+(Ω ∩BR,Ω ∩B2R) ≤ cRp+

e−R → 0 for R→ ∞

and therefore condition (3.9) in Theorem 3.3 simplifies significantly. Indeed, since for all γ, p−, p+ the
capacity term in (3.9) approaches 0 when R→ ∞, it holds that

R−ρ−
Ω (2R)Γ(R) = R−2 arctan e−2R(2R)−1

Γ(R) ≤ R1+γ+n−p−αp +R1+γ+n−p−+p+ arctan
1
e .

By (3.39) and (3.5) we know that τ ≤ R−2 arctan
1
e and |∇τ |

τ ≤ 2(arctan 1
e )

lnR
|x| . These observations altogether

imply the assertion of the corollary.

4 The Phragmén-Lindelöf theorem for nonhomogeneous equations

The purpose of this section is to study the Phragmén-Lindelöf type theorems for a class of nonhomogeneous
p(·)-harmonic equations. Similar results for the growth of |∇u| in the constant exponent case were obtained
by Kurta [20]. In the setting of variable exponent our results are new. Moreover, we obtain some results
new also in the setting of p-Laplacian and harmonic functions, see Corollaries 4.4 and 4.5.

4.1 A class of nonhomogeneous equations with nonstandard growth

Let us introduce a class of p(·)-harmonic type equations, which will be the subject of our investigations.
Let f = f(x, t, ξ) : Ω×R×Rn → R+ be a nontrivial function, i.e. f ̸≡ 0 such that f(·, t, ξ) ∈ L1

loc(Ω) for
all (t, ξ) ∈ R× Rn. Consider equation

∆p(·)(u) = f(x, u,∇u). (4.1)

Similarly to the discussion for homogeneous p(·)-harmonic equation weak solutions to equation (4.1) will be
called, within this section, p(·)-harmonic functions.

Definition 4.1. Let Ω ⊂ Rn be open. We say that u ∈ W
1,p(·)
loc (Ω) is a p(·)-subsolution if u satisfies the

following equation in the weak sense:
∆p(·)(u) ≥ f(x, u,∇u).

That is

−
∫
Ω

|∇u|p(x)−2⟨∇u,∇ϕ⟩dx ≥
∫
Ω

f(x, u,∇u)ϕdx, (4.2)

for all nonnegative functions ϕ ∈ C∞
0 (Ω). As for f we further assume that there exists q > n, a constant

c > 1 and an exponent function α : Ω → [1,∞) such that the following inequality holds pointwise for almost
all x ∈ Ω

u(x)f(x, u(x),∇u(x)) ≥ c|u(x)|α(x)
(
1 + |∇u(x)|p

+ p−−α+

α+
q

n−1

)
. (4.3)

If a variable exponent Sobolev function v satisfies the opposite inequality in (4.2), then we call v a
p(·)-supersolution. A function which is both a p(·)-supersolution and p(·)-subsolution is p(·)-harmonic.

Remark 4.2. We would like to point that the similar nonhomogeneous equation can be studied if instead
of ∆p(·) one takes the strong p(·)-Laplacian ∆̃p(·) (see Remark 3.4 or [2] for the definition of strong p(·)-
Laplacian). The same applies to discussion in the next section, namely the growth rate estimate at infinity
can be as well studied for the modified p(·)-Laplacian. We leave such investigations for a future project.
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4.2 The main theorem

Theorem 4.3. Let Ω be an unbounded domain in Rn and u be a p(·)-subsolution as in (4.2) with f satisfying
the growth condition (4.3) with α+ ≤ p−. Suppose that u ≡ 0 on ∂Ω. Denote

mR := ess supx∈Ω∩BR
(1 + |u(x)|)

and choose 1 ≤ δ < p−

α+ .
Then either u ≡ 0 in Ω or

lim inf
R→∞

mR

Rγ
> 0, (4.4)

for any γ such that

γ ≤
(q − n)p

−

p+ + q(p
−

δ − 1)

q(p
+

δ − q−1
q α+)

. (4.5)

Before proving theorem we will discuss some of its consequences and show that Theorem 4.3 generalizes
the case of constant exponent p both in the nonlinear case of p ̸= 2 likewise for the Laplace operator.

Corollary 4.4. Suppose that assumptions of Theorem 4.3 hold. If p+ = p− = p = const and α+ > n
q−1 ,

then in (4.5) one may take γ = 1. In such a case we obtain the nonhomogeneous counterpart of the result
by Lindqvist ([21, Theorem 4.6]) for p-subsolutions.

Proof. If p+ = p− = p, then the p(·)-Laplacian becomes p-Laplace operator and condition (4.3) reads:

uf(x, u,∇u) ≥ c|u|α(x)(1 + |∇u|p
p−α+

α+
q

n−1 ) with α(x) ≤ p for x ∈ Ω. In such a case condition (4.5) takes the

form γ ≤ 1+ (q−1)α+−n

q δ
p−(q−1)α+ . The latter expression equals at least one, provided that α+ > n

q−1 . Hence, we can

choose γ = 1 and retrieve the rate of growth of u as in [21].

Corollary 4.5. Suppose that assumptions of Theorem 4.3 hold. If p = n = 2 and α+ > 2
q−1 , then in (4.5)

one may take γ = 1. In such a case we retrieve the growth estimate of mR as in the classical Phragmén-
Lindelöf theorem for the planar Laplace operator.

Proof. If p = n = 2, then condition (4.3) reads: uf(x, u,∇u) ≥ c|u|α(x)(1 + |∇u|2q(2/α+−1)) for q > 2,
1 ≤ δ < 2

α+ and α(x) ≤ 2 for x ∈ Ω. Moreover, (4.5) takes the form:

γ ≤
2( qδ − 1)

q( 2δ − q−1
q α+)

=
2( qδ − 1)

2( qδ − 1) + 2− (q − 1)α+

and hence γ can be chosen to be equal one, provided that α+ > 2
q−1 .

Remark 4.6. According to our best knowledge Corollaries 4.4 and 4.5 were not known before in the litera-
ture.

Proof of Theorem 4.3. Suppose that u ̸≡ 0 in Ω. By the maximum principle for p(·)-Laplacian (cf. Theorem
3.4 in [10] applied with B ≡ −f) and the assumption that u|∂Ω ≡ 0, we know that there exists an unbounded
component of Ω such that u has a constant sign inside. For the sake of simplicity of notation denote this
component Ω.

Let ψ ∈ C∞
0 (Ω ∩ BR), such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 on Ω ∩ Br for some 0 < r < R. Set s := q

δp
+.

Define ϕ := ψsu. Then
∇ϕ = ψs∇u+ sψs−1u∇ψ. (4.6)

Using this as a test function in (4.2) we get

−
∫
Ω∩BR

|∇u|p(x)ψs −
∫
Ω∩BR

s|∇u|p(x)−2uψs−1⟨∇u,∇ψ⟩ ≥
∫
Ω∩BR

f(x, u,∇u)ψsu. (4.7)

By using the Young inequality (cf. (2.3)) we estimate the second integral on the left-hand side:

−
∫
Ω∩BR

s|∇u|p(x)−2uψs−1⟨∇u,∇ψ⟩

≤
∫
Ω∩BR

(
|∇u|p(x)−δψs

p(x)−δ
p(x)

)(
s|∇u|δ−1ψ

sδ
p(x)

−1|u||∇ψ|
)

≤
∫
Ω∩BR

|∇u|p(x)ψs + s
p+

δ

∫
Ω∩BR

|∇u|p(x)(1− 1
δ )ψs− p(x)

δ (|u||∇ψ|)
p(x)
δ .

13



This, together with (4.7) results in the following inequality:∫
Ω∩BR

f(x, u,∇u)ψsu ≤ s
p+

δ

∫
Ω∩BR

|∇u|p(x)(1− 1
δ )ψs− p(x)

δ (|u||∇ψ|)
p(x)
δ . (4.8)

Observe also, that ψ(s−p(x)/δ) q
q−1 ≤ ψs and recall that q > n . By applying in (4.8) the constant exponent

Hölder inequality we have∫
Ω∩BR

f(x, u,∇u)ψsu

≤ cs
p+

δ

(∫
Ω∩BR

|∇ψ|q
p(x)
δ

) 1
q
(∫

Ω∩BR

|∇u|p(x)
δ−1
δ

q
q−1 |u|

p(x)
δ

q
q−1ψ(s− p(x)

δ ) q
q−1

) q−1
q

≤ c

(∫
Ω∩BR

|∇ψ|q
p(x)
δ

) 1
q
(∫

Ω∩BR

|∇u|p(x)
δ−1
δ

q
q−1 |u|α(x)|u|(

p(x)
δ −α(x) q−1

q ) q
q−1ψs

) q−1
q

≤ c

(∫
Ω∩BR

|∇ψ|q
p(x)
δ

) 1
q
(∫

Ω∩BR

|u|α(x)|∇u|p(x)
δ−1
δ

q
q−1ψs

) q−1
q

m
p+

δ − q−1
q α+

R . (4.9)

The variable exponent Hölder inequality (2.2) allows us to estimate the first integral on the right-hand side
as follows:(∫

Ω∩BR

|∇ψ|q
p(x)
δ

) 1
q

≤ 2∥ |∇ψ|q
p(·)
δ ∥

1
q

L

p+

p(·) (Ω∩BR)

∥1∥
1
q

L

p+

p+−p(·) (Ω∩BR)

≤ 2max

{∫
Ω∩BR

|∇ψ|q
p+

δ ,
( ∫

Ω∩BR

|∇ψ|q
p+

δ

)p−/p+
} 1

q

max{1, |Ω ∩BR|
1− p−

p+ }. (4.10)

Here, we have also used estimate (2.1). Since |∇u|p(x) ≤ 2p
+

(1 + |∇u|p+

) for all x ∈ Ω, we get∫
Ω∩BR

|u|α(x)|∇u|p(x)
δ−1
δ

q
q−1ψs ≤

∫
Ω∩BR

|u|α(x)(1 + |∇u|)p
+ δ−1

δ
q

q−1ψs. (4.11)

Note further, that δ−1
δ < p−−α+

α+ . This, the assumption that q > n and the growth condition (4.3) together
with (4.11) imply that

c

∫
Ω∩BR

|u|α(x)|∇u|p(x)
δ−1
δ

q
q−1ψs ≤ c

∫
Ω∩BR

|u|α(x)(1 + |∇u|p
+ p−−α+

α+
q

n−1 )ψs

≤
∫
Ω∩BR

f(x, u,∇u)ψsu, (4.12)

where the first inequality holds for large enough R. We use (4.10) and (4.12) in (4.9) to obtain inequality

c

(∫
Ω∩BR

|u|α(x)(1 + |∇u|p
+ p−−α+

α+
q

n−1 )ψs

) 1
q

≤ 2max

{∫
Ω∩BR

|∇ψ|q
p+

δ ,
( ∫

Ω∩BR

|∇ψ|q
p+

δ
) p−

p+

} 1
q

|Ω ∩BR|
1− p−

p+ m
p+

δ − q−1
q α+

R . (4.13)

Clearly,

I(r) :=

∫
Ω∩Br

|u|α(x)(1 + |∇u|p
+ p−−α+

α+
q

n−1 ) ≤
∫
Ω∩BR

|u|α(x)(1 + |∇u|p
+ p−−α+

α+
q

n−1 )ψs.

Apply power q to both sides of inequality (4.13) with I(r) on the left-hand side. We are now in a position
to take the infimum over all test functions ψ as defined above. In a consequence we get from (4.13) that

c I(r) ≤ max
{
cap

q p+

δ

(Ω ∩Br,Ω ∩BR), cap
p−/p+

q p+

δ

(Ω ∩Br,Ω ∩BR)
}
|Ω ∩BR|

q
(
1− p−

p+

)
m

q p+

δ −(q−1)α+

R (4.14)

Since q > n and δ ≤ p−

α+ it holds that q p+

δ > qα+ p+

p− > n. Set R = 2r in (4.14). Then, by discussion similar

to that in [14, Chapter 2.11] we have that (cf. (2.5))

cap
q p+

δ

(Ω ∩Br,Ω ∩B2r) ≤ c(n, q, p+, δ)rn−q p+

δ . (4.15)
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For the sake of simplicity, we decide not to step into details regarding how the structure of Ω for large R
affects the capacity, cf. paragraph following estimate (3.19) in Theorem 3.3 and Section 3.3. Hence, estimate
(4.15) is sufficient for the proof of this theorem.

By combining (4.14) and (4.15) we get for r > 1 the following inequality:

c I(r) ≤ c(n, q, p−, p+)ωnr
(n−q p+

δ ) p−

p+ r
q
(
1− p−

p+

)
m

q p+

δ −(q−1)α+

2r . (4.16)

On the contrary to the assertion of theorem (4.4) let us assume that

lim inf
r→∞

mr

rγ
= 0, (4.17)

where

γ ≤
(q − n)p

−

p+ + q(p
−

δ − 1)

q(p
+

δ − q−1
q α+)

.

Denote {ri}∞i=1 a sequence of radii along which liminf in (4.17) is attained. From (4.16) and (4.17) we have
that

c I(ri) ≤ r
(n−q p+

δ ) p−

p+
+q(1− p−

p+
)+γ(q p+

δ −(q−1)α+)

i

(
m2ri

rγi

)q p+

δ −(q−1)α+

−→ 0, for ri → ∞, (4.18)

as under assumption on γ the power of ri in the first factor in (4.18) is negative. However, by the definition
of I(r) and by (2.1) we have the following estimate:

I(r) ≥
∫
Ω∩Br

|u|α(x) ≥ min{ ∥u∥α
+

Lα(·)(Br∩Ω), ∥u∥
α−

Lα(·)(Br∩Ω) }.

The right-hand side of this inequality is positive and increases for all r → ∞ and so, in particular, for ri
with i = 1, . . .. This observation together with (4.18) result in contradiction. Hence assumption (4.17) is
false which proves theorem.

References

[1] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration.
Mech. Anal. 164 (2002), no. 3, 213–259.
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