DOUBLE STRUCTURES AND ALGEBROIDS

Janusz Grabowski

(Polish Academy of Sciences)

February 23, 2021

Plan of the talk

- Double vector bundles
- *n*-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids

Double vector bundles

In geometry and applications one often encounters double vector bundles, i.e. manifolds equipped with two vector bundle structures which are compatible in a categorical sense. They were defined by Pradines and studied by Mackenzie, Konieczna (Grabowska), and Urbański as vector bundles in the category of vector bundles. More precisely:

Definition

A double vector bundle (D; A, B; M) is a system of four vector bundle structures

$$\begin{array}{c|c}
D \xrightarrow{q_B^D} B \\
\xrightarrow{D} & \downarrow q_B \\
A \xrightarrow{q_A} M
\end{array}$$

in which D has two vector bundles structures, on bases A and B. The latter are themselves vector bundles on M, such that each of the four structure maps of each vector bundle structure on D (namely the bundle projection, zero section, addition and scalar multiplication) is a morphism of vector bundles with respect to the other structures.

J.Grabowski (IMPAN)

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^A : M \to A, \ m \mapsto 0^A_m$, and $0^B : M \to B, \ m \mapsto 0^B_m$.
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_A$ and \cdot_A , with $\tilde{0}^A : A \to D$, $a \mapsto \tilde{0}^A_a$, for the zero-section.
- Similarly, in the horizontal bundle structure on D with base B we write $+_B$ and \cdot_B , with $\tilde{0}^B : B \to D$, $b \mapsto \tilde{0}^B_b$, for the zero-section.
- The two structures on D, namely (D, q_B^D, B) and (D, q_A^D, A) will also be denoted, respectively, by \tilde{D}_B and \tilde{D}_A , and called the horizontal bundle structure and the vertical bundle structure.

Double vector bundles - compatibility conditions

The condition that each vector bundle operation in D is a morphism with respect to the other is equivalent to the following conditions, known as the interchange laws:

$$\begin{array}{rclrcrcrcrcrcrcrcrcrc} (d_1 & +_B & d_2) & +_A & (d_3 & +_B & d_4) & = & (d_1 & +_A & d_3) & +_B & (d_2 & +_A & d_4), \\ & t & \cdot_A & (d_1 & +_B & d_2) & = & t & \cdot_A & d_1 & +_B & t & \cdot_A & d_2, \\ & t & \cdot_B & (d_1 & +_A & d_2) & = & t & \cdot_B & d_1 & +_A & t & \cdot_B & d_2, \\ & t & \cdot_A & (s & \cdot_B & d) & = & s & \cdot_B & (t & \cdot_A & d), \\ & & & \tilde{0}^A_{a_1+a_2} & = & \tilde{0}^A_{a_1} & +_B & \tilde{0}^A_{a_2}, \\ & & & & \tilde{0}^B_{t_1+a_2} & = & \tilde{0}^B_{b_1} & +_A & \tilde{0}^A_{b_2}, \\ & & & & & \tilde{0}^B_{b_1+b_2} & = & \tilde{0}^B_{b_1} & +_A & \tilde{0}^B_{b_2}, \\ & & & & & & \tilde{0}^B_{t_b} & = & t & \cdot_A & \tilde{0}^B_{b}. \end{array}$$

The core

We denote by C the intersection of the two kernels:

 $C = \{c \in D \mid \exists m \in M \text{ such that } q_B^D(c) = 0_m^B, \quad q_A^D(c) = 0_m^A\},$

which is called the core, and together with the map $q_C : c \mapsto m$, (C, q_C, M) is also a vector bundle over M. Eventually we can write the diagram below to emphasis the core of the relevant double vector bundle.

Double vector bundles - reference example

- Let $q_A : A \to M$, $q_B : B \to M$, $q_C : C \to M$ be vector bundles.
- Consider the manifold

 $D = A \times_M B \times_M C.$

D is a double vector bundle (with side bundles A and B, and the core C) with respect to the obvious projections
 q^D_A : D ∋ (a_m, b_m, c_m) → a_m ∈ A, q^D_B : D ∋ (a_m, b_m, c_m) → b_m ∈ B, obvious embeddings

 $\tilde{0}^A: A \ni a_m \mapsto (a_m, 0^B_m, 0^C_m) \in D\,, \quad \tilde{0}^B: B \ni b_m \mapsto (0^A_m, b_m, 0^C_m) \in D\,,$

and obvious vector space structures in fibers:

 $(a_m, b_m, c_m) +_A (a_m, b'_m, c'_m) = (a_m, b_m + b'_m, c_m + c'_m), \text{ etc.}$

- Actually, every double vector bundle is locally of this form.
- In particular, any Whitney direct sum $A \oplus_M B$, identified with $\simeq A \times_M B$, can be given a double vector bundle structure.

J.Grabowski (IMPAN)

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines to double graded bundles.
- However, thanks to our simple description in terms of a homogeneity structure, the 'diagrammatic' definition of Pradines can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following:

Definition (Grabowski-Rotkiewicz)

A double graded bundle is a manifold equipped with two homogeneity structures h^1 , h^2 which are compatible in the sense that

$$h^1_t \circ h^2_s = h^2_s \circ h^1_t$$
 for all $s,t \in \mathbb{R}$.

n-fold Graded Bundles

- The above condition can also be formulated as commutation of the corresponding weight vector fields, [∇¹, ∇²] = 0.
- For vector bundles this is equivalent to the concept of a double vector bundle in the sense of Pradines and Mackenzie.

Theorem (Grabowski-Rotkiewicz)

The concept of a double vector bundle, understood as a particular double graded bundle in the above sense, coincides with that of Pradines.

• All this can be extended to *n*-fold graded bundles in the obvious way:

Definition

A *n*-fold graded bundle is a manifold equipped with *n* homogeneity structures h^1, \ldots, h^n which are compatible in the sense that

 $h_t^i \circ h_s^j = h_s^j \circ h_t^i$ for all $s, t \in \mathbb{R}$ and $i, j = 1, \dots, n$.

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

First example: **T***E*.

$$\tau: E \longrightarrow M$$
$$(x^a, y^i) \longmapsto (x^a)$$

$$\nabla^1 = \dot{x}^a \partial_{\dot{x}^a} + \dot{y}^i \partial_{\dot{y}^i}$$

$$\nabla^2 = \mathsf{d}_{\mathsf{T}}(y^i \partial_{y^i}) = y^i \partial_{y^i} + \dot{y}^j \partial_{\dot{y}^j}$$

Double graded bundles - examples

Second example: T^*E^* .

 $\nabla^1 = p_a \partial_{p_a} + y^i \partial_{y^i}, \qquad \nabla^2 = p_a \partial_{p_a} + \xi_i \partial_{\xi_i}.$

Canonical isomorphism

Canonical isomorphism: $T^*E^* \simeq T^*E$.

 $(x^a,\xi_i,p_b,y^j) \qquad (x^a,y^i,p_b,\xi_j)$

 T^*E^* is (symplectically) isomorphic to T^*E . The graph of the canonical d.v.b. anti-symplectic isomorphism \mathcal{R} is the lagrangian submanifold generated in

$$\begin{split} \mathsf{T}^*(E^*\times E) &\simeq \mathsf{T}^*E^*\times \mathsf{T}^*E \quad \text{by} \quad E^*\times_M E \ni (\xi,y) \longmapsto \xi(y) \in \mathbb{R}. \\ \mathcal{R}: (x^a,y^i,p_b,\xi_j) \longmapsto (x^a,\xi_i,-p_b,y^j) \,. \end{split}$$

Graded linear bundles

- A double graded bundle whose one structure is linear we will call a graded linear bundle (GrL-bundle). Canonical examples are TF and T^*F with the lifted and the vector bundle structures. Iterated lifts, $TT^*F \simeq T^*TF$ lead to triple structures of this kind.
- Example. The weight vector field of the lifted graded structure on TT^2M with coordinates $(x^a, \dot{x}^b, \ddot{x}^c, \delta x^d, \delta \dot{x}^e, \delta \ddot{x}^f)$ is

 $\nabla^2 = \dot{x}^b \partial_{\dot{x}^b} + 2\ddot{x}^c \partial_{\ddot{x}^c} + \delta \dot{x}^e \partial_{\delta \dot{x}^e} + 2\delta \ddot{x}^f \partial_{\delta \ddot{x}^f} \,.$

It yields a GrL-bundle with the standard Euler vector field of the tangent bundle structure $\nabla^1 = \delta x^d \partial_{\delta x^d} + \delta \dot{x}^e \partial_{\delta \dot{x}^e} + \delta \ddot{x}^f \partial_{\delta \ddot{x}^f}$.

• Another example: if $\tau : E \to M$ is a vector bundle, then $\wedge^k TE$ is canonically a GrL-bundle:

Linearity

Linearity of different geometrical structures is usually related to some double vector bundle structures.

• A bivector field Π on a vector bundle E is linear if the corresponding map $\widetilde{\Pi} : \mathbb{T}^* E \longrightarrow \mathbb{T} E$

is a morphism of double vector bundles.

• A two-form ω on a vector bundle *E* is linear if the corresponding map

 $\widetilde{\omega}: \mathsf{T} E \longrightarrow \mathsf{T}^* E$

is a morphism of double vector bundles.

• A (linear) connection on a vector bundle E is a morphisms of double vector bundles $\Gamma : E \times_M TM \to TE$, that acts as the identity on the vector bundles E and TM:

$$(\nabla_X \sigma)^{\vee} = \mathsf{T}\sigma(X) - \mathsf{\Gamma}(\sigma, X),$$

where $\sigma^{\mathbf{v}} = y^{i}(\mathbf{x})\partial_{\dot{y}^{i}}$ is the vertical lift of the section σ :

$$M \ni x \mapsto \sigma(x) = (y^i(x)) \in E$$
.

Lie algebroids

- *τ*: *E* → *M* is a rank-*n* vector bundle over an *m*-dimensional manifold
 M, and *π*: *E*^{*} → *M* its dual;
- Aⁱ(E) = Sec(∧ⁱE), for i = 0, 1, 2, ..., the module of sections of the bundle ∧ⁱE.
- $\mathcal{A}(E) = \bigoplus_{i \in \mathbb{N}} \mathcal{A}^{i}(E)$ the Grassmann algebra of multi-sections of E.

We use affine coordinates (x^a, ξ_i) on E^* and the dual coordinates (x^a, y^i) on E.

Definition

A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^* , $[\Pi, \Pi]_{Schouten} = 0$. In local coordinates,

$$\Pi = rac{1}{2} oldsymbol{c}^k_{ij}(x) \xi_k \partial_{\xi_i} \wedge \partial_{\xi_j} +
ho^b_i(x) \partial_{\xi_i} \wedge \partial_{x^b} \, ,$$

where $c_{ij}^k(x) = -c_{ji}^k(x)$.

Lie algebroids - equivalent definitions

The bivector field Π defines a Poisson bracket $\{\cdot, \cdot\}_{\Pi}$ on the algebra $C^{\infty}(E^*)$ of smooth functions on E^* by $\{\phi, \psi\}_{\Pi} = \langle \Pi, d\phi \wedge d\psi \rangle$.

Theorem

A Lie algebroid structure (E, Π) can be equivalently defined as

 a Lie bracket [·, ·]_Π on the space Sec(E), together with a vector bundle morphisms ρ: E → TM (the anchor), such that

$$[X, fY]_{\Pi} = \rho(X)(f)Y + f[X, Y]_{\Pi},$$

for all $f \in C^{\infty}(M)$, $X, Y \in Sec(E)$,

• or as a homological derivation d^{Π} of degree 1 in the Grassmann algebra $\mathcal{A}(E^*)$ (de Rham derivative). The latter is a map $d^{\Pi} : \mathcal{A}(E^*) \to \mathcal{A}(E^*)$ such that $d^{\Pi} : \mathcal{A}^i(E^*) \to \mathcal{A}^{i+1}(E^*)$, $(d^{\Pi})^2 = 0$, and that, for $\alpha \in \mathcal{A}^a(E^*)$, $\beta \in \mathcal{A}^b(E^*)$ we have

$$\mathsf{d}^{\mathsf{\Pi}}(\alpha \wedge \beta) = \mathsf{d}^{\mathsf{\Pi}}\alpha \wedge \beta + (-1)^{\mathsf{a}}\alpha \wedge \mathsf{d}^{\mathsf{\Pi}}\beta \,. \tag{2}$$

(1)

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$\begin{split} \iota([X, Y]_{\Pi}) &= \{\iota(X), \iota(Y)\}_{\Pi}, \\ \pi^*(\rho(X)(f)) &= \{\iota(X), \pi^*f\}_{\Pi}, \\ (\mathsf{d}^{\Pi}\mu)^{\nu} &= [\Pi, \mu^{\nu}]_{S}. \end{split}$$

where $\iota(X)(e_p^*) = \langle X(p), e_p^* \rangle$, μ^{ν} is the natural vertical lift of a *k*-form $\mu \in \mathcal{A}^k(E^*)$ to a vertical *k*-vector field on E^* , and $[\cdot, \cdot]_S$ is the Schouten bracket of multivector fields. In a local basis of sections $\{e_1, \ldots, e_n\}$ of *E* and the corresponding local coordinates,

$$\begin{split} &[e_i, e_j]_{\Pi}(x) &= c_{ij}^k(x)e_k, \\ &\rho(e_i)(x) &= \rho_i^a(x)\partial_{x^a}, \\ &d^{\Pi}f(x) &= \rho_i^a(x)\frac{\partial f}{\partial x^a}(x)e^i, \\ &d^{\Pi}e^i(x) &= c_{lk}^i(x)e^k \wedge e^l. \end{split}$$

Lie algebroids - examples

- A Lie algebroid over a single point, with the zero anchor, is a Lie algebra.
- The tangent bundle, TM, of a manifold M, with bracket the Lie bracket of vector fields and with anchor the identity of TM, is a Lie algebroid over M. Any integrable sub-bundle of TM, in particular the tangent bundle along the leaves of a foliation, is also a Lie algebroid.
- If (M, Λ) is a Poisson manifold, then the cotangent bundle T^{*}M is a Lie algebroid over M. The anchor is the map Λ[#] : T^{*}M → TM The Lie bracket [,]_Λ of differential 1-forms satisfies [df, dg]_Λ = d{f,g}_Λ.
- If *P* is a principal bundle with structure group *G*, base *M* and projection *p*, the *G*-invariant vector fields on *P* are the sections of a vector bundle with base *M*, denoted E = TP/G, and called the Atiyah algebroid of the principal bundle *P*. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of *G*-invariant vector fields on *P*, and with surjective anchor induced by $Tp : TP \rightarrow TM$.

18 / 31

Lie algebroids - related objects

For any section X ∈ Sec(E), the Lie derivative L_X, acting in A(E) and A(E*), is defined in the standard way:

$$\mathcal{L}_{X}(f) = \rho(X)(f), \text{ for } f \in C^{\infty}(M),$$

$$\mathcal{L}_{X}(Y_{1} \wedge \dots \wedge Y_{l}) = \sum_{i=1}^{l} Y_{1} \wedge \dots \wedge [X, Y_{i}]_{\Pi} \wedge \dots \wedge Y_{a},$$

$$\mathcal{L}_{X}(\alpha) = i_{X} d^{\Pi} + d^{\Pi} i_{X}.$$

We know that the linear bivector field ∏ on E* induces a morphism of double vector bundles ∏# : T*E* → TE*, covering the identity on E*. Composing it with the canonical isomorphism R : T*E → T*E*, we get a morphism of double vector bundles

$$\varepsilon_{\Pi}: \mathsf{T}^*E \to \mathsf{T}E^*$$
,

covering the identity on E^* .

General algebroids

• A general algebroid is a double vector bundle morphism covering the identity on *E**:

In local coordinates,

$$\varepsilon(x^{a}, y^{i}, p_{b}, \xi_{j}) = (x^{a}, \xi_{i}, \rho_{k}^{b}(x)y^{k}, c_{ij}^{k}(x)y^{i}\xi_{k} + \sigma_{j}^{a}(x)p_{a}).$$

Algebroids

Any such morphism is associated with a linear tensor field on E^* ,

 $\Pi_{\varepsilon} = c_{ij}^{k}(x)\xi_{k}\partial_{\xi_{i}}\otimes\partial_{\xi_{j}} + \rho_{i}^{b}(x)\partial_{\xi_{i}}\otimes\partial_{x^{b}} - \sigma_{j}^{a}(x)\partial_{x^{a}}\otimes\partial_{\xi_{j}}.$

We speak about a skew algebroid (resp., Lie algebroid) if the tensor Π_{ε} is skew-symmetric (resp., Poisson tensor).

Theorem

An algebroid structure (E, ε) can be equivalently defined as a bilinear bracket $[\cdot, \cdot]_{\varepsilon}$ on sections of $\tau \colon E \to M$, together with vector bundle morphisms $a_{I}^{\varepsilon}, a_{r}^{\varepsilon} \colon E \to \mathsf{T}M$ (left and right anchors), such that

 $[fX,gY]_{\varepsilon} = f(a_{I}^{\varepsilon} \circ X)(g)Y - g(a_{r}^{\varepsilon} \circ Y)(f)X + fg[X,Y]_{\varepsilon}$

for $f, g \in \mathcal{C}^{\infty}(M)$, $X, Y \in Sec(E)$.

For skew-algebroids the bracket is skew-symmetric, thus $a_l^{\varepsilon} = a_r^{\varepsilon} = \rho^{\varepsilon}$, and for Lie algebroids it satisfies the Jacobi identity,

 $[[X, Y]_{\varepsilon}, Z]_{\varepsilon} = [X, [Y, Z]_{\varepsilon}]_{\varepsilon} - [Y, [X, Z]_{\varepsilon}]_{\varepsilon}.$

Non-holonomic reduction

Let ε be a Lie algebroid structure on a vector bundle E over M associated with the tensor \prod_{ε} .

For a linear subbundle D in E, supported on the whole M, consider a decomposition

$$E = D \oplus_M D^\perp \tag{3}$$

and the associated projection $p: E \to D$. With such a decomposition we can associate a skew-algebroid structure on D. The projection P induces a map on sections: $p: Sec(E) \to Sec(D)$ and thus a bracket

$$[X, Y]_{\varepsilon_p} = \rho[X, Y]_{\varepsilon} \tag{4}$$

on sections of D – the nonholonomic restriction of $[\cdot, \cdot]$ along p. This is a skew algebroid bracket with the original anchor. A particular case of this construction can be applied to a vector subbundle D of TM, for M equipped with a Riemannian structure, e.g. nonholonomic systems with mechanical Lagrangians.

Groupoids

Definition

A groupoid over a set Γ_0 is a set Γ equipped with source and target mappings $\alpha, \beta : \Gamma \to \Gamma_0$, a multiplication map m from $\Gamma_2 \stackrel{\text{def}}{=} \{(g, h) \in \Gamma \times \Gamma \mid \beta(g) = \alpha(h)\}$ to Γ , an injective map $\epsilon : \Gamma_0 \to \Gamma$, and an involution $\iota : \Gamma \to \Gamma$, satisfying the following properties (where we write gh for m(g, h) and g^{-1} for $\iota(g)$):

- (anchor) $\alpha(gh) = \alpha(g)$ and $\beta(gh) = \beta(h)$;
- (associativity) g(hk) = (gh)k in the sense that, if one side of the equation is defined, so is the other, and then they are equal;
- (identities) $\epsilon(\alpha(g))g = g = g\epsilon(\beta(g));$
- (inverses) $gg^{-1} = \epsilon(\alpha(g))$ and $g^{-1}g = \epsilon(\beta(g))$.

The elements of Γ_2 are sometimes referred to as composable (or admissible) pairs. A groupoid Γ over a set Γ_0 will be denoted $\Gamma \rightrightarrows \Gamma_0$.

Groupoids: α **-** and β **-fibers**

- We can regard Γ₀ as a subset in Γ, and thus ε as the identity, that simplifies the picture, since α, β become just projections in Γ.
- The inverse images of points under the source and target maps we call α and β -fibres. The fibres through a point g, will be denoted by $\mathcal{F}^{\alpha}(g)$ and $\mathcal{F}^{\beta}(g)$, respectively.

 Another approach to groupoids is that of Zakrzewski: in the definition of a group just replace maps with relations.

J.Grabowski (IMPAN)

Graded bundles in geometry and mechanics

Groupoid as a small category

• The full information about the groupoid is contained in the multiplication relation:

 $\Gamma_3 = \{(x, y, z) \in \Gamma \times \Gamma \times \Gamma \mid (x, y) \in \Gamma_2 \text{ and } z = xy\}$.

Alternatively, a groupoid Γ ⇒ Γ₀ is defined as a small category, i.e. a category whose objects form a set Γ₀, in which every morphism is an isomorphism. Elements of Γ represent morphisms in this category.

• Any group G is a groupoid over its neutral element, $G \rightrightarrows \{e\}$. Here, any morphism is an automorphism.

Lie groupoids

- In differential geometry we consider differentiable (Lie) groupoids (introduced by Ehresmann), i.e. groupoids G ⇒ M, where
 G, G₂, G₃, M are smooth manifolds, α, β are smooth submersions, ε is an immersion and ι is a diffeomorphism.
- The anchor property implies that each element g of G determines the left and right translation maps

 $I_{\mathbf{g}}:\mathcal{F}^{lpha}(eta(\mathbf{g}))
ightarrow\mathcal{F}^{lpha}(lpha(\mathbf{g}))\,,\quad r_{\mathbf{g}}:\mathcal{F}^{eta}(lpha(\mathbf{g}))
ightarrow\mathcal{F}^{eta}(eta(\mathbf{g}))\,,$

- Let us consider the vector bundle $\tau : A(G) \to M$, whose fiber at a point $x \in M$ is $A_x G = V_{\epsilon(x)} \alpha = Ker(T_{\epsilon(x)} \alpha)$.
- With any sections X of τ, X ∈ Sec(τ), there is canonically associated a left-invariant vector field X on G, the left prolongation of X, namely,

$$\overleftarrow{X}(g) = (T_{\epsilon(\beta(g))}I_g)(X(\beta(g))).$$

for $g \in G$. It is, by definition, tangent to α -fibers.

Lie algebroid of a Lie groupoid

 We can now introduce a Lie algebroid structure ([·, ·], ρ) on A(G), which is defined by

$$\overleftarrow{[X,Y]} = [\overleftarrow{X},\overleftarrow{Y}], \quad \rho(X)(x) = (T_{\epsilon(x)}\beta)(X(x)), \tag{5}$$

for $X, Y \in \Gamma(\tau)$ and $x \in M$.

 We recall that a Lie algebroid A over a manifold M is a real vector bundle τ : A → M together with a skew-symmetric bracket [·, ·] on the space Γ(τ) of sections of τ : A → M and a bundle map, called the anchor map, such that

$$[X, fY] = f[X, Y] + \rho(X)(f)Y,$$

for $X, Y \in \Gamma(\tau)$ and $f \in C^{\infty}(M)$. Here we denoted by ρ also the map induced by ρ on sections.

Theorem

For any groupoid $G \rightrightarrows M$, the formulae (5) define on $\tau : A(G) \rightarrow M$ the structure of a Lie algebroid.

J.Grabowski (IMPAN)

Pair groupoid

Example

• Let M be a set and $\Gamma = M \times M$. define the source and target maps as

$$\alpha(u,v) = u, \quad \beta(u,v) = v.$$

- Then, M × M is a groupoid over M with the units mapping ϵ(u) = (u, u), and the partial composition by (u, v)(v, z) = (u, z). In other words, Γ₃ = {(u, v, v, z, u, z) ∈ Γ × Γ × Γ | u, v, z ∈ M}.
- Note that M can be viewed as embedded into $M \times M$ as the diagonal.
- If M is a manifold, we deal with a Lie groupoid. We can identify α -fibers as

$$\mathcal{F}^{\alpha}(u,u) = \{(u,v) \mid v \in M\} \simeq M,$$

so $A(\Gamma)$ with $\top M$. The left invariant vector field \overleftarrow{X} tangent to α -fibers in Γ and corresponding to $X \in \mathcal{X}(M)$ is, under this identification, $\overleftarrow{X}(u, v) \simeq X(v)$. In consequence, the Lie algebroid of Γ is $\top M$ with the bracket of vector fields.

J.Grabowski (IMPAN)

Example

- For p: P → M being a principal bundle with the structure group G, consider the set Γ = (P × P)/G of G-orbits, where G acts on P × P diagonally, (v, u)g = (vg, ug).
- For the coset $\langle v | u \rangle$ of (v, u), define the source and target maps $\alpha \langle v | u \rangle = p(u) \quad \beta \langle v | u \rangle = p(v)$,

and the (partial) multiplication $\langle w | v \rangle \langle v | u \rangle = \langle w | u \rangle$.

It is well defined, as

$$\alpha \langle \boldsymbol{w} | \boldsymbol{v} \rangle = \beta \langle \boldsymbol{v}' | \boldsymbol{u}' \rangle \Leftrightarrow \boldsymbol{v}' = \boldsymbol{v} \boldsymbol{g}$$

and

 $\langle w|v\rangle \langle vg|ug\rangle = \langle wg|vg\rangle \langle vg|ug\rangle = \langle wg|ug\rangle = \langle w|u\rangle = \langle w|v\rangle \langle v|u\rangle.$

In this way we obtained a Lie groupoid $\Gamma = (P \times P)/G \Rightarrow M = M$, the Ehresmann gauge groupoid of P.

• The Lie algebroid of Γ is the Atyiah algebroid TP/G.

THANK YOU FOR YOUR ATTENTION!

Homework

- Problem 1. Prove that the tangent and cotangent bundles of a double graded bundle are canonically triple graded bundles.
- Problem 2. On the space of curves γ : ℝ → M in a manifold M, consider the (ℝ, ·)-action ĥ_t(γ)(s) = γ(ts).
 Prove that this action induces the canonical homogeneity structure on the space T²M of second jets of these curves.
- Problem 3. Show that the second tangent lift of a homogeneity structure h on F, defined by $(T^2h)_t = T^2(h_t)$, is a homogeneity structure on T^2F . Here $T^2\phi: T^2M \to T^2N$ denotes the obvious second-jet prolongation of $\phi: M \to N$ to the second tangent bundles.
- Problem 4. Prove that the lifted homogeneity structure T^2h from the previous problem is compatible with the canonical homogeneity structure on the second tangent bundle T^2F .
- Problem 5. Show that the anchor map induces, for any Lie algebroid *E*, a homomorphism of the Lie algebroid bracket into the Lie bracket of vector fields:

$$\rho([X, Y]_{\varepsilon}) = [\rho(X), \rho(Y)]_{vf}$$
.