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Abstract: We study the thermodynamic formalism of a complex rational map f of
degree at least two, viewed as a dynamical system acting on the Riemann sphere. More
precisely, for a real parameter t we study the existence of equilibrium states of f for
the potential −t ln

∣
∣ f ′∣∣, and the analytic dependence on t of the corresponding pressure

function. We give a fairly complete description of the thermodynamic formalism for
a large class of rational maps, including well known classes of non-uniformly hyper-
bolic rational maps, such as (topological) Collet-Eckmann maps, and much beyond. In
fact, our results apply to all non-renormalizable polynomials without indifferent peri-
odic points, to infinitely renormalizable quadratic polynomials with a priori bounds, and
all quadratic polynomials with real coefficients. As an application, for these maps we
describe the dimension spectrum for Lyapunov exponents, and for pointwise dimensions
of the measure of maximal entropy, and obtain some level-1 large deviations results. For
polynomials as above, we conclude that the integral means spectrum of the basin of
attraction of infinity is real analytic at each parameter in R, with at most two exceptions.
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1. Introduction

The purpose of this paper is to study the thermodynamic formalism of a complex rational
map f of degree at least two, viewed as a dynamical system acting on the Riemann
sphere C. More precisely, for a real parameter t we study the existence of equilibrium
states of f for the potential −t ln

∣
∣ f ′∣∣ and the (real) analytic dependence on t of the

corresponding pressure function. Our particular choice of potentials is motivated by the
close connection between the corresponding pressure function and various multifractal
spectra. In fact, we give applications of our results to rigidity, multifractal analysis of
dimension spectrum for Lyapunov exponents and for pointwise dimensions, as well as
level-1 large deviations. See [BS96,BS05,Erë91] for other applications of the thermo-
dynamic formalism of rational maps to complex analysis.

For t < 0 and for an arbitrary rational map f , a complete description of the ther-
modynamic formalism was given by Makarov and Smirnov in [MS00]. They showed
that the corresponding transfer operator is quasi-compact on a suitable Sobolev space,
see also [Rue92]. For t = 0 and a general rational map f , there is a unique equilib-
rium state of f for the constant potential equal to 0 [Lju83,FLM83]. To the best of our
knowledge it is not known if for a general rational map f the pressure function is real
analytic on a neighborhood of t = 0. For t > 0 the only results on the analyticity of
the pressure function that we are aware of, are for generalized polynomial-like maps
without recurrent critical points in the Julia set. For such a map the analyticity properties
of the pressure function were studied in [MS03,SU03], using a Markov tower extension
and an inducing scheme, respectively.

Under very weak hypotheses on a rational map f , we show that the pressure function
is real analytic at each parameter t in R, with at most two exceptions. In other words, the
pressure function can have at most two phase transitions and thus at most three phases.
It turns out that the parameter t = 0 is always contained in one of the phases, which is
characterized as the only phase where the measure theoretic entropy of an equilibrium
state can be strictly positive. We show that for every parameter in this phase there is a
unique equilibrium state that has exponential decay of correlations and that satisfies the
Central Limit Theorem.

Our results apply to well-known classes of non-uniformly hyperbolic rational maps.
Furthermore our results apply to all non-renormalizable polynomials without indifferent
periodic points, to infinitely renormalizable quadratic polynomials with a priori bounds,
and to all quadratic polynomials with real coefficients.

The main ingredients in our approach are the distinct characterizations of the pressure
function given in [PRLS04] and the inducing scheme introduced in [PRL07], which we
develop here in a more general setting. It is worth noticing that to study a rational map
with a recurrent critical point in the Julia set, it is usually not enough to consider an
induced map defined with the first return time. The induced maps considered here are
constructed with higher return times, which makes the estimates more delicate. As in
[PRL07], our key estimates are based on controlling a discrete version of conformal
mass. However, the “density” introduced in [PRL07] for this purpose does not work in
the more general setting considered here. We thus introduce a different technique, based
on a Whitney type decomposition.
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Thermodynamics of Rational Maps 663

There have been several recent results on the thermodynamic formalism of multi-
modal interval maps with non-flat critical points, by Bruin and Todd [BT08,BT09] and
Pesin and Senti [PS08]. Besides [BT08, Theorem 6], that gives a complete description of
the thermodynamic formalism for t close to 0 and for a general topologically transitive
multimodal interval map with non-flat critical points, all the results that we are aware
of are restricted to non-uniformly hyperbolic maps. It is possible to apply the approach
given here to obtain a fairly complete description of the thermodynamic formalism of
a general topologically transitive multimodal interval map with non-flat critical points.
We obtain in particular that the pressure function of such a map is real analytic at each
parameter in R, with at most two exceptions.1 We are in the process of writing these
results.

After reviewing some general properties of the pressure function in §1.1, we state
our main result in §1.2. The applications to rigidity, multifractal analysis, and level-1
large deviations are given in Appendix B.

Throughout the rest of this Introduction we fix a rational map f of degree at least
two, we denote by Crit( f ) the set of critical points of f and by J ( f ) the Julia set of f .

1.1. The pressure function and equilibrium states. We give here the definition of the
pressure function and of equilibrium states, see §2 for references and precise formula-
tions.

Let M ( f ) be the space of all probability measures supported on J ( f ) that are
invariant by f . We endow M ( f )with the weak∗ topology. For eachμ ∈ M ( f ), denote
by hμ( f ) the measure theoretic entropy of μ, and by χμ( f ) := ∫ ln

∣
∣ f ′∣∣ dμ the Lyapu-

nov exponent of μ. Given a real number t we define the pressure of f |J ( f ) for the
potential −t ln

∣
∣ f ′∣∣ by

P(t) := sup
{

hμ( f )− tχμ( f ) | μ ∈ M ( f )
}

. (1.1)

For each t ∈ R we have P(t) < +∞,2 and the function P : R → R so defined will be
called the pressure function of f . It is convex, non-increasing and Lipschitz continuous.

An invariant probability measure μ supported on the Julia set of f is called an equi-
librium state of f for the potential −t ln

∣
∣ f ′∣∣, if the supremum (1.1) is attained for this

measure.
The numbers,

χinf( f ) := inf
{

χμ( f ) | μ ∈ M ( f )
}

,

χsup( f ) := sup
{

χμ( f ) | μ ∈ M ( f )
}

,

will be important in what follows. We call

t− := inf{t ∈ R | P(t) + tχsup( f ) > 0} (1.2)

t+ := sup{t ∈ R | P(t) + tχinf( f ) > 0} (1.3)

1 Recently Iommi and Todd [IT09] have shown similar results for transitive multimodal maps with non-flat
critical points as those presented here, but only obtaining that the pressure function is continuous differentiable,
and without statistical properties of the equilibrium states.

2 When t ≤ 0, the number P(t) coincides with the topological pressure of f |J ( f ) for the potential−t ln
∣
∣ f ′∣∣,

defined with (n, ε)-separated sets. However, these numbers do not coincide when t > 0 and there are critical
points of f in J ( f ). In fact, since ln

∣
∣ f ′∣∣ takes the value −∞ at each critical point of f , in this case the

topological pressure of f |J ( f ) for the potential −t ln
∣
∣ f ′∣∣ is equal to +∞.
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664 F. Przytycki, J. Rivera-Letelier

the condensation point and the freezing point of f , respectively. We remark that the
condensation (resp. freezing) point can take the value −∞ (resp. +∞). We have the
following properties (Proposition 2.1):

• t− < 0 < t+;
• for all t ∈ R\(t−, t+) we have P(t) = max{−tχsup( f ),−tχinf( f )};
• for all t ∈ (t−, t+) we have P(t) > max{−tχinf( f ),−tχsup( f )}.

1.2. Nice sets and the thermodynamics of rational maps. A neighborhood V of Crit( f )∩
J ( f ) is a nice set for f , if for every n ≥ 1 we have f n(∂V ) ∩ V = ∅, and if each con-
nected component of V is simply connected and contains precisely one critical point
of f in J ( f ). A nice couple for f is a pair of nice sets (V̂ , V ) for f such that V ⊂ V̂
and such that for every n ≥ 1 we have f n(∂V )∩ V̂ = ∅. We will say that a nice couple
(V̂ , V ) is small, if there is a small r > 0 such that V̂ ⊂ B(Crit( f ) ∩ J ( f ), r).

We say that a rational map f is expanding away from critical points, if for every
neighborhood V ′ of Crit( f ) ∩ J ( f ) the map f is uniformly expanding on the set

{

z ∈ J ( f ) | for every n ≥ 0, f n(z) �∈ V ′} .

Main Theorem. Let f be a rational map of degree at least two that is expanding away
from critical points, and that has arbitrarily small nice couples. Then the following
properties hold.

Analyticity of the pressure function: The pressure function of f is real analytic on
(t−, t+), and linear with slope −χsup( f ) (resp. −χinf( f )) on (−∞, t−] (resp.
[t+,+∞)).

Equilibrium states: For each t0 ∈ (t−, t+) there is a unique equilibrium state of f for
the potential −t0 ln

∣
∣ f ′∣∣. Furthermore this measure is ergodic and mixing.

We now list some classes of rational maps for which the Main Theorem applies.

• Using [KvS09] we show that each at most finitely renormalizable polynomial with-
out indifferent periodic orbits satisfies the hypotheses of the Main Theorem, see
Theorem C in §A.1.

• Quadratic polynomials with real coefficients satisfy the hypothesis of the Main The-
orem, with two exceptions: Maps with an indifferent periodic point, which are con-
siderably simpler to treat, and maps having a renormalization conjugated to the
Feigenbaum polynomial, for which we show that a slightly more general version of
the Main Theorem applies (Theorem B in §7). In particular our results imply that
the conclusions of the Main Theorem hold for each quadratic polynomial with real
coefficients, see §A.3 for details.

• Topological Collet-Eckmann rational maps have arbitrarily small nice couples
[PRL07, Theorem E] and are expanding away from critical points. These maps
include Collet-Eckmann rational maps, as well as maps without recurrent critical
points and without parabolic periodic points; see [PR98] and also [PRLS03, Main
Theorem].

• Each backward contracting rational map has arbitrarily small nice couples [RL07,
Prop. 6.6]. If in addition the Julia set is different from C, such a map is also expanding
away from critical points [RL07, Coro. 8.3]. In [RL07, Theorem A] it is shown that
a rational map f of degree at least two satisfying the summability condition with
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exponent 1: f does not have indifferent periodic points and for each critical value v
in the Julia set of f we have

+∞
∑

n=1

∣
∣
∣

(

f n)′ (v)
∣
∣
∣

−1
< +∞

is backward contracting, and it thus has arbitrarily small nice couples. In [Prz98] it is
shown that each rational map satisfying the summability condition with exponent 1
is expanding away from critical points.

Using a stronger version of the Main Theorem (Theorem B in §7), we show that each
infinitely renormalizable quadratic polynomial for which the diameters of the small
Julia sets converge to 0 satisfies the conclusions of the Main Theorem, see §A.2 in
Appendix A. In particular the conclusions of the Main Theorem hold for each infinitely
renormalizable polynomial with a priori bounds; see [KL08,McM94] and references
therein for results on a priori bounds.

Remark 1.1. In the proof of the Main Theorem we construct the equilibrium states
through an inducing scheme with an exponential tail estimate, that satisfies some addi-
tional technical properties; see §4.3 for precise statements. The results of [You99] imply
that the equilibrium states in the Main Theorem are exponentially mixing and that the
Central Limit Theorem holds for these measures. It also follows that these equilibrium
states have other statistical properties, such as the “almost sure invariant principle”, see
e.g. [Gou05,MN05,MN08,TK05].

We obtain as a direct consequence of the Main Theorem the following result on the
integral means spectrum.

Corollary 1.2. Let f be a monic polynomial with connected Julia set and degree d ≥ 2,
that is expanding away from critical points and that has arbitrarily small nice couples.
Let

φ : {z ∈ C | |z| > 1} → C\J ( f )

be a conformal representation that is tangent to the identity at infinity. Then the integral
means spectrum of φ,

βφ(t) := lim sup
r→1+

ln
∫ 2π

0

∣
∣φ′(r exp(iθ))

∣
∣t dθ

| ln(r − 1)| ,

is real analytic on (t−, t+) and linear with slope 1−χsup( f )/ ln d (resp. 1−χinf( f )/ ln d)
on (−∞, t−] (resp. [t+,+∞)).

This corollary follows directly from the fact that for each t ∈ R we have βφ(t) =
P(t)/ ln d + t − 1, see for example [BMS03, Lemma 2].

We will now consider several known results related to the Main Theorem.
As mentioned above, Makarov and Smirnov showed in [MS00] that the conclusions

of the Main Theorem hold for every rational map on (−∞, 0). Furthermore, they char-
acterized all those rational maps whose condensation point t− is finite; see §B.1.

For a uniformly hyperbolic rational map we have t− = −∞ and t+ = +∞, and for
a sub-hyperbolic polynomial with connected Julia set we have t+ = +∞ [MS96]. The
freezing point t+ is finite whenever f does not satisfy the Topological Collet-Eckmann
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666 F. Przytycki, J. Rivera-Letelier

Condition3 (Proposition 2.1). In fact, in this case the freezing point t+ is the first zero
of the pressure function. On the other hand, there is an example in [MS03, §3.4] of a
generalized polynomial-like map satisfying the Topological Collet-Eckmann Condition4

and whose freezing point t+ is finite.
When f is a generalized polynomial-like map without recurrent critical points, the

part of the Main Theorem concerning the analyticity of the pressure function was shown
in [MS00,MS03,SU03]. Note that the results of [SU03] apply to maps with parabolic
periodic points.

Let us also mention that, if f is an at most finitely renormalizable polynomial without
indifferent periodic points and such that for every critical value v in J ( f ),

lim
n→+∞ | ( f n)′ (v)| = +∞,

and if t0 > 0 is the first zero of the pressure function, then the absolutely continuous
invariant measure constructed in [RLS10] is an equilibrium state of f for the potential
−t0 ln

∣
∣ f ′∣∣, see also [GS09,PRL07].

In the case of a general transitive multimodal interval map with non-flat critical
points, a result analogous to the Main Theorem was shown by Bruin and Todd in [BT08,
Theorem 6] for t in a neighborhood of 0. Similar results for t in a neighborhood of
[0, 1] were shown by Pesin and Senti in [PS08] for multimodal interval maps with
non-flat critical points satisfying the Collet-Eckmann condition and some additional
properties (see also [BT09, Theorem 2]) and by Bruin and Todd in [BT09, Theorem 1],
for t in a one-sided neighborhood of 1, and for multimodal interval maps with non-flat
critical points and with a polynomial growth of the derivatives along the critical orbits;
see also [BK98].

In [Dob09, Prop. 7], Dobbs shows that there is a quadratic polynomial with real coef-
ficients f0 such that the pressure function, defined for the restriction of f0 to a certain
compact interval, has infinitely many phase transitions before it vanishes. This behavior
of f0 as an interval map is in sharp contrast with its behavior as a complex map: Our
results imply that the pressure function of f0, viewed as a map acting on the (complex)
Julia set of f0, is real analytic before it vanishes.

1.3. Notes and references. See the book [Rue04] for an introduction to the thermody-
namic formalism and [PU02,Zin96] for an introduction in the case of rational maps.

For results concerning other potentials, see [DU91,GW07,Prz90,Urb03] for the case
of rational maps, [Bal00] for piecewise monotone maps, and [BT08,PS08] and refer-
ences therein for the case of multimodal interval maps with non-flat critical points.

For a rational map f satisfying the Topological Collet-Eckmann Condition and for
t = HDhyp( f ), the construction of the corresponding equilibrium state given here gives
a new proof of the existence of an absolutely continuous invariant measure, with respect
to a conformal measure. More precisely, it gives a new proof of [PRL07, Key Lemma].

1.4. Strategy and organization. We now describe the strategy of the proof of the Main
Theorem, and simultaneously describe the organization of the paper. Our results are

3 By [PRLS03, Main Theorem] f satisfies the Topological Collet-Eckmann Condition if, and only if,
χinf ( f ) > 0.

4 In fact this map has the stronger property that no critical point in its Julia set is recurrent.
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Thermodynamics of Rational Maps 667

either well-known or vacuous for rational maps without critical points in the Julia set,
so we will (implicitly) assume that all the rational maps we consider have at least one
critical point in the Julia set.

In §2 we review some general results concerning the pressure function, including
some of the different characterizations of the pressure function given in [PRLS04]. We
also review some results concerning the asymptotic behavior of the derivative of the
iterates of a rational map. These results are mainly taken or deduced from results in
[Prz99,PRLS03,PRLS04].

To prove the Main Theorem we make use of the inducing scheme introduced in
[PRL07], which is developed in the more general setting considered here in §§3, 4.
In §3.1 we recall the definitions of nice sets and couples, and introduce a weaker notion
of nice couples that we call “pleasant couples”. Pleasant couples will allow us to handle
non-primitive renormalizations, see Remark A.6. Then we recall in §3.2 the definition of
the canonical induced map associated to a nice (or pleasant) couple. We also review the
decomposition of its domain of definition into “first return” and “bad pull-backs” as well
as the sub-exponential estimate on the number of bad pull-backs of a given order (§3.3).
In §3.4 we consider a two variable pressure function associated to such an induced map,
that will be very important for the rest of the paper. This pressure function is analogous
to the one introduced by Stratmann and Urbanski in [SU03].

In §4 we give sufficient conditions on a nice (or pleasant) couple so that the con-
clusions of the Main Theorem hold for values of t in a neighborhood of an arbitrary
t0 ∈ (t−, t+) (Theorem A). These conditions are formulated in terms of the two variable
pressure function defined in §3.4. We follow the method of [PRL07] for the construc-
tion of the conformal measures and the equilibrium states, which is based on the results
of Mauldin and Urbanski in [MU03]. As in [PS08], we use a result of Zweimüller in
[Zwe05] to show that the invariant measure we construct is in fact an equilibrium state.
The uniqueness is a direct consequence of the results of Dobbs in [Dob08], generalizing
[Led84]. Finally, we use the method introduced by Stratmann and Urbanski in [SU03]
to show that the pressure function is real analytic. Here we make use of the fact that the
two variable pressure function is real analytic on the interior of the set where it is finite,
a result shown by Mauldin and Urbanski in [MU03].

The proof of the Main Theorem is contained in §§5, 6, 7. The proof is divided into
two parts. The first, and by far the most difficult one, is to show that for t0 ∈ (t−, t+) the
two variable pressure associated to a sufficiently small nice (or pleasant) couple is finite
on a neighborhood of (t, p) = (t0, P(t0)). To do this we use the strategy of [PRL07]:
we use the decomposition of the domain of definition of the induced map associated to
a nice (or pleasant) couple, into first return and bad pull-backs evoked in §3.3. Unfor-
tunately, for values of t such that P(t) < 0, there does not seem to be a natural way
to adapt the density introduced in [PRL07] to estimate the contribution of a bad pull-
back. Instead we use a different argument involving a Whitney type decomposition of
a pull-back, which is one of the main technical tools introduced in this paper. Roughly
speaking, we have replaced the “annuli argument” of [PRL07, Lemma 5.4] by an argu-
ment involving “Whitney squares”, that allow us to make a direct estimate avoiding an
induction on the number visits to the critical point. The Whitney type decomposition is
introduced in §5 and the estimate on the contribution of a (bad) pull-back is given in §6.
The finiteness of the two variable pressure function is shown in §7.1. The second part
of the proof, that for each t close to t0 the two variable pressure function vanishes at
(t, p) = (t, P(t)), is given in §7.2. Here we have replaced the analogous (co-)dimension
argument of [PRL07], with an argument involving the pressure function of the rational
map.
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Appendix A is devoted to show that the conclusions of the Main Theorem hold for
several classes of polynomials. In §A.1 we show that each at most finitely renormaliz-
able polynomial without indifferent periodic points satisfies the hypotheses of the Main
Theorem (Theorem C). Then in §A.2 we show that each infinitely renormalizable qua-
dratic polynomial for which the diameters of small Julia sets converge to 0 satisfies the
hypotheses of Theorem B. Finally, §A.3 is devoted to the case of quadratic polynomials
with real coefficients.

In Appendix B we give applications of our main results to rigidity, multifractal anal-
ysis, and level-1 large deviations.

2. Preliminaries

The purpose of this section is to give some general properties of the pressure func-
tion (§§2.2, 2.3), and some characterizations of χinf and χsup (§2.4). These results are
mainly taken or deduced from the results in [Prz99,PRLS03,PRLS04]. We also fix some
notation and terminology in §2.1, that will be used in the rest of the paper.

Throughout the rest of this section we fix a rational map f of degree at least two. We
will denote hμ( f ), χμ( f ), . . . just by hμ, χμ, . . .. For simplicity we will assume that
no critical point of f in the Julia set is mapped to another critical point under forward
iteration. The general case can be handled by treating whole blocks of critical points as
a single critical point; that is, if the critical points c0, . . . , ck ∈ J ( f ) are such that ci is
mapped to ci+1 by forward iteration, and maximal with this property, then we treat this
block of critical points as a single critical point.

2.1. Notation and terminology. We will denote the extended real line by R := R ∪
{−∞,+∞}.

Distances, balls, diameters and derivatives are all taken with respect to the spherical
metric. For z ∈ C and r > 0, we denote by B(z, r) ⊂ C the ball centered at z and with
radius r .

For a given z ∈ C we denote by deg f (z) the local degree of f at z, and for V ⊂ C

and n ≥ 0, each connected component of f −n(V )will be called a pull-back of V by f n .
When V is clear from the context, for such a set W we put mW = n. When n = 0 we
obtain that each connected component W of V is a pull-back of V with mW = 0. In
the case where f n is univalent on W we will say that W is an univalent pull-back of V
by f n . Note that the set V is not assumed to be connected.

We will abbreviate “Topological Collet-Eckmann” by TCE.

2.2. General properties of the pressure function. Given an integer n ≥ 1 let 
n :
C × R → R be the function defined by


n(z0, t) :=
∑

w∈ f −n(z0)

∣
∣
∣

(

f n)′ (z0)

∣
∣
∣

−t
.

Then for every t ∈ R and every z0 in C outside a set of Hausdorff dimension 0, we have

lim sup
n→+∞

1
n ln
n(z0, t) = P(t), (2.1)

see [Prz99,PRLS04].
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Thermodynamics of Rational Maps 669

In the following proposition,

HDhyp( f ) := sup{HD(X) | X compact and invariant subset of C,

where f is uniformly expanding}.
Proposition 2.1. Given a rational map f of degree at least two, the function

t �→ P(t) + tχinf (resp. t �→ P(t) + tχsup),

is convex, non-increasing, and non-negative on [0,+∞) (resp. (−∞, 0]). Moreover
t− < 0, and we have t+ ≥ HDhyp( f ) with strict inequality if, and only if, f satisfies the
TCE condition.

In particular for all t in (t−, t+) we have P(t) > max{−tχinf ,−tχsup}, and for all t
in R\(t−, t+) we have P(t) = max{−tχinf ,−tχsup}.
Proof. For each μ ∈ M ( f ) the function t �→ hμ( f ) − t (χμ − χinf) (resp. t �→
hμ − t (χμ − χsup)) is affine and non-increasing on [0,+∞) (resp. (−∞, 0]). As by
definition

P(t) = sup{hμ − tχμ | μ ∈ M ( f )},
we conclude that the function t �→ P(t) + tχinf (resp. t �→ P(t) + tχinf ) is convex
and non-increasing on [0,+∞) (resp. (−∞, 0]). It also follows from the definition that
t �→ P(t) + tχinf (resp. t �→ P(t) + tχinf ) is non-negative on this set.

The inequalities t− < 0 and t+ ≥ HDhyp( f ) follow from the fact that χinf is non-neg-
ative and from the fact that the pressure function P is strictly positive on (0,HDhyp( f ))
[Prz99]. When f satisfies the TCE condition, then χinf > 0 [PRLS03, Main Theorem]
and thus t+ > HDhyp( f ). When f does not satisfy the TCE condition, then χinf = 0
[PRLS03, Main Theorem] and therefore the equality t+ = HDhyp( f ) follows from the
fact that HDhyp( f ) is the first zero of the function P [Prz99]. ��

2.3. The pressure function and conformal measures. For real numbers t and p we will
say that a finite Borel measure μ is (t, p)-conformal for f , if for each Borel subset U
of C on which f is injective we have

μ( f (U )) = exp(p)
∫

U

∣
∣ f ′∣∣t dμ.

By the locally eventually onto property of f on J ( f ) it follows that if the topologi-
cal support of a (t, p)-conformal measure is contained in J ( f ), then it is in fact equal
to J ( f ).

Proposition 2.2. Let f be a rational map of degree at least two. Then for each t ∈
(t−,+∞) there exists a (t, P(t))-conformal measure for f supported on J ( f ), and for
each real number p for which there is a (t, p)-conformal measure for f supported
on J ( f ) we have p ≥ P(t).

Proof. When t = 0, the assertions are well known, see for example [DU91, p. 104]. The
case t > 0 is given by [PRLS04, Theorem A]. In the case t ∈ (t−, 0) the existence is
given by [MS00, §3.5] (see also [PRLS04, Theorem A.7]), and in [PRLS04, Prop. A.11]
it is shown that if for some real number p there is a (t, p)-conformal measure, then in
fact p = P(t). ��

Author's personal copy



670 F. Przytycki, J. Rivera-Letelier

2.4. Characterizations of χinf and χsup. The following proposition gives some charac-
terizations of χinf and χsup, which are obtained as direct consequences of the results in
[PRLS03].

For each α > 0 put

Eα =
+∞
⋂

n0=1

+∞
⋃

n=1

B
(

f n(Crit( f )),max{n0, n}−α) .

Observe that the Hausdorff dimension of Eα is less than or equal to α−1. It thus follows
that the Hausdorff dimension of the set E∞ :=⋂α>0 Eα is equal to 0.

Proposition 2.3. For a rational map f of degree at least two, the following properties
hold:

1. Given a repelling periodic point p of f , let m be its period and put χ(p) :=
1
m ln |(( f m)′(p)|. Then we have

inf{χ(p) | p is a repelling periodic point of f } = χinf ,

sup{χ(p) | p is a repelling periodic point of f } = χsup.

2.

lim
n→+∞

1
n ln sup

{∣
∣
∣

(

f n)′ (z)
∣
∣
∣

∣
∣
∣ z ∈ C

}

= χsup.

3. For each z0 ∈ C\E∞ we have

lim
n→+∞

1
n ln min

{∣
∣
∣

(

f n)′ (w)
∣
∣
∣

∣
∣
∣w ∈ f −n(z0)

}

= χinf , (2.2)

lim
n→+∞

1
n ln max

{∣
∣
∣

(

f n)′ (w)
∣
∣
∣

∣
∣
∣w ∈ f −n(z0)

}

= χsup. (2.3)

Proof. 1. The equality involving χinf was shown in [PRLS03, Main Theorem]. To
prove the equality involving χsup, first note that if p is a repelling periodic point
of f , and if we denote by m its period, then the measure μ := ∑m−1

j=0 δ f j (p) is
invariant by f and its Lyapunov exponent is equal to χ(p). It thus follows that

sup{χ(p) | p repelling periodic point of f } ≤ χsup.

The reverse inequality follows from the fact, shown using Pesin theory, that for
every ergodic and invariant probability measure μ whose Lyapunov exponent is
strictly positive and every ε > 0, one can find a repelling periodic point p such that
|χμ − χ(p)| < ε; see for example [PU02, Theorem 11.6.1].

2. For each integer n ≥ 1 put

Mn := sup
{∣
∣
∣

(

f n)′ (z)
∣
∣
∣

∣
∣
∣ z ∈ C

}

.

Note that for integers m, n ≥ 1 we have Mm+n ≤ Mm · Mn , so the limit

χ := lim
n→+∞

1
n ln Mn
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exists. The inequality χ ≥ χsup follows from part 1. To prove the reverse inequality,
for each integer n ≥ 1 let zn ∈ C be such that

∣
∣( f n)′ (zn)

∣
∣ = Mn and put

μn := 1
n

n−1
∑

j=0

δ f j (zn)
.

Let (n j ) j≥0 be a diverging sequence of integers so that μn j converges to a mea-
sure μ, which is invariant by f . Since the function ln

∣
∣ f ′∣∣ is bounded from above,

the monotone convergence theorem implies that

lim
A→−∞

∫

max
{

A, ln
∣
∣ f ′∣∣} dμ =

∫

ln
∣
∣ f ′∣∣ dμ.

On the other hand, for each real number A we have
∫

max
{

A, ln
∣
∣ f ′∣∣} dμ= lim

j→+∞

∫

max
{

A, ln
∣
∣ f ′∣∣} dμn j ≥ lim sup

j→+∞

∫

ln
∣
∣ f ′∣∣ dμn j .

We thus conclude that

χsup ≥
∫

ln
∣
∣ f ′∣∣ dμ ≥ lim sup

j→+∞

∫

ln
∣
∣ f ′∣∣ dμn j = χ.

3. For a point z0 ∈ C which is not in the forward orbit of a critical point of f , the
inequalities

lim sup
n→+∞

1
n ln min

{∣
∣
∣

(

f n)′ (w)
∣
∣
∣

∣
∣
∣w ∈ f −n(z0)

}

≤ χinf ,

lim inf
n→+∞

1
n ln max

{∣
∣
∣

(

f n)′ (w)
∣
∣
∣

∣
∣
∣w ∈ f −n(z0)

}

≥ χsup.

are a direct consequence of part 1 and the following property: For each repelling
periodic point p there is a constant C > 0 such that for every integer n ≥ 1 there
is w ∈ f −n(z0) satisfying

C−1 exp(nχ(p)) ≤
∣
∣
∣

(

f n)′ (w)
∣
∣
∣ ≤ C exp(nχ(p)).

Part 2 shows that for each z0 ∈ C we have

lim sup
n→+∞

1
n ln max

{∣
∣
∣

(

f n)′ (w)
∣
∣
∣

∣
∣
∣w ∈ f −n(z0)

}

≤ χsup.

It remains to show that for every z0 ∈ C\E∞ we have

A(z0) := lim inf
n→+∞

1
n ln min

{∣
∣
∣

(

f n)′ (w)
∣
∣
∣

∣
∣
∣w ∈ f −n(z0)

}

≥ χinf .

We observe first that this inequality holds for some point z0 in C\E∞. In fact,
let K be a compact subset of J ( f ) of non-zero Hausdorff dimension on which f
is uniformly expanding. Then for each z0 ∈ K\E∞ the above inequality follows
from part 1 and the “specification property” of [PRLS03, Lemma 3.1]. The final
observation is that the function A is constant on C\E∞, see [Prz99, §3] or also
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[PRLS03, §1]. To prove this fix z, w ∈ C\E∞ and for a given integer join z to w
with a certain number M of discs (U j )

M
j=1 such that z ∈ U1, z ∈ UM and such that

for each j ∈ {1, . . . ,M − 1} we have U j ∩ U j+1 �= ∅, in such a way that for each
j ∈ {1, . . . ,M} the disc 2U j , with the same center as U j and twice the radius, is
disjoint from

⋃

i=1,....,n f i (Crit( f )). By Koebe Distortion Theorem it follows that
there is a constant B > 0 such that the absolute value of the ratio of the derivative
of f n at corresponding points of f −n(z) and f −n(w) is bounded by exp(B M). The
main point, shown in [Prz99, §3], is that there is ε ∈ (0, 1) such that for every suf-
ficiently large n such a chain of discs exists for some integer M satisfying M ≤ nε .
In particular, the ratio of these derivatives is sub-exponential with n. This implies
that A(z) = A(w) and completes the proof of the proposition. ��

3. Nice Sets, Pleasant Couples and Induced Maps

In §3.1 we recall the definition and review some properties of nice sets and couples. We
also introduce a notion weaker than nice couple, that we call “pleasant couple”. Then
we consider the canonical induced map associated to a pleasant couple in §3.2, as it was
introduced in [PRL07, §4] for nice couples, and review some of its properties (§3.3).
Finally, we introduce in §3.4 a two variable pressure function associated to a canonical
induced map, that will be important in what follows.

Throughout all this section we fix a rational map f of degree at least two.

3.1. Nice sets, nice couples, and pleasant couples. Recall that a neighborhood V of
Crit( f ) ∩ J ( f ) is a nice set for f , if for every n ≥ 1 we have f n(∂V ) ∩ V = ∅, and if
each connected component of V is simply connected and contains precisely one critical
point of f in J ( f ).

Let V = ⋃c∈Crit( f )∩J ( f ) V c be a nice set for f . Then for every pull-back W of V
we have either

W ∩ V = ∅ or W ⊂ V .

Furthermore, if W and W ′ are distinct pull-backs of V , then we have either,

W ∩ W ′ = ∅, W ⊂ W ′ or W ′ ⊂ W.

For a pull-back W of V we denote by c(W ) the critical point in Crit( f ) ∩ J ( f ) and by
mW ≥ 0 the integer such that f mW (W ) = V c(W ). Moreover we put,

K (V ) = {z ∈ C | for every n ≥ 0 we have f n(z) �∈ V }.
Note that K (V ) is a compact and forward invariant set and for each c ∈ Crit( f )∩ J ( f )
the set V c is a connected component of C\K (V ). Moreover, if W is a connected com-
ponent of C\K (V ) different from the V c, then f (W ) is again a connected component
of C\K (V ). It follows that W is a pull-back of V and that f mW is univalent on W .

Given a nice set V for f and a neighborhood V̂ of V in C we will say that (V̂ , V )
is a pleasant couple for f if for every pull-back W of V , the pull-back of V̂ by f mW

containing W is

(i) contained in V̂ if W is contained in V ;
(ii) disjoint from Crit( f ) if W is disjoint from V .
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If (V̂ , V ) is a pleasant couple for f , then for each c ∈ Crit( f )∩ J ( f ) we denote by V̂ c

the connected component of V̂ containing c and for each pull-back W of V we will
denote by Ŵ the pull-back of V̂ by f mW that contains W and put mŴ := mW and
c(Ŵ ) := c(W ). Thus, when W is disjoint from V , it is shielded from Crit( f ) by Ŵ by
property (ii). Otherwise, W ⊂ V and then the set Ŵ may or may not intersect Crit( f ).
The latter distinction will be crucial in what follows.

Let (V̂ , V ) be a pleasant couple for f and let W be a connected component of
C\K (V ). Then for every j = 0, . . . ,mW − 1, the set f j (W ) is a connected component
of C\K (V ) different from the V c. Thus f j (W ) is disjoint from V and by property (ii)

the set f̂ j (W ) is disjoint from Crit( f ). It follows that f mW is univalent on Ŵ .
A nice couple for f is a pair (V̂ , V ) of nice sets for f such that V ⊂ V̂ , and such

that for every n ≥ 1 we have f n(∂V ) ∩ V̂ = ∅. If (V̂ , V ) is a nice couple for f , then
for every pull-back Ŵ of V̂ we have either

Ŵ ∩ V = ∅ or Ŵ ⊂ V .

It thus follows that each nice couple is pleasant.

Remark 3.1. The definitions of nice sets and couples given here is slightly weaker than
that of [PRL07,RL07]. For a set V =⋃c∈Crit( f )∩J ( f ) V c to be nice, in those papers we

required the stronger condition that for each integer n ≥ 1 we have f n(∂V ) ∩ V = ∅,
and that the closures of the sets V c are pairwise disjoint. Similarly, for a pair of nice sets
(V̂ , V ) to be a nice couple we required the stronger condition that for each n ≥ 1 we

have f n(∂V ) ∩ V̂ = ∅. The results we need from [PRL07] still hold with the weaker
property considered here.

Observe that if (V̂ , V ) is a nice couple as defined here, then V is a nice set in the
sense of [PRL07,RL07].

The following proposition5 sheds some light on the definitions above, although it is
not used later on; compare with the construction of nice couples in §A.1 (Theorem C)
and in [RL07, §6].

Proposition 3.2. Suppose that for a rational map f there exists a nice set U =
⋃

c∈Crit( f )∩J ( f ) U c such that for every integer n ≥ 1,

f n(∂U ) ∩ U = ∅. (3.1)

Suppose furthermore that the maximal diameter of a connected component of f −k(U )
converges to 0 as k → +∞. Then there exists a nice set V for f that is compactly
contained in U such that (U, V ) is a nice couple for f .

Proof. Since U is a nice set each connected component of the set A := C\ f −1(K (U )) is
a pull-back of U . Furthermore, by (3.1) each connected component W of A intersecting
U is compactly contained in U , and mW is the first return time to U of points in W .

If the forward trajectory of c visits U , take as V c the connected component con-
taining c of A. Since U is a nice set, V c is a first return pull-back of U , and by (3.1)
the set V c is compactly contained in U . In particular for each integer n ≥ 1 we have
f n (∂V c)∩U = ∅. For each critical point c ∈ Crit( f )∩ J ( f )whose forward trajectory
never returns to U , take a preliminary disc D compactly contained in U c. By (3.1) each

5 We owe this proposition to Shen, from a personal communication.
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connected component of A intersecting D is compactly contained in U c. Let now Ṽ c be
the union of D and all those connected components of A intersecting D. The hypothesis
on diameters of pull-backs implies that V c is compactly contained in U , and that each
point in ∂ Ṽ c is either contained in ∂D ∩ (C\A), or in the boundary of a connected
component of A intersecting D (which is a first return pull-back of U ). Therefore for
each integer n ≥ 1 we have f n

(

∂ Ṽ c
)∩U = ∅. Finally let V c be the union of Ṽ c and all

connected components of C\Ṽ c contained in U c (We do this “filling holes” trick since
a priori it could happen that the union of D and one of the connected components of
A, and consequently Ṽ c, might not be simply-connected). We have ∂V c ⊂ ∂ Ṽ c, so for
each integer n ≥ 1 we have f n (∂V c) ∩ U = ∅.

Set V = ⋃c∈Crit( f )∩J ( f ) V c. We have shown that for each integer n ≥ 1 we have
f n(∂V ) ∩ U = ∅, so (U, V ) is a nice couple. ��

3.2. Canonical induced map. Let (V̂ , V ) be a pleasant couple for f . We say that an
integer m ≥ 1 is a good time for a point z in C, if f m(z) ∈ V and if the pull-back of V̂
by f m to z is univalent. Let D be the set of all those points in V having a good time
and for z ∈ D denote by m(z) ≥ 1 the least good time of z. Then the map F : D → V
defined by F(z) := f m(z)(z) is called the canonical induced map associated to (V̂ , V ).
We denote by J (F) the maximal invariant set of F and by D the collection of connected
components of D.

As V is a nice set, it follows that each connected component W of D is a pull-back
of V and that for each z ∈ W we have m(z) = mW . Moreover, f mW is univalent on Ŵ
and by property (i) of pleasant couples we have Ŵ ⊂ V̂ . Similarly, for each integer
n ≥ 1, each connected component W of the domain of definition of Fn is a pull-back
of V and f mW is univalent on Ŵ . Conversely, if W is a pull-back of V strictly contained
in V such that f mW is univalent on Ŵ , then there is c ∈ Crit( f ) ∩ J ( f ) and an integer
n ≥ 1 such that Fn is defined on W and Fn(W ) = V c. Indeed, in this case mW is a good
time for each element of W and therefore W ⊂ D. Thus, either we have F(W ) = V c(W )

and then W is a connected component of D, or F(W ) is a pull-back of V strictly con-
tained in V such that f m F(W ) is univalent on F̂(W ). Thus, repeating this argument we
can show by induction that there is an integer n ≥ 1 such that Fn is defined on W and
Fn(W ) = V c(W ).

The following result was shown in [PRL07] for nice couples. The proof applies
without change to pleasant couples.

Lemma 3.3 ([PRL07], Lemma 4.1). For every rational map f there is r > 0 such that
if (V̂ , V ) is a pleasant couple satisfying

max
c∈Crit( f )∩J ( f )

diam
(

V̂ c) ≤ r, (3.2)

then the canonical induced map F : D → V associated to (V̂ , V ) is topologically
mixing on J (F). Moreover there is c̃ ∈ Crit( f ) ∩ J ( f ) such that the set

{

mW | W ∈ D contained in V c̃ and such that F(W ) = V c̃} (3.3)

is non-empty and its greatest common divisor is equal to 1.

Remark 3.4. We will apply several results of [MU03] to the induced map F . However,
most of the results we need from [MU03] are stated for the associated symbolic space.
The corresponding results for the induced map F can be obtained using Lemma 3.1.3,
Proposition 3.1.4 and Theorem 4.4.1 of [MU03].
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Fig. 1. On the left, the family associated to a connected component Y of V̂ ; on the right, the one associated
to a higher order pull-back Y of V̂

3.3. Bad pull-backs. We will now introduce the concept of “bad pull-backs” of a pleas-
ant couple. It is an adaptation of the concept with the same name introduced in [PRL07,
§7.1] for a nice set.

Given a pleasant couple (V̂ , V ) and an integer n ≥ 1, a point y ∈ f −n(V ) is a
bad iterated pre-image of order n if for every j ∈ {1, . . . , n} such that f j (y) ∈ V the
map f j is not univalent on the pull-back of V̂ by f j containing y. In this case every
point y′ in the pull-back X of V by f n containing y is a bad iterated pre-image of order
n. We could call X a bad pull-back of V of order n, although this terminology would
not be used in the rest of the paper, see Fig. 1. Furthermore, a connected component Y
of f −n(V̂ ) is a bad pull-back of V̂ of order n, if it contains a bad iterated pre-image of
order n.6

The following two lemmas will be used in the proof of the Main Theorem in §7.
They are adaptations to pleasant couples of part 1 of Lemma 7.4 and of Lemma 7.1 of
[PRL07]. Given a pleasant couple (V̂ , V ) for f we denote by LV the collection of all
the connected components of C\K (V ). On the other hand, let Y be a pull-back of V̂
and recall that mY ≥ 0 denotes the integer such that f mY (Y ) is equal to a connected
component of V̂ . Then we let DY be the collection of all the pull-backs W of V that
are contained in Y , such that f mW maps the pull-back Ŵ of V̂ by f mW containing W
univalently onto V̂ c(W ), such that f mY (W ) ⊂ V and such that f mY +1(W ) ∈ LV . See
Fig. 1.

Lemma 3.5 ([PRL07], Part 1 of Lemma 7.4). Let (V̂ , V ) be a pleasant couple for f
and let D be the collection of the connected components of D. Then

D ⊂
⎛

⎝
⋃

c∈Crit( f )∩J ( f )

DV̂ c

⎞

⎠ ∪
⎛

⎝
⋃

Y bad pull-back of V̂

DY

⎞

⎠ .

Proof. Let W ∈ D. If f (W ) ∈ LV , then there is c ∈ Crit( f )∩ J ( f ) such that W ∈ DV̂ c .
Suppose now f (W ) �∈ LV , so there is an integer j ∈ {1, . . . ,mW − 1} such that

6 When the pleasant couple (V̂ , V ) is nice, it is easy to see that the notion of bad pull-back as defined here
coincides with that of [PRL07]. See also Remark 3.7.
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f j (W ) ⊂ V . Let n be the largest such integer, so we have f n+1(W ) ∈ LV and, if we
let Y be the pull-back of V̂ by f n containing W , then W ∈ DY . It remains to show that
Y is a bad pull-back of V̂ of order n. Just observe that if we fix y ∈ W ⊂ Y , then mW
is the least good time of y, so y is a bad iterated pre-image of f n(y) ∈ f n(W ) ⊂ V of
order n and Y is a bad pull-back of V̂ of order n. This completes the proof of the lemma.

��
Lemma 3.6 ([PRL07], Lemma 7.1). Let f be a rational map, let (V̂ , V ) be a pleasant
couple for f and let L ≥ 1 be such that for every � ∈ {1, . . . , L} the set f �(Crit( f ) ∩
J ( f )) is disjoint from V̂ . Then for each z0 ∈ V and each integer n ≥ 1, the number of
bad iterated pre-images of z0 of order n is at most

(2L deg( f )#(Crit( f ) ∩ J ( f )))n/L .

In particular, the number of bad pull-backs of V̂ of order n is at most

#(Crit( f ) ∩ J ( f ))(2L deg( f )#(Crit( f ) ∩ J ( f )))n/L .

Proof. 1. Given an integer n ≥ 1 and a bad iterated pre-image y of order n, let
�(y, n) ∈ {0, . . . , n − 1} be the largest integer such that the pull-back of V̂ by
f n−�(y,n) containing f �(y,n)(y) intersects Crit( f ) ∩ J ( f ). Using property (ii) of
pleasant couples we obtain that f �(y,n)(y) ∈ V , and in the case where �(y, n) > 0,
that the point y is a bad iterated pre-image of order �(y, n).

2. Given an integer n ≥ 1 and a bad iterated preimage y of order n, define k ≥ 1 and a
strictly decreasing sequence of non-negative integers (�0, . . . , �k) by induction as
follows. We put �0 = n and suppose that for some integer j ≥ 0 the integer � j is
already defined in such a way that f � j (y) ∈ V . If � j = 0 then define k := j and
stop. Otherwise we have f � j (y) ∈ V by the induction hypothesis and therefore y
is a bad iterated pre-image of f � j (y) of order � j . Then we define � j+1 := �(y, � j ).
As remarked above f � j+1(y) = f �(y,� j )(y) ∈ V , so the induction hypothesis is
satisfied.

3. Fix an integer n ≥ 1. To each bad iterated preimage y of order n we have associated
in Part 2 an integer k ≥ 1 and a strictly decreasing sequence of non-negative integers
(�0, . . . , �k). We have �0 = n, �k = 0 and for each j ∈ {1, . . . , k} the pull-back of
V̂ by f � j−1−� j containing f � j (y) contains an element c of Crit( f ) ∩ J ( f ) and at
most deg f (c) elements of f −(� j−1−� j )

(

f � j (y)
)

. As for each c ∈ Crit( f ) ∩ J ( f )
and each integer m ≥ 1 there are at most #(Crit( f )∩ J ( f )) connected components
of f −m

(

V̂ c
)

intersecting Crit( f ) ∩ J ( f ), it follows that there are at most

(deg( f )#(Crit( f ) ∩ J ( f )))k

bad iterated pre-images of z0 of order n whose associated sequence is equal to
(�0, . . . , �k).

By definition of L for each j ∈ {1, . . . , k} we have � j−1 − � j ≥ L . So k ≤ n/L and
for each integer m ∈ {1, . . . , n} there is at most one integer r ∈ {0, . . . , L −1} such that
m + r is one of the � j . Thus there are at most (L + 1)n/L such decreasing sequences.

We conclude that the number of bad iterated pre-images of z0 of order n is at most,

(L + 1)n/L(deg( f )#(Crit( f ) ∩ J ( f )))n/L ≤ (2L deg( f )#(Crit( f ) ∩ J ( f )))n/L .

��
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Remark 3.7. The purpose of this remark is to show the reverse inclusion of Lemma 3.5.
Although this is not used in the proof of the Main Theorem, we think the argument is
useful to understand bad pull-backs of pleasant couples. As for each c ∈ Crit( f )∩ J ( f )
we clearly have DV̂ c ⊂ D, we just need to show that for each integer n ≥ 1 and
each bad pull-back Y of V̂ by f n we have DY ⊂ D. To do this, let y ∈ Y be a bad
iterated pre-image of order n and let k ≥ 1 and (�0, . . . , �k) be as in the proof of
Lemma 3.6. An inductive argument using property (ii) of pleasant couples shows that
for each j ∈ {0, . . . , k−1} the set f � j (Y )∩ f −(n−� j )(V ) is contained in V . In particular,
each element W of DY is contained in V . On the other hand, observe that the pull-back
of V̂ by f mW −n containing f n(W ) is univalent and by property (i) of pleasant couples it
is contained in V̂ . Thus, to show W ∈ D, we just need to show that each element y′ of W
is a bad iterated pre-image of order n. Let i ∈ {1, . . . , n} be such that f i

(

y′) ∈ V and
let j ∈ {0, . . . , k − 1} be the largest integer such that � j ≥ i . By property (i) of pleasant
couples it follows that the pull-back of V̂ by f � j −i containing f i

(

y′) is contained in V̂ .
Since the pull-back of V̂ by f � j −� j+1 containing f � j+1

(

y′) intersects Crit( f ), it follows
the pull-back of V̂ by f i−� j+1 containing f � j+1

(

y′) intersects Crit( f ) and hence that
f i is not univalent on the pull-back of V̂ by f i containing y. This completes the proof
that y′ is a bad iterated pre-image of order n and that W ∈ D.

3.4. Pressure function of the canonical induced map. Let (V̂ , V ) be a pleasant cou-
ple for f and let F : D → V be the canonical induced map associated to (V̂ , V ).
Furthermore, denote by D the collection of connected components of D and for each
c ∈ Crit( f ) ∩ J ( f ) denote by Dc the collection of all elements of D contained in V c,
so that D = ⊔c∈Crit( f )∩J ( f ) D

c. A word on the alphabet D will be called admissible

if for every pair of consecutive letters W,W ′ ∈ D we have W ∈ Dc(W ′). For a given
integer n ≥ 1 we denote by En the collection of all admissible words of length n. Given
W ∈ D, denote by φW the holomorphic extension to V̂ c(W ) of the inverse of F |W . For
a finite word W = W1 . . .Wn ∈ E∗, put c

(

W
) := c(Wn) and mW = mW1 + · · · + mWn .

Note that the composition

φW := φW1 ◦ · · · ◦ φWn

is well defined and univalent on V̂ c(W ) and takes images in V .
For each t, p ∈ R and n ≥ 1 put

Zn(t, p) :=
∑

W∈En

exp
(−mW p

) (

sup
{∣
∣
∣φ

′
W (z)
∣
∣
∣

∣
∣
∣ z ∈ V c(W )

})t
.

It is easy to see that for a fixed t, p ∈ R the sequence (ln Zn(t, p))n≥1 is sub-additive,
and hence that we have

P
(

F,−t ln
∣
∣F ′∣∣− pm

) := lim
n→+∞

1
n ln Zn(t, p) = inf

{ 1
n ln Zn(t, p) | n ≥ 1

}

, (3.4)

see for example Lemma 2.1.1 and Lemma 2.1.2 of [MU03]. Here m is the function
defined in §3.2, that to each point z ∈ D it associates the least good time of z. The
number (3.4) is called the pressure function of F for the potential − ln

∣
∣F ′∣∣ − pm. It

is easy to see that for every t, p ∈ R the sequence
( 1

n ln Zn(t, p)
)

n≥1 is uniformly
bounded from below, so that (3.4) does not take the value −∞. Note however that if D
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has infinitely many connected components and we take t = 0 and p = 0, then we have
P(F, 0) = +∞.

When applying the results of [MU03] to the induced map F we will use the fact that
the function − ln

∣
∣F ′∣∣ defines a Hölder function on the associated symbolic space and

hence that for each (t, p) ∈ R
2 the same holds for the function −t ln

∣
∣F ′∣∣− pm.

The following property will be important to use the results of [MU03].

(*) There is a constant CM > 0 such that for every κ ∈ (0, 1) and every ball B of C,
the following property holds. Every collection of pairwise disjoint sets of the form
DW , with W ∈ E∗, intersecting B and with diameter at least κ · diam(B), has
cardinality at most CMκ

−2.

In fact, F determines a Conformal Graph Directed Markov System (CGDMS) in the
sense of [MU03], except maybe for the “cone property” (4d). But in [MU03] the cone
property is only used in [MU03, Lemma 4.2.6] to prove (*). Thus, when property (*)
is satisfied all the results of [MU03] apply to F . In [PRL07, Prop. A.2] we have shown
that property (*) holds when the pleasant couple (V̂ , V ) is nice.

The function,

P : R
2 → R ∪ {+∞}

(t, p) �→ P
(

F,−t ln
∣
∣F ′∣∣− pm

)

,

will be important in what follows. Notice that if P is finite at (t, p) = (t0, p0) ∈ R
2,

then by Proposition 2.1.9 the function −t0 ln
∣
∣F ′∣∣ − p0m defines a summable Hölder

potential on the symbolic space associated to the induced map F . Furthermore, it follows
that P is finite on the set

{

(t, p) ∈ R
2 | t ≥ t0, p ≥ p0

}

and, restricted to the set where it is finite, the function P is strictly decreasing on each
of its variables.

Lemma 3.8. Let f be a rational map of degree at least two and let (V̂ , V ) be a pleasant
couple for f satisfying property (*). Then the function P defined above satisfies the
following properties.

1. The function P is real analytic on the interior of the set where it is finite.
2. The function P is strictly negative on {(t, p) ∈ R

2 | p > P(t)}.
Proof. 1. If P(t, p) < +∞, then by [MU03, Prop. 2.1.9] the function −t ln

∣
∣F ′∣∣− pm

defines a summable Hölder potential on the symbolic space associated to F . Thus
the desired result follows from [MU03, Theorem 2.6.12], see Remark 3.4.

2. Let (t0, p0) ∈ R
2 be such that p0 > P(t0). Then for each point z0 ∈ V for which

(2.1) holds, we have
+∞
∑

k=1

∑

y∈F−k (z)

exp(−p0m(y))

∣
∣
∣
∣

(

Fk
)′
(y)

∣
∣
∣
∣

−t0

≤
+∞
∑

n=1

exp(−p0n)
∑

y∈ f −n(z0)

| ( f n)′ (y)|−t0 < +∞,

which implies that P(t0, p0) ≤ 0. This shows that the function P is non-positive
on {(t, p) ∈ (0,+∞)×R | p > P(t)}. That P is strictly negative on this set follows
from the fact that, on this set, P is strictly decreasing on each of its variables. ��
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4. From the Induced Map to the Original Map

The purpose of this section is to prove the following theorem, which gives us some
sufficient conditions to obtain the conclusions of the Main Theorem.

We denote by Jcon( f ) the “conical Julia set” of f , which is defined in §4.1. Recall
that conformal measures were defined in §2.3.

Theorem A. Let f be a rational map of degree at least two, let (V̂ , V ) be a pleasant
couple for f satisfying property (*), and let P be the corresponding pressure function
defined in §3.4. Then for each t0 ∈ (t−,+∞), the following properties hold:

Conformal measure: If P vanishes at (t, p) = (t0, P(t0)), then there is a unique
(t0, P(t0))-conformal probability measure for f . Moreover this measure is non-
atomic, ergodic, and it is supported on Jcon( f ).

Equilibrium state: If P is finite on a neighborhood of (t, p) = (t0, P(t0)), and van-
ishes at this point, then there is a unique equilibrium measure of f for the poten-
tial −t0 ln

∣
∣ f ′∣∣. Furthermore, this measure is ergodic, absolutely continuous with

respect to the unique (t0, P(t0))-conformal probability measure of f , and its density
is bounded from below by a strictly positive constant almost everywhere. If further-
more (V̂ , V ) satisfies the conclusions of Lemma 3.3, then the equilibrium state is
exponentially mixing and it satisfies the Central Limit theorem.

Analyticity of the pressure function: If P is finite on a neighborhood of (t, p) =
(t0, P(t0)) and for each t ∈ R close to t0 we have P(t, P(t)) = 0, then the pressure
function P is real analytic on a neighborhood of t = t0.

In §§5, 6, 7 we verify that, for a map as in the Main Theorem or more generally as
in Theorem B in §7, and for a given t0 ∈ (t−, t+) the function P corresponding to a
sufficiently small pleasant couple is finite on a neighborhood of (t, p) = (t0, P(t0)) and
that for each t ∈ R close to t0 we have P(t, P(t)) = 0.

After some general considerations in §4.1, the assertions about the conformal mea-
sure are shown in §4.2. The assertions concerning the equilibrium state are shown in
§4.3, and the analyticity of the pressure function is shown in §4.4.

Throughout the rest of this section we fix f , (V̂ , V ), F , P as in the statement of the
theorem.

4.1. The conical julia set and sub-conformal measures. The conical Julia set of f ,
denoted by Jcon( f ), is by definition the set of all those points x in J ( f ) for which there
exists ρ(x) > 0 and an arbitrarily large positive integer n, such that the pull-back of the
ball B ( f n(x), ρ(x)) to x by f n is univalent. This set is also called radial Julia set.

We will use the following general result, which is a strengthened version of [McM00,
Theorem 5.1], [DMNU98, Theorem 1.2], with the same proof. Given t, p ∈ R we will
say that a Borel measure μ is (t, p)-sub-conformal f , if for every Borel subset U of
C\ Crit( f ) on which f is injective we have

exp(p)
∫

U

∣
∣ f ′∣∣t dμ ≤ μ( f (U )). (4.1)

Proposition 4.1. Fix t ∈ (t−,+∞) and p ∈ [P(t),+∞). If μ is a (t, p)-sub-conformal
measure for f supported on Jcon( f ), then p = P(t), the measure μ is (t, P(t))-confor-
mal, and every other (t, P(t))-conformal measure is proportional to μ. Moreover, every
subset X of C such that f (X) ⊂ X and μ(X) > 0 has full measure with respect to μ.

The proof of this proposition depends on the following lemma.
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Lemma 4.2. Let t, p ∈ R and let μ be a (t, p)-sub-conformal measure supported on
Jcon( f ). Suppose that for some p′ ≤ p there exists a non-zero

(

t, p′)-conformal mea-
sure ν that is supported on J ( f ). Then p′ = p and μ is absolutely continuous with
respect to ν. In particular ν(Jcon( f )) > 0.

Proof. For ρ > 0 put Jcon( f, ρ) := {x ∈ Jcon( f ) | ρ(x) ≥ ρ}, so that Jcon( f ) =
⋃

ρ>0 Jcon( f, ρ). For each ρ0 > 0, Koebe Distortion Theorem implies that there is a
constant C > 1 such that for every x ∈ Jcon( f, ρ0) there are arbitrarily small r > 0, so
that for some integer n ≥ 1 we have

μ(B(x, 5r)) ≤ C exp(−np)r t and ν(B(x, r)) ≥ C−1 exp
(−np′) r t . (4.2)

Given a subset X of Jcon( f, ρ0), by Vitali’s covering lemma, for every r0 > 0 we can
find a collection of pairwise disjoint balls (B(x j , r j )) j>0 and strictly positive integers
(n j ) j>0, such that x j ∈ X , r j ∈ (0, r0), X ⊂ ⋃ j>0 B(x j , 5r j ) and such that for each
j > 0 the inequalities (4.2) hold for x := x j and r := r j and n = n j . Moreover, for
each integer n0 ≥ 1 we may choose r0 sufficiently small so that for each j > 0 we have
n j ≥ n0. Since by hypothesis p′ ≤ p, we obtain

ν(X) ≥ C−2 exp
(

n0
(

p − p′))μ(X).

Suppose by contradiction that p′ < p. Choose ρ0 > 0 such that μ(Jcon( f, ρ0)) > 0
and set X := Jcon( f, ρ0). As in the inequality above, n0 > 0 can by taken arbitrarily
large, we obtain a contradiction. So p′ = p and it follows thatμ is absolutely continuous
with respect to ν. ��
Proof of Proposition 4.1. Let ν be a (t, P(t))-conformal measure ν for f supported
on J ( f ). By [PRLS04, Theorem A and Theorem A.7] there is at least one such mea-
sure, see also [Prz99]. So Lemma 4.2 implies that p = P(t), and that μ is absolutely
continuous with respect to ν.

In Parts 1 and 2 we show that ν is proportional to μ. It follows in particular that μ
is conformal. In Part 3 we complete the proof of the proposition by showing the last
statement of the proposition.

1. First note that ν′ := ν|
C\Jcon( f ) is a conformal measure for f of the same expo-

nent as ν. Then Lemma 4.2 applied to ν = ν′ implies that, if ν′ is non-zero, then
ν′(Jcon( f )) > 0. This contradiction shows that ν′ is the zero measure and that ν is
supported on Jcon( f ).

2. Denote by g the density μ with respect to ν. Since ν is conformal and μ sub-con-
formal, the function g satisfies g ◦ f ≥ g on a set of full ν-measure. Let δ > 0 be
such that ν({g ≥ δ}) > 0. As ν is supported on Jcon( f ), there is a density point of
{g ≥ δ} for ν that belongs to Jcon( f ). Going to large scale and using g ◦ f ≥ g, we
conclude that {g ≥ δ} contains a ball of definite size, up to a set of ν-measure 0. It
follows by the locally eventually onto property of f on J ( f ) that the set {g ≥ δ} has
full measure with respect to ν. This implies that g is constant ν-almost everywhere
and therefore that ν and μ are proportional. In particular μ is conformal.

3. Suppose that X is a Borel subset of C of positive measure with respect to μ and such
that f (X) ⊂ X . Then the restriction μ|X of μ to X is a (t, P(t))-sub-conformal
measure supported on the conical Julia set. It follows that μ|X is proportional to μ,
and thus that μ|X = μ and that X has full measure with respect to μ. ��
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4.2. Conformal measure. Given t, p ∈ R we will say that a measureμ supported on the
maximal invariant set J (F) of F is (t, p)-conformal for F if for every Borel subset U
of a connected component W of D we have

μ(F(U )) = exp(pmW )

∫

U

∣
∣F ′∣∣t dμ.

In view of [MU03, Prop. 2.1.9], the hypothesis that

P(F,−t0 ln
∣
∣F ′∣∣− P(t0)m) = P(t0, P(t0)) = 0

implies that −t0 ln
∣
∣F ′∣∣− P(t0)m defines a summable Hölder potential on the symbolic

space associated to F . Furthermore, by Theorem 3.2.3 and Proposition 4.2.5 of [MU03]
it follows that the induced map F admits a non-atomic (t0, P(t0))-conformal measure
supported on J (F). Therefore the assertions in Theorem A about conformal measures
are a direct consequence of Proposition 4.1 and of the following proposition.

Proposition 4.3. Let F be the canonical induced map associated to a pleasant cou-
ple (V̂ , V ) for f that satisfies property (*). Then for every t ∈ (t−,+∞) and p ∈
[P(t),+∞), each (t, p)-conformal measure of F is in fact (t, P(t))-conformal, and it is
the restriction to V of a non-atomic (t, p)-conformal measure of f supported on Jcon( f ).

Proof. The proof of this proposition is a straightforward generalization of that of
[PRL07, Prop. B.2]. We will only give a sketch of the proof here.

Since t > t− there is a (t, P(t))-conformal measure μ̂ for f whose topological
support is equal to the whole Julia set of f (Proposition 2.2). Let LV be the collec-
tion of connected components of C\K (V ). Notice that for each W ∈ LV we have
μ̂(W ) ∼ exp(−mW P(t)) diam(W )t , for an implicit constant independent of W .

Let μ be a (t, p)-conformal measure for F . For each W ∈ LV denote by φW :
V̂ c(W ) → Ŵ the inverse of f mW |Ŵ , and letμW be the measure supported on W , defined
by

μW (X) = exp(−mW p)
∫

f mW (X∩W )

∣
∣φ′

W

∣
∣
t
dμ.

Clearly the measure
∑

W∈LV
μW is supported on Jcon( f ), non-atomic, and for each

W ∈ LV we have μW (C) ∼ exp(−mW p) diam(W )t . Since we also have μ̂(W ) ∼
exp(−mW P(t)) diam(W )t , and p ≥ P(t), it follows that the measure

∑

W∈LV
μW is

finite. In view of Proposition 4.1, to complete we just need to show that
∑

W∈LV
μW is

(t, p)-sub-conformal for f . The proof of this fact is similar to what was done in [PRL07,
Prop. B.2]. ��

4.3. Equilibrium state. The following are crucial estimates.

Lemma 4.4. Suppose that the pressure function P is finite on a neighborhood of
(t, p) = (t0, P(t0)) and that it vanishes at this point. If μ is the unique (t0, P(t0))-con-
formal measure of F, then the following properties hold:

1. For every (t, p) ∈ R
2 and γ > 0,

∫
∣
∣t ln
∣
∣F ′∣∣ + pm

∣
∣γ dμ < +∞.
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2. There is ε0 > 0 such that for every sufficiently large integer n we have
∑

W connected component of D
mW ≥n

μ(W ) ≤ exp(−ε0n).

In particular
∑

W connected component of D

mWμ(W ) < +∞.

We have stated Part 1 for every (t, p) ∈ R
2, although we will only use it for (t, p) close

to (t0, p0).

Proof. Since the function P is finite on a neighborhood of (t, p) = (t0, P(t0)), there
is ε0 > 0 such that P(t0 − ε0, P(t0)− ε0) < +∞. By [MU03, Prop. 2.1.9] this implies
that,

∑

W connected component of D

exp(−(P(t0)− ε0)mW ) sup
{∣
∣F ′(z)

∣
∣
−(t0−ε0) | z ∈ W

}

< +∞.

As for each connected component W of D we have

μ(W ) ≤ C0 exp(−P(t0)mW ) sup
{∣
∣F ′(z)

∣
∣−t0 | z ∈ W

}

,

we obtain the conclusion of Part 1 holds for each (t, p) ∈ R
2 and that

C1 :=
∑

W connected component of D

μ(W ) exp(ε0mW ) < +∞.

So for each n ≥ 1 we have

exp(ε0n)
∑

W connected component of D
mW ≥n

μ(W ) ≤ C1.

This proves Part 2 of the lemma. ��

Existence. It follows from standard considerations that F has an invariant measure ρ
that is absolutely continuous with respect to the (t0, P(t0))-conformal measure μ of F ,
and that the density of ρ with respect to μ is bounded from below by a strictly positive
constant almost everywhere. This result can be found for example in [Gou04, §1], by
observing that F |J (F) is a “Gibbs-Markov map”. For a proof in a setting closer to ours,
but that only applies to the case when V is connected, see [MU03, §6].

The measure

ρ̂ :=
∑

W connected component of D

mW −1
∑

j=0

f j∗ ρ|W

is easily seen to be invariant by f and Part 2 of Lemma 4.4 implies that it is finite. Fur-
thermore this measure is absolutely continuous with respect to the (t0, P(t0))-conformal
measure μ̂ of f , and its density is bounded from below by a strictly positive constant
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on a subset of V of full measure with respect to μ = μ̂|V . It follows from the locally
eventually onto property of Julia sets that the density of ρ̂ with respect to μ̂ is bounded
from below by a strictly positive constant almost everywhere; see for example [PRL07,
§8] for details. As μ̂ is ergodic (Proposition 4.1) it follows that ρ̂ is also ergodic.

We will show now that the probability measure ρ̃ proportional to ρ̂ is an equilibrium
state of f for the potential −t0 ln

∣
∣ f ′∣∣. We first observe that by Part 1 of Lemma 4.4

and [MU03, Theorem 2.2.9] the measure ρ is an equilibrium state of F for the potential
−t0 ln

∣
∣F ′∣∣− P(t0)m, see also Remark 3.4. That is, we have

P
(

F,−t0 ln
∣
∣F ′∣∣− P(t0)m

) = hρ(F)−
∫

t0 ln
∣
∣F ′∣∣ + P(t0)m dρ,

which is equal to 0 by hypothesis. By the generalized Abramov’s formula [Zwe05,
Theorem 5.1], we have hρ(F) = hρ̃ ( f )ρ̂(C), and by definition of ρ̂ we have

∫

m dρ =
ρ̂(C). We thus obtain,

hρ̃ ( f ) = (ρ̂(C))−1hρ(F) = (ρ̂(C))−1
∫

t0 ln
∣
∣F ′∣∣ + P(t0)m dρ

= (ρ̂(C))−1t0

∫

ln
∣
∣ f ′∣∣ dρ̂ + P(t0) = t0

∫

ln
∣
∣ f ′∣∣ dρ̃ + P(t0).

This shows that ρ̃ is an equilibrium state of f for the potential −t0 ln
∣
∣ f ′∣∣.

Uniqueness. In view of [Dob08, Theorem 8], we just need to show that the Lyapunov
exponent of each equilibrium state of f for the potential −t0 ln

∣
∣ f ′∣∣ is strictly positive;

see also [Led84].
Let ρ̃′ be an equilibrium state of f for the potential −t0 ln

∣
∣ f ′∣∣. If f satisfies the

Topological Collet-Eckmann Condition then it follows that the Lyapunov exponent of
ρ̃′ is strictly positive, as in this case we have χinf > 0. Otherwise we have χinf = 0, and
then P(t0) > 0 by Proposition 2.1. It thus follows that hρ̃′( f ) > 0, and therefore that
the Lyapunov exponent of ρ̃′ is strictly positive by Ruelle’s inequality.

Statistical properties. When F satisfies the conclusions of Lemma 3.3, the statistical
properties of ρ̃ can be deduced from the tail estimate given by Part 2 of Lemma 4.4,
using Young’s results in [You99]. In the case when there is only one critical point in
the Julia set one can apply these results directly, and in the general case one needs to
consider the first return map of F to the set V c̃, where c̃ is the critical point given by the
conclusion of Lemma 3.3, as it was done in [PRL07, §8.2]. In the general case one could
also apply directly the generalization of Young’s result given in [Gou04, Théorème 2.3.6
and Remarque 2.3.7]. We omit the standard details.

4.4. Analyticity of the pressure function. By hypothesis for each t close to t0 we have
P(t, P(t)) = 0. Since the function P is real analytic on a neighborhood of (t0, P(t0))
(Lemma 3.8), by the implicit function theorem it is enough to check that ∂

∂p P|(t0,P(t0)) �=
0. By Part 1 of Lemma 4.4 and [MU03, Prop. 2.6.13] this last number is equal to the inte-
gral of the (strictly negative) function −m against ρ, see also Remark 3.4. It is therefore
strictly negative.
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5. Whitney Decomposition of a Pull-back

The purpose of this section is to introduce a Whitney type decomposition of a given
pull-back of a pleasant couple. It is used to prove the key estimates in the next section.

5.1. Dyadic squares. Fix a square root i of −1 in C and identify C with R ⊕ iR. For
integers j, k and �, the set

{

x + iy | x ∈
[

j
2�
,

j+1
2�

]

, y ∈
[

k
2�
, k+1

2�

]}

,

will be called dyadic square. Note that two dyadic squares are either nested or have
disjoint interiors. We define a quarter of a dyadic square Q as one of the four dyadic
squares contained in Q and whose side length is one half of that of Q.

Given a dyadic square Q, denote by Q̂ the open square having the same center as Q,
sides parallel to that of Q, and length twice that of Q. Note in particular that for each
dyadic square Q the set Q̂\Q is an annulus whose modulus is independent of Q; we
denote this number by m1.

5.2. Primitive squares. Let f be a rational map of degree at least two. We fix r1 > 0
sufficiently small so that for each critical value v of f in the Julia set of f there is a
univalent map ϕv : B(v, 9r1) → C whose distortion is bounded by 2.

We say that a subset Q of C is a primitive square, if there is v ∈ CV( f ) ∩ J ( f )
such that Q is contained in the domain of ϕv , such that ϕv(Q) is a dyadic square, and
such that ϕ̂v(Q) is contained in the image of ϕv . In this case we put v(Q) := v and

Q̂ := ϕ−1
v

(

ϕ̂v(Q)
)

. We say that a primitive square Q0 is a quarter of a primitive

square Q, if Q0 ⊂ Q and if ϕv(Q)(Q0) is a quarter of ϕv(Q)(Q). Note that each primi-
tive square has precisely four quarters. Furthermore, each primitive square Q contained
in B(CV, r1) is contained in a primitive square Q′ such that Q is a quarter of Q′.

Definition 5.1. Fix � ∈ (0, r1). The Whitney decomposition associated to (the com-
plement of) a subset F of C is the collection W (F) of all those primitive squares Q such
that diam(Q) < �, Q̂ ∩ F = ∅, and that are maximal with these properties.

By definition two distinct elements of W (F) have disjoint interiors, and each point
in B(CV( f ) ∩ J ( f ), 9r1)\F is contained in an element of W (F).

Lemma 5.2. Let � ∈ (0, r1), and let F be a finite subset of C. Then the following
properties hold:

1. Let Q0 be a primitive square contained in B(CV( f ) ∩ J ( f ), r1) and such that
diam(Q0) ≤ �. Then either Q0 is contained in an element of W (F), or it contains
an element Q of W (F) such that

diam(Q) ≥ 1
4 (2 + 3

√
#F)−1 diam(Q0).

2. For each n ≥ 2 the number of those Q ∈ W (F) contained in B(CV( f ) ∩ J ( f ), r1)

and such that diam(Q) ∈ [2−(n+1)�, 2−n�] is less than 2599(#F).
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Proof. 1. Let n ≥ 2 be the least integer such that (2n − 2)2 > 9(#F), so that 2n ≤
2
(

2 + 3
√

#F
)

. Put Q′
0 := ϕv(Q)(Q0) and denote by �0 the side length of Q′

0. For

each element a of F in Q0, choose a dyadic square Qa whose side length is equal
to 2−n�0 and that contains ϕv(Q)(a). As there are (2n − 2)2 squares of side length
equal to 2−n�0 contained in the interior of Q′

0, and at most 9(#F) < (2n − 2)2

of them intersect one of the squares
⋃

a∈F Qa , we conclude that there is at least
one square Q′ of side length equal to 2−n�0 that is contained in the interior Q′

0
and such that ϕ−1

v(Q)

(

Q̂′) is disjoint from F . It follows that the primitive square

Q := ϕ−1
v(Q)

(

Q′) is contained in an element of W (F). As,

diam(Q) ≥ 1
2 2−n diam(Q0) ≥ 1

4 (2 + 3#
√

F)−1 diam(Q0),

the desired assertion follows.
2. Let Q be an element of W (F) contained in B(CV( f ) ∩ J ( f ), r1), and let Q′ be

a primitive square such that Q is a quarter of Q′. Then either diam
(

Q′) > �

or Q̂′ intersects F . So, if diam(Q) ≤ 1
4�, then there is a ∈ F contained in Q̂′,

and therefore diam(Q) ≥ 1
4 dist(Q, a). So, if we let n ≥ 2 be an integer such that

diam(Q) ∈ [2−(n+1)�, 2−n�
]

, then Q ⊂ B
(

a, 5 · 2−n�
)

. Since the area of Q is
greater than or equal to 1

8 diam(Q)2 ≥ 1
32 4−n�2 and the area of B

(

a, 5 · 2−n�
)

is
less than 25π4−n�2, we conclude that there are at most 25 · 32π(#F) < 2599(#F)
elements Q of W (F) satisfying diam(Q) ∈ [2−(n+1)�, 2−n�

]

. ��

5.3. Univalent squares. For an integer n ≥ 0 we will say that a subset Q of C is a
univalent square of order n, if there is a primitive square Q′ such that Q is a connected
component of f −(n+1)

(

Q′), and such that f n+1 is univalent on the connected compo-
nent of f −(n+1)

(

Q̂′) containing Q. In this case we denote this last set by Q̂, and note
that Q̂\Q is an annulus of modulus equal to m1. It thus follows that there is a constant
K0 > 1 such that for every univalent square Q of order n and every j = 1, . . . , n + 1,
the distortion of f j on Q is bounded by K0.

Let (V̂ , V ) be a pleasant couple for f such that f (V̂ ) ⊂ B(CV( f ) ∩ J ( f ), r1). For
a pull-back Y of V̂ , denote by �(Y ) the number of those j ∈ {0, . . . ,mY } such that
f j (Y ) ⊂ V̂ . Moreover, let W (Y ) be the collection of all those univalent squares Q that
are of order mY , such that Q̂ ⊂ Y , such that f mY (Q) intersects V , and that are maximal
with these properties. Note that for Q ∈ W (Y )we have v(Q) = f (c(Y )). By definition
every pair of distinct elements of W (Y ) have disjoint interiors. On the other hand, every
point in f mY |−1

Y

(

V c(Y )
) \ Crit

(

f mY +1
)

is contained in an element of W (Y ), and for
each Q ∈ W (Y ) the set Q̂ is disjoint from Crit

(

f mY +1
)

.

Proposition 5.3. Let f be a rational map of degree at least two and let (V̂ , V ) be a
pleasant couple for f . Then there is a constant C0 > 0 such that for every ξ ∈ (0, 1)
the number of those Q ∈ W (Y ) such that

diam
(

f mY +1(Q)
)

≥ ξ diam
(

f
(

V̂ c(Y )
))

is less than

2600 deg( f )�(Y )
(

C0 + 1
2�(Y ) log2 �(Y ) + �(Y ) log2

(

ξ−1
))

.
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Proof. Put c = c(Y ) and v = f (c), and let ξ0 ∈ (0, 1) be sufficiently small so that for
each z ∈ V c the connected component of f −1

(

B
(

f (z), ξ0 diam
(

f
(

V̂ c
))))

contain-
ing z is contained in V̂ c. Put F = f mY +1

(

Y ∩ Crit
(

f mY +1
))

, � := ξ0 diam
(

f
(

V̂ c
))

and consider the Whitney decompositionW (F), as defined in §5.2. Note that #F ≤ �(Y ).

1. We prove first that for every Q ∈ W (Y ) the primitive square f mY +1(Q) ⊂ f
(

V̂ c
) ⊂

B(v, r1) contains an element Q′ of W (F) such that

diam
(

Q′) ≥
(

80
√

#�(Y )
)−1

ξ0 diam
(

f mY +1(Q)
)

.

Let Q0 be a primitive square contained in f mY +1(Q) such that

1
4ξ0 diam

(

f mY +1(Q)
)

≤ diam(Q0) ≤ �.

By Part 1 of Lemma 5.2 there is an element Q′ of W (F) that either contains Q0, or
that it is contained in Q0 and

diam
(

Q′) ≥ 1
4

(

2 + 3
√

#F
)−1

diam(Q0)

≥ 1
16

(

2 + 3
√

#F
)−1

ξ0 diam
(

f mW +1(Q)
)

.

As #F ≤ �(Y ) and �(Y ) ≥ 1, we just need to show that Q′ is in fact contained in
f mY +1(Q). Suppose by contradiction that this is not the case. Then it follows that Q′
contains f mY +1(Q) strictly. Let Q̃′ be the connected component of f −(mY +1)

(

Q′)

containing Q. By definition of ξ0 we have that f mY
(

Q̃′) is contained in V̂ c, so
̂̃Q′ is contained in Y . On the other hand f mY

(

Q̃′) intersects V c, because it con-
tains f mY (Q) and this set intersects V c. As by definition of W (F) the set Q̂′ is

disjoint from F , it follows that f mY +1 is univalent on ̂̃Q′. Thus, by definition of
W (Y ), the univalent square Q̃′ is contained in an element of W (Y ). But Q ∈ W (Y )
is strictly contained in Q̃′, so we get a contradiction. This shows that Q′ is in fact
contained in f mY +1(Q) and completes the proof of the assertion.

2. For each Q ∈ W (Y ) choose an element Q′ of W (F) satisfying the property described
in Part 1. Note that for each Q′

0 ∈ W (F) the number of those Q ∈ W (Y ) such that
Q′ = Q′

0 is less than or equal to deg( f )�(Y ). As the area of a primitive square Q′ is

greater than or equal to 1
8 diam

(

Q′)2, it follows that for each ξ ∈ (0, 1) the number
of those Q ∈ W (Y ) satisfying diam

(

Q′) ≥ ξ diam
(

f
(

V̂ c
))

is less than or equal to
8πξ−2 deg( f )�(Y ).

Let ξ ∈ (0, 1
4ξ0
)

be given and let n0 be the least integer n ≥ 2 such that
ξ ≥ 2−n80

√
�(Y ), so that ξ < 2−(n0−1)80

√
�(Y ). If Q ∈ W (Y ) is such that

diam
(

f mY +1(Q)
) ≥ ξ diam

(

V̂ c
)

, then we have

diam
(

Q′) ≥
(

80
√

�(Y )
)−1

ξ0 diam
(

f mY +1(Q)
)

≥ 2−n0ξ0 diam
(

V̂ c) .

So Part 2 of Lemma 5.2 implies that for each n ≥ 2 the number of those Q ∈ W (Y )
such that

diam
(

Q′) ∈
[

2−(n+1)ξ0 diam
(

f
(

V̂ c)) , 2−nξ0 diam
(

f
(

V̂ c))
]

,
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is less than 2599(#F) deg( f )�(Y ) ≤ 2599�(Y ) deg( f )�(Y ). So we conclude that the
number of those Q ∈ W (Y ) such that diam

(

f mY +1(Q)
) ≥ ξ diam

(

V̂ c
)

is less than

deg( f )�(Y )
(

8π
( 1

4ξ0
)−2

+ (n0 − 2)2599�(Y )
)

≤ deg( f )�(Y )
(

8π
( 1

4ξ0
)−2

+ 2599�(Y )
(

log2

(

ξ−1
)

+ log2(80) + 1
2 log2(�(Y ))

))

.

This completes the proof of the lemma. ��

6. The Contribution of a Pull-back

Fix a rational map f of degree at least two, and a pleasant couple (V̂ , V ) for f . Recall
that LV is the collection of all the connected components of C\K (V ) and that for a
pull-back Y of V̂ we denote by DY the collection of all the pull-backs W of V that are
contained in Y , such that f mY (W ) ⊂ V , such that f mY +1 is univalent on Ŵ and such
that f mY +1(W ) ∈ LV ; see §3.3. Furthermore, we denote by �(Y ) the number of those
j ∈ {0, . . . ,mY } such that f j (Y ) ⊂ V̂ .

The purpose of this section is to prove the following.

Proposition 6.1 (Key estimates). Let f be a rational map of degree at least two that is
expanding away from critical points. Then for each sufficiently small pleasant couple
(V̂ , V ) for f the following properties hold:

1. For every t0 ∈ R, and every (t, p) ∈ R
2 sufficiently close to (t0, P(t0)), we have

∑

W∈LV

exp(−pmW ) diam(W )t < +∞. (6.1)

2. Let t, p ∈ R be such that (6.1) holds and such that

p > max{−tχinf ,−tχsup}.
Then for every ε > 0 such that

|t |ε < p − max{−tχinf ,−tχsup},
there is a constant C1 > 0 such that for each pull-back Y of V̂ we have

∑

W∈DY

exp(−pmW ) diam(W )t

≤ C1(deg( f ) + 1)�(Y ) exp
(−mY (p − max{−tχinf ,−tχsup} − |t |ε)) .

To prove this proposition we start with the following lemma.

Lemma 6.2. Let f be a rational map that is expanding away from critical points. Then
for every compact and forward invariant subset K of the Julia set of f that is disjoint
from the critical points of f and every t > 0 we have

P
(

f |K ,−t ln
∣
∣ f ′∣∣) < P(t).
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Proof. By hypothesis f is uniformly expanding on K . Enlarging K if necessary we may
assume that the restriction of f to K admits a Markov partition, see [PU02, Theorem 3.5.2
and Remark 3.5.3],7 so that there is at least one equilibrium stateμ for f |K with potential
−t ln

∣
∣ f ′∣∣.

We enlarge K with more cylinders to obtain a compact forward invariant subset K ′
of J ( f ), so that f restricted to K ′ admits a Markov partition and so that the relative
interior of K in K ′ is empty. It follows thatμ cannot be an equilibrium measure for f |K ′
for the potential −t ln

∣
∣ f ′∣∣, so we have

P
(

f |K ,−t ln
∣
∣ f ′∣∣) = hμ( f )− t

∫

K
ln
∣
∣ f ′∣∣ dμ < P

(

f |K ′ ,−t ln
∣
∣ f ′∣∣) ≤ P(t).

��
To prove Proposition 6.1, let f be a rational map of degree at least two, and let (V̂ , V )

be a pleasant couple for f . We will define a constant r0 > 0 as follows. If χinf = 0
we put r0 = dist(∂V,Crit( f ) ∩ J ( f )). Suppose that χinf > 0. Then by [PRLS03,
Main Theorem] there exists r ′

0 > 0 such that for every z0 in J ( f ), every ε > 0, every
sufficiently large integer n, and every connected component W of f −n

(

B
(

z0, r ′
0

))

, we
have

diam(W ) ≤ exp(−n(χinf − ε)).

Then we put r0 = min
{

r ′
0, dist(∂V,Crit( f ) ∩ J ( f ))

}

.
Given a subset Q of C we define nQ ∈ {0, 1, . . . ,+∞} as follows. If there are infi-

nitely many integers n such that diam ( f n(Q)) < r0, then we put nQ = +∞. Otherwise
we let nQ be the largest integer n ≥ 0 such that diam ( f n(Q)) < r0.

Lemma 6.3. Let f be a rational map of degree at least two. Then for every ε > 0 there
is a constant C(ε) > 1 such that for each connected subset Q of C that intersects the
Julia set of f we have,

C(ε)−1 exp(−nQ(χsup + ε)) ≤ diam(Q) ≤ C(ε) exp(−nQ(χinf − ε))

Proof. The inequality on the right holds trivially when χinf = 0, and when χinf > 0 it
is given by the definition of r0 > 0. The inequality on the left is a direct consequence
of Part 2 of Proposition 2.3. ��
Proof of Proposition 6.1. Let r1 > 0 be as in the definition of primitive squares in §5.2,
and let (V̂ , V ) be a pleasant couple for f such that f (V̂ ) ⊂ B(CV( f )∩ J ( f ), r1). Fur-
thermore, let A1 > 0 and K1 > 1 be given by Koebe Distortion Theorem in such a way
that for each pull-back W of V such that f mW is univalent on Ŵ we have diam(W ) ≤
A1 dist(W, ∂Ŵ ), and such that for each j = 1, . . . ,mW the distortion of f j on W is
bounded by K1.

1. Note that it is enough to show that there are t < t0 and p < P(t0) for which (6.1)
holds.
Let V ′ be a sufficiently small neighborhood of Crit( f ) ∩ J ( f ) contained in V , so
that for each c ∈ Crit( f ) ∩ J ( f ) the set

K ′ = {z ∈ J ( f ) | for every n ≥ 0, f n(z) �∈ V ′}

7 An analogous result in the case of diffeomorphisms is shown in [Fis06].
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intersects V c. By Lemma 6.2 we have P
(

f |K ′ ,−t0 ln
∣
∣ f ′∣∣) < P(t0). Let t < t0

and p < P(t0) be sufficiently close to t0 and P(t0), respectively, so that p >

P
(

f |K ′ ,−t ln
∣
∣ f ′∣∣).

For each c ∈ Crit( f )∩ J ( f ) choose a point z(c) in K ′ ∩ V c. Given a univalent pull-
back W of V let zW be the unique point in f −mW (z(c(W ))) contained in W . Note that
when W ∈ LV we have zW ∈ K ′. On the other hand, there is a distortion constant
C > 0 such that for each pull-back W of V such that f mW maps a neighborhood of
W univalently onto a component of V̂ c, we have diam(W ) ≤ C

∣
∣( f mW )′ (zW )

∣
∣
−1.

Since by hypothesis the restriction of f to K ′ is uniformly expanding, we have

lim sup
n→+∞

1
n ln
∑

W∈LV
mW =n

∣
∣
∣

(

f n)′ (zW )

∣
∣
∣

−t

≤ lim sup
n→+∞

1
n ln

∑

c∈Crit( f )∩J ( f )

∑

z∈K ′∩ f −n(z(c))

∣
∣
∣

(

f n)′ (z)
∣
∣
∣

−t

≤ P
(

f |K ′ ,−t ln
∣
∣ f ′∣∣) ,

hence

C2 :=
∑

W∈LV

exp(−mW p) diam(W )t

≤ C |t | ∑

W∈LV

exp(−mW p)
∣
∣
∣

(

f mW
)′
(zW )

∣
∣
∣

−t
< +∞.

2.1. Put

C3 := min
{

dist
(

z(c), ∂V c) / diam(V c) | c ∈ Crit( f ) ∩ J ( f )
}

and observe that for each pull-back W ′ of V such that Ŵ ′ is a univalent pull-back
of V̂ , we have dist

(

zW ′ , ∂W ′) ≥ C3 K −1
1 diam

(

W ′). We will show that for each
pull-back Y of V̂ , for each Q ∈ W (Y ), and each W ∈ DY such that zW ∈ Q, we
have

diam
(

f mY +1(W )
)

≤ 8C−1
3 K1 diam

(

f mY +1(Q)
)

.

Put Q′ = f mY +1(Q) and W ′ = f mY +1(W ), and suppose by contradiction that
diam

(

W ′) > 8C−1
3 K1 diam

(

Q′). Observe that Q′ is a primitive square contained
in B( f (c(Y )), r1) and that W ′ ∈ LV . So there is a primitive square Q′

0 such that Q′
is a quarter of Q′

0. We have

diam
(

Q̂′
0
) ≤ 8 diam

(

Q′) < C3 K −1
1 diam

(

W ′) ≤ dist
(

zW ′ , ∂W ′) .

Since by hypothesis zW ∈ Q, we have zW ′ = f mY +1(zW ) ∈ Q′ ⊂ Q̂′
0, so the last

inequality implies that Q̂′
0 ⊂ W ′. But f mY +1 is univalent on W , so the connected

component Q0 of f −(mY +1)
(

Q′
0

)

containing Q is a univalent square of order mY

satisfying Q̂0 ⊂ Y , that contains Q strictly. This contradicts the hypothesis that
Q ∈ W (Y ).
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2.2. We will now show that there is a constant C4 > 0 such that for each pull-back Y
of V̂ and each Q ∈ W (Y ) we have

∑

W∈DY
zW ∈Q

exp (−pmW ) diam(W )t ≤ C4 exp
(−pnQ

)

diam(Q)t . (6.2)

Let Y be a pull-back of V̂ and let Q ∈ W (Y ). Put Q′ = f mY +1(Q), and let B be a

ball whose center belongs to Q′ and of radius equal to
(

8C−1
3 K1 + 1

)

diam
(

Q′).
By Part 2.1, for each W ∈ DY such that zW ∈ Q we have f mY +1(W ) ⊂ B. Since
the distortion of f mY +1 is bounded by K0 on Q, and by K1 on each element of
DY , we obtain,

∑

W∈DY
zW ∈Q

exp(−pmW ) diam(W )t

≤ exp(−p(mY + 1))(K0 K1)
|t |
(

diam(Q)

diam (Q′)

)t

·

·
∑

W ′∈LV

W ′⊂B

exp (−pmW ′) diam
(

W ′)t .

If there is no W ∈ DY such that zW ∈ Q, then there is nothing to prove. So
we assume that there is an element W0 of DY such that zW0 ∈ Q. Then Q′, and
hence B, intersects K ′, as it contains the point z f mY +1(W0)

. Since by hypothesis
the restriction of f to K ′ is uniformly expanding, there is n0 ≥ 0 independent of
Y , such that nQ′ ≤ nB + n0 and such that there is an integer n′

B ≥ 0 satisfying
∣
∣n′

B − nB
∣
∣ ≤ n0, such that f n′

B is univalent on B and has distortion bounded by 2
on this set. We have

∣
∣nQ′ − n′

B

∣
∣ ≤ 2n0, so there is a constant C5 > 0 independent

of B such that diam
(

f n′
B (B)
)

> C5. So, if we put

C6 := exp(|p|2n0)
(

2C−1
5 2
(

8C−1
3 K1 + 1

))|t |
C2,

then we have
∑

W ′∈LV

W ′⊂B

exp (−pmW ′) diam
(

W ′)t

≤ exp
(−pn′

B

)

2|t |
⎛

⎝
diam(B)

diam
(

f n′
B (B)
)

⎞

⎠

t

·
∑

W ′′∈LV

W ′′⊂ f n′
B (B)

exp (−pmW ′′) diam
(

W ′′)t

≤ exp
(−pnQ′

)

exp(−|p|2n0)
(

2C−1
5

)|t |
diam(B)t C2

≤ C6 exp
(−pnQ′

)

diam
(

Q′)t .

Inequality (6.2) with constant C4 := C6(K0 K1)
|t |, is then a direct consequence of

the last two displayed (chains of) inequalities.
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2.3. We will now complete the proof of the proposition. For each Q ∈ W (Y ) put
Q′ := f mY +1(Q). Let Q ∈ W (Y ) be such that there is W ∈ DY satisfying
zW ∈ Q. As this last point is in the Julia set of f , by Lemma 6.3 we have

diam(Q)t ≤ C(ε)|t | exp
(

nQ(max{−tχsup,−tχinf} + |t |ε)) .
Since the elements of W (Y ) cover Y\ Crit

(

f mY +1
)

, if we put

γ := exp(−p + max{−tχsup,−tχinf} + |t |ε) ∈ (0, 1),

then by summing over Q ∈ W (Y ) in (6.2) we obtain
∑

W∈DY

exp(−pmW ) diam(W )t

≤ C4C(ε)
∑

Q∈W (Y )
Q∩J ( f ) �=∅

γ nQ = C4C(ε)γmY +1
∑

Q∈W (Y )
Q∩J ( f ) �=∅

γ nQ′ .

To estimate this last number, observe that by Lemma 6.3, for each Q ∈ W (Y )
intersecting the Julia set of f we have

diam
(

Q′) ≥ C(ε)−1 exp
(−nQ′(χsup + ε)

)

.

So, if we put γ̃ = γ

ln 2
χsup+ε , C7 = γ̃− log2 C(ε)−log2 diam(V̂ c(Y )) and for each

Q ∈ W (Y ) we put ξ
(

Q′) = diam
(

Q′) / diam(V̂ c(Y )), then we have γ nQ′ ≤
C7γ̃

− log2 ξ(Q′). So Proposition 5.3 implies that
∑

Q∈W (Y )
Q∩J ( f ) �=∅

γ nQ′ ≤ C7

∑

Q∈W (Y )
Q∩J ( f ) �=∅

γ̃− log2 ξ(Q′)

≤ 2600C7 deg( f )�(Y )
(

C0 + 1
2�(Y ) log2 �(Y ) + �(Y )

+∞
∑

n=0

γ̃ n

)

.

This completes the proof of the proposition. ��

7. Proof of the Main Theorem

The purpose of this section is to prove the following version of the Main Theorem for
pleasant couples. Recall that each nice couple is pleasant and satisfies property (*),
see §3.4.

Theorem B. Let f be a rational map of degree at least two that is expanding away from
critical points, and that has arbitrarily small pleasant couples having property (*). Then
following properties hold:

Analyticity of the pressure function: The pressure function of f is real analytic on
(t−, t+), and linear with slope −χsup( f ) (resp. −χinf( f )) on (−∞, t−] (resp.
[t+,+∞)).
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Equilibrium states: For each t0 ∈ (t−, t+) there is a unique equilibrium state of f for
the potential −t0 ln

∣
∣ f ′∣∣. Furthermore this measure is ergodic and mixing.

Throughout the rest of this section we fix a rational map f and t0 ∈ (t−, t+) as
in the statement of the theorem. Recall that by Proposition 2.1 we have P(t0) >
max{−t0χinf ,−t0χsup}. Put

γ0 := exp
(− 1

2 (P(t0)− max{−t0χinf ,−t0χsup})
) ∈ (0, 1),

and choose L ≥ 0 sufficiently large so that

(2L deg( f )(deg( f ) + 1)#(Crit( f ) ∩ J ( f )))1/Lγ0 < 1. (7.1)

Let (V̂ , V ) be a pleasant couple for f that is sufficiently small so that for each � ∈
{1, . . . , L} the set f �(Crit( f ) ∩ J ( f )) is disjoint from V̂ (recall that our standing con-
vention is that no critical point of f in its Julia set is mapped to a critical point under
forward iteration.) We assume furthermore that (V̂ , V ) has property (*). By Lemma 3.6
it follows that for each integer n ≥ 1 and each z0 ∈ V the number of bad iterated
pre-images of z0 of order n is at most

(2L deg( f )#(Crit( f ) ∩ J ( f )))n/L ,

and that the number of bad pull-backs of V̂ of order n is at most

#(Crit( f ) ∩ J ( f ))(2L deg( f )#(Crit( f ) ∩ J ( f )))n/L .

We show in §7.1 that the pressure function P of the canonical induced map associ-
ated to (V̂ , V ), defined in §3.4, is finite on a neighborhood of (t, p) = (t0, p0). In §7.2
we show that for each t close to t0 the function P vanishes at (t, p) = (t, P(t)). Then
Theorem B follows from Theorem A.

7.1. The function P is finite on a neighborhood of (t, p) = (t0, P(t0)). By the consid-
erations in §3.4, to show that P is finite on a neighborhood of (t, p) = (t0, p0) we just
need to show that there are t < t0 and p < P(t0) such that

∑

W∈D

exp(−pmW ) diam(W )t < +∞. (7.2)

Let t < t0 and p < P(t0) be given by Part 1 of Proposition 6.1. Taking t and p closer
to t0 and P(t0), respectively, we assume that there is ε > 0 sufficiently small so that

p − max{−tχinf ,−tχsup} − |t |ε > 1
2 (P(t0)− max{−t0χinf ,−t0χsup}),

and put

γ := exp(−p + max{−tχinf ,−tχsup} + |t |ε) ∈ (0, γ0).

For each c ∈ Crit( f ) ∩ J ( f ) we have, by applying Part 2 of Proposition 6.1 to
Y = V̂ c,

∑

W∈DV̂ c

exp(−pmW ) diam(W )t ≤ C1(deg( f ) + 1). (7.3)
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Since for each pull-back Y of V̂ we have �(Y ) ≤ n/L +1, using Part 2 of Proposition 6.1
again and letting C2 = C1(deg( f ) + 1)#(Crit( f ) ∩ J ( f )) we obtain

∑

Y bad pull-back of V̂

∑

W∈DY

exp(−pmW ) diam(W )t

≤ C1

∑

Y bad pull-back of V̂

(deg( f ) + 1)�(Y ) · γmY

≤ C2

+∞
∑

n=1

(

(2L deg( f )(deg( f ) + 1)#(Crit( f ) ∩ J ( f )))1/L · γ
)n
.

As γ ∈ (0, γ0), we have by (7.1) that the sum above is finite. Then (7.2) follows from
(7.3) and Lemma 3.5.

7.2. For each t close to t0 we have P(t, P(t)) = 0. Recall that for a given t0 ∈ (t−, t+)
we have fixed a sufficiently small pleasant couple (V̂ , V ), and that we denote by P the
corresponding pressure function defined in §3.4. Furthermore, in §7.1 we have shown
that the function P is finite on a neighborhood of (t0, P(t0)). We will show now that for t
close to t0 the function P vanishes at (t, P(t)), thus completing the proof of Theorem B.

In view of Lemma 3.8 we just need to show that for each t close to t0 we have
P(t, P(t)) ≥ 0. Suppose by contradiction that in each neighborhood of t0 we can find t
such that P(t, P(t)) < 0. As P is finite on a neighborhood of (t, p) = (t0, P(t0)), it
follows that P is continuous at this point (Lemma 3.8). Thus there are

t ∈ (t−, t+) and p ∈ (max{−tχinf ,−tχsup}, P(t)),

such that P(t, p) < 0, and such that the conclusion of Part 1 of Proposition 6.1 holds
for these values of t and p. However, this contradicts the following lemma.

Lemma 7.1. Let t ∈ (t−, t+) and p > min{−tχinf ,−tχsup} be such that P(t, p) < 0
and such that the conclusion of Part 1 of Proposition 6.1 holds for these values of t
and p. Then p ≥ P(t).

Proof of Proposition 6.1. Fix z0 ∈ V such that all, (2.1), (2.2), and (2.3) hold. To prove
the lemma we just need to show that

+∞
∑

n=1

exp(−pn)
∑

y∈ f −n(z0)

∣
∣
∣

(

f n)′ (y)
∣
∣
∣

−t
< +∞.

1. Given an integer n ≥ 1 an element y ∈ f −n(V ) is a univalent iterated pre-image
of order n if the pull-back of V̂ by f n containing y is univalent. Recall that for an
integer n ≥ 1 an element y of f −n(V ) is a bad iterated pre-image of z0 of order n if
for every j ∈ {1, . . . , n} such that f j (y) ∈ V the pull-back of V̂ by f n containing y
is not univalent.
For y ∈ f −n(z0) there are three cases: y is univalent, bad, or there is m ∈ {1, . . . ,
n − 1} such that f m(y) ∈ V , such that f m(y) is a bad iterated pre-image of z0 of
order n −m and such that y is a univalent iterated pre-image of f m(y) of order m. In
fact, if y ∈ f −n(z0) is not bad, then there is m ∈ {1, . . . , n−1} such that f m(y) ∈ V
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and such that y is a univalent iterated pre-image of f m(y). If m is the largest integer
with this property, then there are two cases. Either m = n and then y is a univalent
iterated pre-image of z0, or m < n and then f m(y) is a bad iterated pre-image of z0.

Therefore, if for each w ∈ V we put

U (w) := 1 +
+∞
∑

n=1

exp(−pn)
∑

y∈ f −n(w), univalent

∣
∣
∣

(

f n)′ (y)
∣
∣
∣

−t
,

then we have

1 +
+∞
∑

n=1

exp(−pn)
∑

y∈ f −n(z0)

∣
∣
∣

(

f n)′ (y)
∣
∣
∣

−t

= U (z0) +
+∞
∑

n=1

exp(−pn)
∑

w∈ f −n(z0), bad

∣
∣
∣

(

f n)′ (w)
∣
∣
∣

−t
U (w). (7.4)

As p > max{−tχinf ,−tχsup}, by Lemma 3.6 and (7.1) it follows that

+∞
∑

n=1

exp(−pn)
∑

w∈ f −n(z0), bad

∣
∣
∣

(

f n)′ (w)
∣
∣
∣

−t
< +∞.

So by (7.4), to prove the lemma it is enough to prove that the supremum
supw∈V U (p, w) is finite.

2. Denote by LV the first entry map to V , which is defined on the set of points y ∈ C\V
having a good time, by LV (y) = f m(y)(y). Note that for eachw0 ∈ V , each integer
n ≥ 1 and each univalent iterated pre-image y ∈ f −n(w0) ofw0 of order n, we have
that m(y) ≤ n and that LV (y) ∈ V is a univalent iterated pre-image of w0 of order
n − m(y). Moreover, note for each k ≥ 1, each element of F−k(w0) is a univalent
iterated pre-image of w0. Conversely, for each univalent iterated pre-image y of w0
there is an integer k ≥ 1 such that Fk is defined at y and Fk(y) = w0 (see §3.2).
Therefore, if for z ∈ V we put

L(z) := 1 +
∑

y∈L−1
V (z0)

exp(−pm(y))

∣
∣
∣
∣

(

f m(y)
)′
(y)

∣
∣
∣
∣

−t

,

then we have,

U (w0) = L(w0) +
+∞
∑

k=1

∑

y∈F−k (w0)

exp(−pm(y))

∣
∣
∣
∣

(

Fk
)′
(y)

∣
∣
∣
∣

−t

L(y). (7.5)

Since by hypothesis P(t, p) < 0, for each w ∈ V the double sum

TF (w) :=
+∞
∑

k=1

∑

y∈F−k (w)

exp(−pm(y))

∣
∣
∣
∣

(

Fk
)′
(y)

∣
∣
∣
∣

−t

,

is finite.
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On the other hand, since the conclusion of Part 1 of Proposition 6.1 holds, for each
z ∈ V the sum L(z) is finite. By bounded distortion it follows that

C ′ := sup
z∈V

L(z) < +∞.

Thus, by (7.5) for eachw ∈ V we have U (p, w) ≤ C ′TF (w) < +∞, and by bounded
distortion supw∈V U (p, w) < +∞. This completes the proof of the lemma. ��
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Appendix A. Puzzles and Nice Couples

This Appendix is devoted to showing that several classes of polynomials satisfy the
conclusions of the Main Theorem. In §A.1 we consider the case of at most finitely
renormalizable polynomials without indifferent periodic points, in §A.2 we consider the
case of some infinitely renormalizable quadratic polynomials, and finally in §A.3 we
consider the case of quadratic polynomials with real coefficients.

A.1. At most finitely renormalizable polynomials. The purpose of this section is to prove
the following result. We thank Weixiao Shen for providing the main idea of the proof.

Theorem C. Every at most finitely renormalizable complex polynomial without indiffer-
ent periodic points has arbitrarily small nice couples. Furthermore, these nice couples
can be formed by nice sets that are finite unions of puzzle pieces.

See [CL09, Prop. 5] for a somewhat similar result in the case of multimodal maps.
The proof relies on the fundamental result that diameters of puzzles tend uniformly

to 0 as their depth tends to ∞ [KvS09]; see also [QY09] for the case when the Julia set
is totally disconnected.

Let f be an at most finitely renormalizable polynomial, and consider the puzzle
construction described in [KvS09, §2.1]. Given an integer n ≥ 0 we denote by ϒn the
collection of all puzzles of depth n, which are by definition open sets. For P ∈ ϒn and
p ∈ P we put Pn(p) := P . We will assume that every critical point of f in J ( f ) is
contained in a puzzle piece. It is always possible to do the puzzle construction with this
property. This follows from the fact that in each periodic connected component of J ( f )
that is not reduced to a single point, there are infinitely many separating periodic points,
see for example [LS09, §A.1]. We remark that the main technical results of [KvS09],
including the “complex a priori bounds”, are stated for “complex box mappings”, and
they are thus independent of the periodic points used to construct the puzzle pieces.

For z ∈ C put O f (z) =⋃n≥1 f n(z), and put

δ0 := min
{

dist
(

c,O f (c′)
)

| c, c′ ∈ Crit( f ) ∩ J ( f ), c �∈ O f (c′)
}

.
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Let n0 ≥ 1 be a sufficiently large integer so that the diameter of each puzzle piece of
depth n0 is strictly smaller than δ0/2. Furthermore, let n1 > n0 be a sufficiently large
integer such that for each c ∈ Crit( f ) ∩ J ( f ) we have Pn1(c) ⊂ Pn0(c), and such that
for distinct c, c′ ∈ Crit( f ) ∩ J ( f ) we have Pn1(c) ∩ Pn1 (c

′) = ∅. The following is a
straightforward consequence of our choice of n1.

Lemma A.1. For each c, c′ ∈ Crit( f ) ∩ J ( f ) such that c′ �∈ O f (c), and each n ≥ 1,
m ≥ 1, n′ ≥ n1 we have

f m(∂Pn(c)) ∩ Pn′ (c′) = ∅.
Given a subset C of Crit( f ) ∩ J ( f ) and a function ν : C → N, we put

P(ν) :=
⋃

c∈C

Pν(c)(c).

We will say that ν is nice (resp. strictly nice) if for every c ∈ C we have ν(c) ≥ n1, and
if for every integer m ≥ 1, we have

f m(∂P(ν)) ∩ P(ν) = ∅ (resp. f m(∂P(ν)) ∩ P(ν) = ∅).
The following lemma is Part 2 of Lemma 2.2 of [KvS09].

Lemma A.2. For every recurrent critical point c in J ( f ) there is a strictly nice function
defined on {c}.
Proof. Let �0 ≥ 0 be a sufficiently large integer so that P�0(c) ⊂ P0(c), and note that
for every m ≥ �0 the set f m

(

∂P�0(c)
)

is disjoint from P0(c) by the puzzle structure,
and hence it is disjoint from P�0(c).

Define inductively a strictly increasing sequence of integers (�k)k≥1 as follows. Sup-
pose that for some k ≥ 0 the integer �k is already defined. Then we denote by mk the
least integer such that f mk (c) ∈ P�k (c), and put �k+1 = �k + mk .

Clearly the sequence (�k)k≥0 is strictly increasing, so diam(P�k (c)) → 0 as k → +∞,
and therefore mk → +∞ as k → +∞. Let k ≥ 1 be sufficiently large so that mk ≥ �0,
and so that for every m ∈ {1, . . . , �0} the sets f m(P�k (c)) and P�k (c) have disjoint clo-
sures. We will show that for each m ≥ 1 the set f m

(

∂
(

P�k (c)
))

and P�k (c) are disjoints,
which shows that the function ν : {c} → N defined by ν(c) = �k is strictly nice. Sup-
pose by contradiction that for some m ≥ 1 the set f m

(

∂P�k (c)
)

intersects P�k (c). This

implies that f �k−�0+m
(

∂P�k (c)
) = f m

(

∂P�0(c)
)

intersects f �k−�0

(

P�k (c)
)

= P�0(c).

By our choice of k we have m ≥ �0, so we get a contradiction with our choice of n. ��
For a strictly nice function ν : C → N, denote by Dν the set of those points z ∈ C

for which there is an integer m ≥ 1 such that f m(z) ∈ P(ν), and for each z ∈ Dν
denote by mν(z) the least such integer, and by cν(z) the critical point c in C such that
f mν (z)(z) ∈ Pν(c)(c). Furthermore we denote by Eν : Dν → P(ν) the map defined by
Eν(z) := f mν (z)(z).

For a subset C of Crit( f ) ∩ J ( f ) we put

NC := {c ∈ C such that O f (c) ∩ C = ∅}.
For a strictly nice function ν defined on C let Rν : C \NC → N be the function defined
by

Rν(c) = ν(cν(c)) + mν(c).

By definition, PRν(c)(c) is the pull-back of Pν(cν (c))(cν(c)) by f mν (c) containing c.
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Now we shall prove the key technical lemma which provides the inductive step to
construct nice couples starting from the existence of “nice couples” around a single
recurrent critical point. This procedure resembles the procedure to build ‘complex box
mappings’ in [KvS09] or τ -nice sets in [CL09, Proposition 5] (in the multimodal interval
setting).

Lemma A.3. For a subset C of Crit( f ) ∩ J ( f ) the following properties hold:

1. Let ν : C \NC → N be a strictly nice function. Then for each sufficiently large
integer n the function ν̃ : C → N defined by ν̃|C \NC

= ν and ν−1(n) = NC , is
strictly nice.

2. Let ν : C → N be strictly nice. Then for each sufficiently large integer n ≥ n1 the
function ν′ : C → N defined by

(

ν′)−1
(n) = NC , and ν′|C \NC

= Rν is strictly
nice, we have P (ν′) ⊂ P(ν), and for each integer m ≥ 1 we have

f m (∂P
(

ν′)) ∩ P(ν) = ∅.
3. Let c̃ ∈ Crit( f ) ∩ J ( f ) not in C , be such that O f (c̃) ∩ C �= ∅. If there is a strictly

nice function defined on C , then there is also one defined on C ∪ {c̃}.
Proof. 1. Put k = max{ν(c) | c ∈ C \NC } ≥ n1, let n > k be a sufficiently large

integer so that for all c ∈ NC we have Pn(c) ⊂ Pk(c), and consider the func-
tion ν̃ defined as in the statement of the lemma for this choice of n. Then for each
c ∈ C \NC and m ≥ 1 we have

f m (∂Pν̃(c)(c)
) ∩ P(ν̃) = ∅.

On the other hand, since n > k ≥ n1, by Lemma A.1 the same property holds for
each c ∈ NC .

2. Let n ≥ n1 be a sufficiently large integer such that for all c ∈ NC we have Pn(c) ⊂
Pν(c)(c), and let ν′ be the function defined in the statement of the lemma for this
choice of n.
Since ν is strictly nice we have PRν(C \NC ) ⊂ Pν(C ). So, by our choice of n we
have Pν′(C ) ⊂ Pν(C ). On the other hand, by the definition of Rν it follows that for
each c ∈ C \NC and each m ≥ 1 the set f m

(

∂PRν(c)(c)
)

is disjoint from Pν(C ),
and hence from Pν′(C ). Finally, by Lemma A.1, for each c ∈ NC and each m ≥ 1
the set f m(∂Pn(c)) is disjoint from Pν(C ), and hence from Pν′(C ).

3. Let ν0 : C → N be a strictly nice function. By Part 2 there is a sequence of
strictly nice functions (νk)k≥1 defined on C , such that for each k ≥ 1 we have
νk |C \NC

= Rνk−1, and P(νk) ⊂ P(νk−1).
Put L = # Crit( f ) ∩ J ( f ), and let ĉ be the critical point defined as follows.8

If EνL (c̃) �∈ C , then put ĉ := c̃, v̂ := EνL (c̃), and � = 0. Otherwise we let
� ∈ {1, . . . , L} be the largest integer such that for all j ∈ {0, . . . , �− 1} we have

EνL− j ◦ · · · ◦ EνL (c̃) ∈ C ,

and then put

ĉ := EνL−(�−1) ◦ · · · ◦ EνL (c̃) , and v̂ := EνL−�
(

ĉ
)

.

8 The proof of this part is simpler in the case when the forward orbit of c̃ is disjoint from Crit( f ). We advise
to restrict to this case on a first reading, taking L = 0 and ĉ = c̃.
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By definition we have v̂ ∈ P (νL−�), but v̂ �∈ C . Let k ≥ L −� be the largest integer
such that v̂ ∈ P(νk), and note that mνk

(

ĉ
) = mνL−�

(

ĉ
)

, and cνk

(

ĉ
) = cνL−�

(

ĉ
)

.
Put

n̂ := νk(cνk

(

v̂
)

) + mνk

(

v̂
)

+ mνk

(

ĉ
)

,

so that Pn̂
(

ĉ
)

is the pull-back of P(νk) by f mνk (v̂)+mνk (ĉ) containing ĉ.

3.1. We will show now that for every m ≥ 1 the set f m
(

∂Pn̂
(

ĉ
))

is disjoint from
P(νk+1). We will use several times the fact that νk is strictly nice. By definition of n̂
the image of Pn̂

(

ĉ
)

by f mνk (v̂)+mνk (ĉ) is a connected component of P(νk). So for
each m ≥ mνk

(

v̂
)

+ mνk

(

ĉ
)

the set f m(∂Pn̂
(

ĉ
)

) is disjoint from P(νk), and hence
from P(νk+1). Since mνk

(

v̂
)

is the first entry time of v̂ to P(νk), it follows that the
same property holds for each m ∈ {mνk

(

ĉ
)

+ 1, . . . ,mνk

(

v̂
)

+ mνk

(

ĉ
)− 1
}

. On

the other hand, by definition of n̂ the set f mνk (ĉ)
(

Pn̂
(

ĉ
))

is the pull-back of P(νk)

by f mνk (v̂) containing v̂, and by definition of k we have v̂ ∈ P(νk)\P(νk+1). As νk

is strictly nice, it follows that the sets f mνk (ĉ)
(

Pn̂
(

ĉ
))

and P(νk+1) have disjoint
closures. Finally, since mνk

(

ĉ
)

is the first entry time of ĉ to P(νk), it follows that
for all m ∈ {1, . . . ,mνk

(

ĉ
)− 1
}

the sets f m
(

Pn̂
(

ĉ
))

and P(νk+1) have disjoint
closures.

3.2. We will show now that for each integer m ≥ 1 the set f m(∂P(νk+1)) is disjoint

from Pn̂
(

ĉ
)

. Suppose by contradiction that there is an integer m ≥ 1 and c ∈ C

such that f m
(

∂Pνk+1(c)(c)
)

intersects Pn̂
(

ĉ
)

. Then the set f mνk (ĉ)+m (∂Pνk+1(c)(c)
)

intersects the closure of f mνk (ĉ)
(

Pn̂
(

ĉ
))

. This last set is a first return domain
of P(νk), and it is thus compactly contained in the open set P(νk), because νk is
strictly nice. We conclude that the set f mνk (ĉ)+m (∂Pνk+1(c)(c)

)

intersects the open
set P(νk). However, this contradicts the fact that Pνk+1(c)(c) is a first return domain
of P(νk).

3.3. If ĉ = c̃, then the properties shown in Parts 3.1 and 3.2 imply that the function
ν̃ : C ∪ {c̃} → N defined by ν̃ (c̃) = n̂ and ν̃|C = νk+1 is strictly nice.

If ĉ �= c̃, then we let m̃ be the integer such that f m̃ (c̃) = EνL−(�−1) ◦· · ·◦EνL (c̃),
so that Pn̂+m̃ (c̃) is the pull-back of Pn̂

(

ĉ
)

by EνL−(�−1) ◦ · · · ◦ EνL . Then we define
ν̃ : C ∪{c̃} → N by ν̃ (c̃) = n̂ + m̃, and ν̃|C = νk+�. The properties shown in Parts
3.1 and 3.2 imply that ν̃ is strictly nice. ��

Proof of Theorem C. In view of Part 2 of Lemma A.3 it is enough to show that there is
a strictly nice function defined in all of Crit( f ) ∩ J ( f ).

Let us say a critical point c ∈ Crit( f ) ∩ J ( f ) is corresponded if for each c′ ∈
Crit( f ) ∩ J ( f ) such that c′ ∈ O f (c) we have c ∈ O f (c′). Denote by C0 the set of
corresponded critical points in J ( f ). Note that for each critical point c in J ( f ) that is
not corresponded, the set O f (c) intersects C0. So, using Part 3 of Lemma A.3 induc-
tively, it follows that to show the existence of a strictly nice function defined in all of
Crit( f ) ∩ J ( f ) it is enough to show the existence of a strictly nice function defined
on C0.

Let ∼ be the relation on C0 defined by c ∼ c′ if c = c′ or c ∈ O f (c′). It follows
from the definition of C0 that ∼ is an equivalence relation. Let C1 be a subset of C0
containing a unique element in each equivalence class of ∼. Thus for each c ∈ C0 the
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set O f (c) intersects C1. Using Part 3 of Lemma A.3 inductively it follows that to show
that there is a strictly nice function defined on C0, it is enough to show that there is one
defined on C1.

By definition of C1 for each c ∈ C1 the set O f (c) is disjoint from C1\{c}. Thus the
set NC defined as in the statement of Lemma A.3 for C = C1, is equal to the set of
those c ∈ C1 such that c �∈ O f (c). Equivalently, NC is the set of those non-recurrent
critical points in C1. Thus, by Part 1 of this lemma we just need to show that there is a
strictly nice function defined on C2 := C1\NC1 .

For each c ∈ C2 let νc be a strictly nice function defined on {c}, given by Lemma A.2.
Let ν : C2 → N be defined for each c ∈ C2 by ν(c) = νc(c). As for each c ∈ C2 we have
O f (c) ∩ (C2\{c}) = ∅, by Lemma A.1 the function ν is strictly nice. This completes
the proof of the theorem. ��

A.2. Infinitely renormalizable quadratic maps. The purpose of this section is to show
that each infinitely renormalizable polynomial or polynomial-like map whose small crit-
ical Julia sets converge to 0 satisfy the hypotheses of Theorem B. This includes the case
of infinitely renormalizable quadratic maps with a priori bounds; see [KL08,McM94]
and references therein for results on a priori bounds.

The post-critical set of a rational map f is by definition

P( f ) :=
+∞
⋃

n=1

f n(Crit( f )).

If f is an infinitely renormalizable quadratic-like map, then P( f ) does not contain
pre-periodic pionts [McM94, Theorem 8.1].

Lemma A.4. Let f be a rational map and let V be a nice set for f such that ∂V is
disjoint from the post-critical set of f . Then for every neighborhood Ṽ of V there is
V̂ ⊂ Ṽ such that (V̂ , V ) is a pleasant couple.

Proof. We will assume that P( f ) contains at least three points; otherwise f is conju-
gated to a power map [McM94, Theorem 3.4] and then the assertion is vacuously true.
We will denote by disthyp the hyperbolic distance on C\P( f ) and by

∥
∥ f ′∥∥ the derivative

of f with respect to it. Then by Schwarz lemma we have
∥
∥ f ′∥∥ ≥ 1 on C\ f −1(P( f ))

(cf., [McM94, Theorem 3.5]). Furthermore, for z ∈ C\P( f ) and r > 0 we denote by
Bhyp(z, r) the ball corresponding to the hyperbolic metric on C\P( f ).

Let ε > 0 be sufficiently small such that Bhyp(∂V, 2ε) ⊂ Ṽ and put

V̂ := V ∪ Bhyp(∂V, ε).

By construction V̂ is a neighborhood of V in C and the set V̂ \V is disjoint from P( f ).
So for each pull-back W of V the set Ŵ\W is disjoint from Crit( f ). We thus have
Ŵ ∩Crit( f ) = ∅ when W ∩V = ∅. On the other hand, since

∥
∥ f ′∥∥ ≥ 1 on C\ f −1(P( f )),

when W ⊂ V we have

disthyp(∂Ŵ , V \P( f )) ≤ disthyp(∂Ŵ , ∂W ) ≤ disthyp(∂ V̂ , ∂V ) ≤ ε.

Hence Ŵ ⊂ V̂ . This shows that (V̂ , V ) is a pleasant couple for f . ��
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In what follows we shall use some terminology of [McM94] and [AL08, §2.4,
App. A].

Proposition A.5. Let f be an infinitely renormalizable quadratic-like map for which the
diameters of small critical Julia sets converge to 0. Then f is expanding away from crit-
ical points and has arbitrarily small pleasant couples having property (*). In particular
the conclusions of Theorem B hold for f .

Proof. We will show that there are arbitrarily small puzzles containing the critical point
whose boundaries are disjoint from the post-critical set. Then Lemma A.4 implies that
there are arbitrarily small pleasant couples. That each of these pleasant couples satisfies
property (*) is a repetition of the proof of [MU03, Lemma 4.2.6], using the fact that
each puzzle is a quasi-disk and thus that it has the “cone property” of [MU03, §4.2] with
“twisted angles”.

Let SR( f ) be the set of all integers n ≥ 2 such that f n is simply renormalizable and
let Jn be the corresponding small critical Julia set. Then Jn is decreasing with n. For
each k ≥ 1 we denote by m(k) the kth element of SR( f ).

We consider the usual puzzle construction with the α-fixed point of f . Then for each
� ≥ 1 there is a puzzle of depth �, that we denote by P�, whose closure contains Jm(1).
We have

⋂+∞
�=1 P� = Jm(1). More generally, by induction it can be shown that if for a

given s ≥ 1 we consider the puzzle construction with the α-fixed points of the renormal-
izations of f m(1), f m(2), …, f m(s), then for each � ≥ 1 there is a puzzle of depth � that
contains Jm(s). We will denote it by Ps,�. Thus Ps,� is bounded by a finite number of arcs
in an equipotential line and by the closure of some pre-images of external rays landing
at the α-fixed points of the renormalizations of f m(1), f m(2), …, f m(s). In particular
the intersection of ∂Ps,� with the Julia set is a finite set of pre-periodic points and it is
thus disjoint from P( f ) by [McM94, Theorem 8.1]. Furthermore we have

+∞
⋂

�=1

Ps,� = Jm(s),

and hence

lim
s→+∞ lim

�→+∞ diam(Ps,�) = 0.

This completes the proof that f has arbitrarily small pleasant couples having property
(*).

To show that f is expanding away from critical points we just need to show that for
each s ≥ 1 and � ≥ 1 the map f is uniformly expanding on K (Ps,�)∩ Jm(s). As this set is
compactly contained in C\P( f ), it is enough to show that the derivative

∥
∥ f ′∥∥ of f with

respect of the hyperbolic metric on this set is strictly larger than 1 on C\ f −1(P( f )).
Since f −1(P( f )) contains P( f ) strictly, this is a consequence of Schwarz lemma. ��

A.3. Quadratic polynomials with real coefficients. In this section we show that each
quadratic polynomial satisfies the conclusions of the Main Theorem.

If f is at most finitely renormalizable without indifferent periodic points, then by
Theorem C the map f satisfies the hypotheses of the Main Theorem. If f is infinitely
renormalizable, then it has a priori bounds by [McM94], so the diameters of the small

Author's personal copy



Thermodynamics of Rational Maps 701

Julia set converge to 0 and then the assertion follows from Proposition A.5. See also
Remark A.6.

It remains to consider the case when f has an indifferent periodic point. Fix t0 ∈
(t−, t+). Since f has real coefficients it follows that f has a parabolic periodic point,
and since f is quadratic it follows that f does not have critical points in the Julia set.
Therefore the function ln

∣
∣ f ′∣∣ is bounded and Hölder continuous on J ( f ), and since

the measure theoretic entropy of f is upper semi-continuous [FLM83,Lju83], there is
an equilibrium state ρ of f for the potential −t0 ln

∣
∣ f ′∣∣. Since f has a parabolic peri-

odic point it follows that t+ is the first zero of P , so we have P(t0) > 0 and therefore
the Lyapunov exponent of ρ is strictly positive. Since by [PRLS04, Theorem A and
Theorem A.7] there is a (t0, P(t0))-conformal measure of f (see also [Prz99]), [Dob08,
Theorem 8] implies that ρ is in fact the unique equilibrium state of f for the potential
−t0 ln

∣
∣ f ′∣∣. The analyticity of P at t = t0 is given by [MS00] when t0 < 0 and when

t0 ≥ 0 the fact that P is analytic at t = t0 can be shown in an analogous way as in
[SU03], using an induced map defined with puzzles pieces.

Remark A.6. We will now explain why we have introduced pleasant couples to deal with
infinitely renormalizable quadratic-like maps as in Proposition A.5 and with quadratic
polynomials with real coefficients in particular. Following [McM94] we call a renor-
malization of a quadratic-like map primitive if the corresponding small Julia sets are
pairwise disjoint. If the first renormalization of a quadratic-like map f is primitive, then
the usual puzzle construction produces a puzzle piece P containing the small critical
Julia set, in such a way that the first return puzzle P0 to P containing the critical point is
compactly contained in P . These puzzle pieces form a nice couple (P, P0) for f . Since
the puzzle P can be made arbitrarily close to the small critical Julia set, a slightly more
general argument shows that a map as in Proposition A.5 having infinitely many primi-
tive renormalizations admits arbitrarily small nice couples. The Feigenbaum quadratic
polynomial is an example of an infinitely renormalizable quadratic map having no prim-
itive renormalization and it is possible to show that as such it does not have arbitrarily
small nice couples. However, the Feigenbaum polynomial does have arbitrarily small
pleasant couples by Proposition A.5.

Appendix B. Rigidity, Multifractal Analysis, and Level-1 Large Deviations

The purpose of this Appendix is to prove that, apart from some well-known exceptional
maps, the pressure function of each of the maps considered in this paper is strictly convex
on (t−, t+). We derive consequences for the dimension spectrum for Lyapunov exponents
(§B.1) and for pointwise dimensions of the maximal entropy measure (§B.2), as well
as some level-1 large deviations results (§B.3). See [Pes97,Mak98] for background in
multifractal analysis, and [DZ98] for background in large deviation theory.

In what follows by a power map we mean a rational map P(z) ∈ C(z) such that for
some integer d we have P(z) = zd .

Theorem D. Let f be a rational map satisfying the hypotheses of Theorem B. If f is not
conjugated to a power, Chebyshev or Lattès map, then for every t ∈ (t−, t+) we have
P ′′(t) > 0. In particular

χ∗
inf := inf

{−P ′(t) | t ∈ (t−, t+)
}

< χ∗
sup := sup

{−P ′(t) | t ∈ (t−, t+)
}

.

It is well known that for a power, Chebyshev or Lattès map, t+ = +∞ and the pressure
function P is affine on (t−,+∞); in particular in this case we have χ∗

inf = χ∗
sup. For a
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general rational map f and for t0 ∈ (t−, 0), a result analogous to Theorem D was shown
by Makarov and Smirnov in [MS00, §3.8].

Proof. Suppose that for some t0 ∈ (t−, t+)we have P ′′(t0) = 0. Let (V̂ , V ) be a pleasant
couple as in §7, so that the corresponding pressure function P is finite on a neighborhood
of (t, p) = (t0, P(t0)), and such that for each t ∈ R close to t0 we have P(t, P(t)) = 0,
see §3.4 for the definition of P . Then the implicit function theorem implies that the
function,

p0(τ ) := P
(

t0 + τ, P(t0) + τ P ′(t0)
)

= P
(

F,−t0 ln
∣
∣F ′∣∣− P(t0)m − τ

(

ln
∣
∣F ′∣∣ + P ′(t0)m

))

,

defined for τ ∈ R in a neighborhood of t = 0, satisfies p′′
0(0) = 0.

Let ρ be the equilibrium measure of F for the potential −t0 ln
∣
∣F ′∣∣ − P(t0)m and

put ψ = − ln
∣
∣F ′∣∣− P ′(t0)m. Since for each t close to t0 we have P(t, P(t)) = 0, the

implicit function theorem gives p′
0(0) = 0. Thus, by Part 1 of Lemma 4.4 and [MU03,

Prop. 2.6.13] we have

∫

ψdρ =
∫

− ln
∣
∣F ′∣∣− P ′(t0)mdρ = p′

0(0) = 0,

see also Remark 3.4. On the other hand, by Part 1 of Lemma 4.4 and [MU03, Prop. 2.6.14]

0 = p′′
0(0) =

+∞
∑

k=0

(
∫

ψ ◦ Fk · ψdρ −
(∫

ψdρ

)2
)

,

is the asymptotic variance of ψ with respect to ρ, see also Remark 3.4. By Part 1 of
Lemma 4.4 and [MU03, Lemma 4.8.8] it follows that there is a measurable function
u : J (F) → R such that ψ = u ◦ F − u, see also Remark 3.4. Put

J̃ := {z ∈ C\K (V ) | f m(z)(z) ∈ J (F)}

and extend u to a function defined on J̃ , that for each z ∈ J̃\J (F) it is given by,

u(z) = u
(

f m(z)(z)
)

−
m(z)−1
∑

j=0

(

− ln
∣
∣
∣ f ′ ( f j (z)

)∣
∣
∣− P ′(t0)

)

.

An argument similar to the construction of the conformal measure given in the proof
of Proposition 4.3, shows that we have ln

∣
∣ f ′∣∣ = −P ′(t0) + u ◦ f − u on J̃ ; see also

[PRL07, Prop. B.2]. By construction this last set has full measure with respect to the
equilibrium state of f for the potential −t0 ln

∣
∣ f ′∣∣, cf. §4.3. Thus, an argument similar to

the proof of [Zdu90, §§5–8] (see also [MS00, §3.8] or [May02, Theorem 3.1]) implies
that f is a power, Chebyshev or Lattès map. ��
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B.1. Dimension spectrum for Lyapunov exponents. Let f be a rational map of degree
at least two. For z ∈ C we define

χ(z) = lim
n→+∞

1

n
ln
∣
∣
∣

(

f n)′ (z)
∣
∣
∣ ,

whenever the limit exists; it is called the Lyapunov exponent of f at z. The dimension
spectrum for Lyapunov exponents is the function L : (0,+∞) → R defined by,

L(α) := HD ({z ∈ J ( f ) | χ(z) = α}) .
Following [MS96] we will say that f is exceptional if there is a finite subset � of C

such that

f −1(�)\ Crit( f ) = �, (B.1)

see also [MS00, §1.3]. A rational map f is exceptional if and only if t− > −∞. Fur-
thermore, in this case there is a set � f containing at most four points such that (B.1)
is satisfied with � = � f , and such that each finite set � satisfying (B.1) is contained
in � f . Power, Chebyshev and Lattès maps are all exceptional. See [MS96] for other
examples of exceptional rational maps.

It has been recently shown in [GPR08, Theorem 2] that if f is not exceptional, or
if f is exceptional and � f ∩ J ( f ) = ∅, then for each α ∈ (0,+∞) we have

L(α) = 1

α
inf{P(t) + αt | t ∈ R}.

Equivalently, the functions α �→ −αL(α) and s �→ P(−s) form a Legendre pair. Note
that a Chebyshev or a Lattès map f is exceptional and � f intersects J ( f ).

The following is a direct consequence of Theorem D.

Corollary B.1. Let f be a rational map satisfying the hypotheses of Theorem B. Sup-
pose furthermore that f is not conjugated to a power map, and that either f is not
exceptional, or that f is exceptional and � f is disjoint from J ( f ). Then the dimension
spectrum for Lyapunov exponents of f is real analytic on (χ∗

inf , χ
∗
sup).

B.2. Dimension spectrum for pointwise dimension. Let ρ0 be the unique measure of
maximal entropy of f . Then for z ∈ J ( f ) we define

α(z) := lim
r→0+

ln ρ0(B(z, r))

ln r
,

whenever the limit exists; it is called the pointwise dimension of ρ0 at z. The dimension
spectrum for pointwise dimensions is defined as the function

D(α) := HD({z ∈ J ( f ) | α(z) = α}).
When f is a polynomial with connected Julia set we have P ′(0) = − ln deg( f ), so

by [MS00, §5] it follows that for α ≤ 1 we have,

D(α) = inf

{

t + α
P(t)

ln deg( f )
| t ≤ 0

}

.

Equivalently, the function β �→ −βD
(

1
β

)

on β ≥ 1 and the function s �→
(ln deg( f ))−1 P(−s) on s ≥ 0 form a Legendre pair. So the following is a direct conse-
quence of Theorem B and Theorem D.
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Corollary B.2. Let f be a polynomial with connected Julia set satisfying the hypotheses
of Theorem B. If f is not a power or Chebyshev map, then the dimension spectrum for
pointwise dimensions of the maximal entropy measure of f is real analytic on α < 1.

Remark B.3. In the uniformly hyperbolic case one has

D(α) = L(ln deg( f )/α). (B.2)

This also holds when the set of those z ∈ J ( f ) for which χ(z) exists and satisfies
χ(z) ≤ 0 has Hausdorff dimension equal to 0, like for rational maps satisfying the TCE
condition [PRL07, §1.4]. In fact, it is easy to see that for z ∈ J ( f ) belonging to the
“conical Julia set” and for which both α(z) and χ(z) exists, and χ(z) > 0, we have
α(z) = ln deg( f )/χ(z). Then (B.2) follows from [GPR08, Prop. 3], that the set of those
z ∈ J ( f ) that are not in the conical Julia set and χ(z) > 0 has Hausdorff dimension
equal to 0.

B.3. Large deviations. The purpose of this section is to present a sample application
of Theorem D to level-1 large deviations, using the characterizations of the pressure
function given in [PRLS04]. See [CRL08] and references therein for some level-2 large
deviation principles for rational maps.

Corollary B.4. Let f be a rational map satisfying the hypotheses of Theorem B, and
that is not conjugated to a power, Chebyshev, or Lattès map. Fix t0 ∈ (t−, t+) and let ρt0
be the equilibrium state of f for the potential −t0 ln

∣
∣ f ′∣∣. Fix x0 ∈ J ( f ) such that (2.1)

holds, and for each n ≥ 1 put

ωn :=
∑

x∈ f −n(x0)

∣
∣( f n)′ (x)

∣
∣
−t0

∑

y∈ f −n(x0)

∣
∣( f n)′ (y)

∣
∣−t0

δx .

Given ε ∈ (0,−P ′(t0)− χ∗
inf

)

, let t (ε) ∈ (t−, t0) be determined by P ′(t (ε))= P ′(t0)−ε.
Then we have,

lim
n→+∞

1

n
lnωn

{

x ∈ J ( f )

∣
∣
∣
∣

1

n
ln

∣
∣
∣
∣

(

f j
)′
(x)

∣
∣
∣
∣
>

∫

ln
∣
∣ f ′∣∣ dρt0 + ε

}

= P(t (ε))− P(t0)− (t (ε)− t0)P
′(t (ε)) < 0.

Similarly, given ε ∈
(

0, χ∗
sup + P ′(t0)

)

let t̃(ε) ∈ (t0, t+) be determined by P ′ (t̃(ε)
) =

P ′(t0) + ε. Then we have,

lim
n→+∞

1

n
lnωn

{

x ∈ J ( f )

∣
∣
∣
∣

1

n
ln

∣
∣
∣
∣

(

f j
)′
(x)

∣
∣
∣
∣
<

∫

ln
∣
∣ f ′∣∣ dρt0 − ε

}

= P
(

t̃(ε)
)− P(t0)− (t̃(ε)− t0

)

P ′ (t̃(ε)
)

< 0.

For a rational map satisfying the TCE condition, or the weaker “Hypothesis H” of
[PRLS04], a similar result can be obtained for periodic points. See [Com09] and ref-
erences therein for analogous statements in the case of uniformly hyperbolic rational
maps, and [KN92] for similar results in the case of Collet-Eckmann unimodal maps
and t0 near 1.

Author's personal copy



Thermodynamics of Rational Maps 705

Proof. First observe that by the choice of x0, for each s ∈ R we have

lim
n→+∞

1

n
ln
∫

exp
(

s ln
∣
∣
∣

(

f n)′
∣
∣
∣

)

dωn = lim
n→+∞

1

n
ln

∑

x∈ f −n(x0)

∣
∣( f n)′ (x)

∣
∣−t0+s

∑

y∈ f −n(x0)

∣
∣( f n)′ (y)

∣
∣−t0

= P(t0 − s)− P(t0).

We will apply the theorem in p. 343 of [PS75] to the space J := ∏+∞
n=1 J ( f ) endowed

with the probability measure P :=⊗+∞
n=1 ωn . Furthermore for each n ≥ 1 we take the

random variable Wn : J → R as Wn

(
∏+∞

j=1 x j

)

:= ln
∣
∣( f n)′ (xn)

∣
∣ . So for each s ∈ R

we have
∫

exp(sWn)dP =
∫

exp
(

s ln
∣
∣
∣

(

f n)′
∣
∣
∣

)

dωn,

and by the computation above,

lim
n→+∞

1

n
ln
∫

exp(sWn)dP = P(t0 − s)− P(t0).

Using that
∫

ln
∣
∣( f n)′

∣
∣ dρt0 = −P ′(t0) and that the function s �→ P(t0 − s)− P(t0) is

real analytic and strictly convex on (t0 − t+, t0 − t−) by Theorem D, we obtain by the
theorem in p. 343 of [PS75] that

lim
n→+∞

1

n
lnωn

{

1
n ln
∣
∣
∣

(

f n)′
∣
∣
∣ >

∫

ln
∣
∣
∣

(

f n)′
∣
∣
∣ dρt0 + ε

}

= P(t (ε))− P(t0)− (t (ε)− t0)P
′(t (ε)).

The second assertion is obtained analogously with Wn replaced by the function
∏+∞

j=1 x j �→ − ln
∣
∣( f n)′ (xn)

∣
∣. ��
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[PU02] Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods. London Math-
ematical Society, Lecture Notes Series, Vol. 371. Cambridge: Cambridge University Press,
2010

[QY09] Qiu, W.Y., Yin, Y.C.: Proof of the Branner-Hubbard conjecture on Cantor Julia sets. Sci. China
Ser. A 52(1), 45–65 (2009)

[RL07] Rivera-Letelier, J.: A connecting lemma for rational maps satisfying a no-growth condition.
Erg. Th. Dyn. Syst. 27(2), 595–636 (2007)

[RLS10] Rivera-Letelier, J., Shen, W.: Statistical properties of one-dimensional maps under weak
hyperbolicity assumptions. 2010. http://arXiv.org/abs/1004.0230v1 [math.DS], 2010

[Rue92] Ruelle, D.: Spectral properties of a class of operators associated with conformal maps in two
dimensions. Commun. Math. Phys. 144(3), 537–556 (1992)

[Rue04] Ruelle, D.: Thermodynamic formalism. Cambridge Mathematical Library. Cambridge: Cam-
bridge University Press, second edition, 2004

[SU03] Stratmann, B.O., Urbanski, M.: Real analyticity of topological pressure for parabolically semi-
hyperbolic generalized polynomial-like maps. Indag. Math. (N.S.) 14(1), 119–134 (2003)
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