LINEARIZATION OF GRADED STRUCTURES AND WEIGHTED STRUCTURES

Janusz Grabowski

(Polish Academy of Sciences)

February 23, 2021

- Weighted algebroids
- Weighted structures
- Weighted Lie theory
- Holonomic vectors and linearization
- Functor of linearization
- Total linearization
- Variational calculus of statics and infinitesimal mechanics
- The classical Tulczyjew triple
- Euler-Lagrange equations

Weighted Lie groupoids and algebroids

Besides the compatibility of two graded bundle structures, we can consider a compatibility of a graded bundle structure with some other geometric structures, e.g. a Lie algebroid or a Lie groupoid structure.

Thanks to the fact that a graded bundle structure can be expressed in terms of an (\mathbb{R}, \cdot) -action, there is an obvious natural concept of such a compatibility.

Definition

A weighted algebroid of degree k is an algebroid equipped with a homogeneity structure h of degree k such that homotheties h_t act as algebroid morphisms for all $t \in \mathbb{R}$.

We use the name 'weighted', as the term graded is already used in various meanings.

Note that weighted Lie algebroids of degree 1 have already appeared in the literature under the name VB-algebroids.

• Assuming the existence of a homogeneity structure *h* on a manifold equipped additionally with another structure, we can easily consider weighted objects for other than algebroid structures.

Definition

A weighted structure A (e.g. weighted groupoid structure) of degree k is a manifold G equipped as well with the structure A (e.g. Lie groupoid structure) as with a homogeneity structure h of degree k such that homotheties h_t , $t \in \mathbb{R}$, act as morphisms of the structure A (e.g. morphisms of Lie groupoid structure).

- Weighted Lie groupoids of degree 1 are called in the literature VB-groupoids.
- In these sense, weighted structures of degree 1 are VB-structures, e.g. VB-Poisson structures or VB-principal bundles.

Weighted Lie theory

- Example. If G is a Lie groupoid (algebroid), then T^kG is canonically a weighted Lie groupoid (algebroid) of degree k.
- If $m \subset \mathcal{G} \times \mathcal{G} \times \mathcal{G}$ is the graph of the partial multiplication in the groupoid \mathcal{G} , then $\mathsf{T}^k m \subset \mathsf{T}^k \mathcal{G} \times \mathsf{T}^k \mathcal{G} \times \mathsf{T}^k \mathcal{G}$ is the graph of the partial multiplication in $\mathsf{T}^{\mathcal{G}} \rightrightarrows \mathsf{T}^k M$.

Theorem (Bruce-Grabowska-Grabowski)

There is a one-to-one correspondence between weighted Lie groupoids of degree k with simple-connected source fibers and integrable weighted Lie algebroids of degree k, i.e. compatible homogeneity structures can be differentiated and integrated.

• Example. Let G be a Lie groupoid with the Lie algebroid \mathcal{G} . The weighted Lie algebroid for $T^k G$ is $T^k \mathcal{G}$.

Holonomic vectors and linearization

- It is well know that T^kM is canonically embedded in T(T^{k-1}M) as the set of "holonomic vectors". Obviously, T(T^{k-1}M) → T^{k-1}M is a vector bundle and these features we wish to generalise to arbitrary graded bundles.
- Consider F_k equipped with local coordinates (x^A, y^a_w, zⁱ_k), where the weights are assigned as w(x) = 0, w(y_w) = w (1 ≤ w < k) and w(z) = k. The corresponding weight vector field is

$$\nabla_{F_k} = w \, y^a_w \partial_{y^a_w} + k \, z^i_k \partial_{z^i_k} \, .$$

 We can lift the graded structure to TF_k. It is represented by the wight vector field

 $\mathsf{d}_{\mathsf{T}} \nabla_{F_k} = w \, y^a_w \partial_{y^a_w} + k \, z^i_k \partial_{z^i_k} + w \, \dot{y}^a_w \partial_{\dot{y}^a_w} + k \, \dot{z}^i_k \partial_{\dot{z}^i_k} \,.$

• It is tangent to the submanifold $\dot{x}^A = 0$, i.e. it defines a graded bundle structure on the vertical bundle ∇F_k with coordinates

$$\underbrace{\begin{pmatrix} x^A \\ (0) \end{pmatrix}}_{(0)}, \underbrace{y^a_w}_{(w)}, \underbrace{z^j_k}_{(k)}; \underbrace{\dot{y}^b_w}_{(w)}, \underbrace{\dot{z}^j_k}_{(k)}$$

The graded structure of the vertical bundle

- Consider the vertical bundle VF_k as a bi-graded subbundle of the tangent bundle TF_k with the other graded structure being the standard linear structure on VF_k .
- We can shift the graded structure $d_T \nabla_{F_k}$ by subtracting ∇_{VF_k} . The corresponding weight vector field is $\nabla^1_{VF_k} = d_T \nabla_{F_k} \nabla_{VF_k}$ (it is still a weight vector field) and employ homogeneous local coordinates with the bi-weights

$$\underbrace{(\overset{A}{\underbrace{x^{A}}}, \underbrace{y^{a}_{w}}, \underbrace{z^{j}_{k}}; \underbrace{\dot{y}^{b}_{w}}, \underbrace{\dot{z}^{j}_{k}}, \underbrace{\dot{z}^{j}_{k}}),}_{(k-1,1)},$$

so that the vertical bundle itself a graded-linear bundle of bi-degree (k, 1).

Finally, we can remove the highest degree variables for ∇¹_{VF_k}, i.e. the variables zⁱ_k. We end-up with a graded linear bundle of bi-degree (k − 1, 1)- the linearization of F_k.

Linearization of graded bundles

Definition

The linearization of a graded bundle F_k is the graded-linear bundle of bi-degree (k - 1, 1), defined as

$$\mathsf{I}(F_k) := \mathsf{V}F_k[\nabla^1_{\mathsf{V}F_k} \leq k-1],$$

where $\nabla_{VF_k}^1 = d_T \nabla_{F_k} - \nabla_{VF_k}$ and ∇_{VF_k} is the Euler vector field of the vector bundle $VF_k \to F_k$.

• Thus on $I(F_k)$ we have local homogeneous coordinates

$$(\underbrace{x^{A}}_{(0,0)}, \underbrace{y^{a}_{w}}_{(w,0)}; \underbrace{z^{j}_{k}}_{(k,0)}, \underbrace{\dot{y}^{b}_{w}}_{(w-1,1)}, \underbrace{\dot{z}^{j}_{k}}_{(k-1,1)}).$$

- The natural projection $p_{l(F_k)}^{VF_k} : VF_k \to l(F_k)$ is just 'forgetting' the coordinates z_k^i .
- Let us observe that the weight vector field ∇_{Fk} : F_k → VF_k is a graded morphism of the graded bundle (F_k, ∇_{Fk}) into the vector bundle (VF_k, ∇_{VFk}) (the weight vector field is linear).

Holonomic embedding

In coordinates

$$\nabla_{\mathcal{F}_k}(x^{\mathcal{A}}, y^{\mathfrak{a}}_w, z^i_k) = (x^{\mathcal{A}}, y^{\mathfrak{a}}_w, z^i_k, w \, y^{\mathfrak{a}}_w, k \, z^i_k) \,.$$

• We can compose the map ∇_{F_k} with the projection $p_{I(F_k)}^{VF_k}$ and obtain

$$\iota_{F_k} = p_{\mathsf{I}(F_k)}^{\mathsf{VF}_k} \circ \nabla_F k : F_k \to \mathsf{I}(F_k).$$

In coordinates,

$$\iota_{F_k}(x^A, y^a_w, z^j_k) = (x^A, y^a_w, w y^b_w, k z^j_k).$$

Theorem

The map $\iota_{F_k} : F_k \to l(F_k)$ is a graded embedding of F_k into its linearization equipped with the total degree represented by the total weight vector field

$$\nabla_{\mathsf{I}(F_k)} = w \, y^a_w \partial_{y^a_w} + w \, \dot{y}^b_w \partial_{\dot{y}^b_w} + k \, \dot{z}^j_k \partial_{\dot{z}^j_k} \,.$$

Linearization via 'time-derivative'

One can also understand the linearization as adding the 'time-derivative' of variables of non-zero degree. For instance, If (x^a, y^A, z^j) are coordinates on a graded bundle F_2 of degrees 0, 1, 2, respectively. Then, the induced coordinate system on $I(F_2)$ is $(x^A, v^a, \dot{v}^b, \dot{z}^j)$,

where x^{A} , y^{a} , \dot{y}^{b} , and \dot{z}^{j} are of bi-degree (0,0), (1,0), (0,1), and (1,1), respectively, so we deal with a double vector bundle. The transformation laws for the extra coordinates are obtained by differentiation of transition functions ${y'}^{a} = y^{b} T^{a}_{b}(x)$ and ${z'}^{i} = z^{j} T^{i}_{j}(x) + \frac{1}{2} y^{b} y^{a} T^{i}_{ab}(x)$:

$$\dot{y'}^{a} = \dot{y}^{b} T_{b}^{a}(x), \dot{z'}^{i} = \dot{z}^{j} T_{j}^{i}(x) + \dot{y}^{b} y^{a} T_{ab}^{i}(x). (x^{A}, y^{a}, \dot{y}^{b}, \dot{z}^{j}) \mapsto (x^{A}, y^{a})$$

Thus,

is a linear fibration over F_1 . The embedding $\iota: F_2 \hookrightarrow I(F_2)$ reads

$$\iota(x^A, y^a, z^j) = (x^A, y^a, y^b, 2z^j).$$

The described linearization procedure gives rise to a functor from the category of graded bundles into the category of GrL-bundles.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor $I : GrB \rightarrow GrL$ from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_k of minimal degree k, a canonical GrL-bundle $I(F_k)$ of bi-degree (k - 1, 1) which is linear over F_{k-1} , called the linearization of F_k , together with a graded embedding $\iota : F_k \hookrightarrow I(F_k)$ of F_k as an affine subbundle of the vector bundle $I(F_k) \rightarrow F_{k-1}$.

Elements of $\iota(F_k) \subset I(F_k)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $I(F_k)$. Example. We have $I(T^k M) \simeq TT^{k-1} M$ and $\iota: T^k M \hookrightarrow I(T^k M) \simeq TT^{k-1} M$

is the canonical embedding of $T^k M$ as holonomic vectors in $TT^{k-1}M$.

Definition

The *linear dual of a graded bundle* F_k is the dual of the vector bundle $I(F_k) \rightarrow F_{k-1}$, and we will denote this $I^*(F_k)$.

Definition

We will say that a graded bundle F_k carries the structure of a weighted Lie algebroid if its linearization $I(F_k)$ is equipped with a weighted Lie algebroid structure, i.e. if there exists a graded morphism

 $\varepsilon : \mathsf{T}^* \mathsf{I}(F_k) \to \mathsf{T} \mathsf{I}^*(F_k),$

such that $(I(F_k), \varepsilon)$ is a weighted Lie algebroid.

In the above we view $T^* I(F_k)$ and $T I^*(F_k)$ as triple graded bundles. Note that F_k is canonically an affine subbundle in the vector bundle $I(F_k) \rightarrow F_{k-1}$, so in an obvious sense, a double graded-affine bundle.

Total linerization of graded bundles

Applying the linearization functor consecutively to a graded bundle of minimal degree k, we arrive at a k-fold graded bundle od degree $(1, \ldots, 1)$, i.e. at a k-fold vector bundle. This functor from GrB[k] to VB[k] we call a total linearization. Its image consists of k-fold vector bundles equipped with an action of the symmetry group S_k permuting the order of vector bundle structures (symmetric k-fold vector bundles).

Theorem (Bruce-Grabowski-Rotkiewicz)

There is a canonical functor $L[k] : GrB[k] \to VB[k]$ from the category of graded bundles of degree k into the category of k-fold vector bundles. It gives an equivalence of GrB[k] with the subcategory (not full) SymVB of symmetric k-fold vector bundles. There is a canonical graded embedding $\iota[k] : F_k \hookrightarrow L(F_k)$ of F_k as a subbundle of symmetric (holonomic) vectors.

Example. We have $L(T^k M) \simeq T^{(k)} M$, where $T^{(k)} M = TT \cdots TM$ is the iterated tangent bundle. The action of S_k comes from iterations of the canonical "flips" $\kappa : TTM \to TTM$ (see the homework).

J.Grabowski (IMPAN)

Weighted Lie algebroids out of reductions

For a Lie groupoid $G \rightrightarrows M$, consider the subbundle $T^k G^{\underline{s}} \subset T^k G$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(G) := \left. \mathsf{T}^k G^{\underline{s}} \right|_M$$

inherits graded bundle structure of degree k as a graded subbundle of T^kG . Of course, $A = A^1(G)$ can be identified with the Lie algebroid of G.

Theorem

The linearization of $A^k(G)$ is given as

 $\mathsf{I}(A^k(G)) \simeq \{(Y,Z) \in A(G) imes \mathsf{T} A^{k-1}(G) | \quad
ho(Y) = \mathsf{T} au(Z)\},$

viewed as a vector bundle over $A^{k-1}(G)$ with respect to the obvious projection of part Z onto $A^{k-1}(G)$, where $\rho : A(G) \to TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(G) \to M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

Variational calculus in statics

- Q manifold of configurations
- **C** admissible processes, i.e., one-dimensional oriented submanifolds with boundary (sometimes, however, we use a parametrization)
- $\mathcal{W}: \Gamma \to \mathbb{R}$ the cost function

$$\mathcal{W}(\gamma) = \int_{\gamma} \mathcal{W} \, ,$$

 for W being a positively homogeneous function on the set Δ ⊂ TQ of vectors δq tangent to admissible processes.

Mechanics: infinitesimal version

Let M be a manifold of positions of mechanical system. We will use first jets of smooth curves in M and first-order Lagrangians:

- Configurations: Q = TM, $q = (x, \dot{x})$
- Functions: $S(q) = L(x, \dot{x})$
- Curves in Q come from homotopies: $\chi : \mathbb{R}^2 \to M$
- Tangent vectors: TQ = TTM,
 i.e, equivalence classes of curves in TM, δq = δx.

Additionally,

 $\kappa_M : \mathsf{TT}M \to \mathsf{TT}M$,

- $\kappa(\chi)(s,t) = \chi(t,s).$
- Covectors: $T^*Q = T^*TM$

Canonical isomorphisms

• Tangent vectors $\delta \dot{x}$ are in one-to-one correspondence with vectors tangent to curves $t \mapsto \delta x(t)$ in TM

```
\kappa_M : \mathsf{TT}M \ni \delta \dot{x} \mapsto (\delta x)^{\cdot} \in \mathsf{TT}M
```


 We get also the tangent evaluation between TT*M and TTM defined on elements p
 p and (δx)⁻ with the same tangent projection δx on TM:

$$\langle\!\langle \dot{p}, (\delta x)^{\cdot} \rangle\!\rangle = \left. \frac{d}{dt} \right|_{t=0} \langle p(t), \delta x(t) \rangle.$$

• The map dual to κ ,

$$\alpha_M: \mathsf{T}\mathsf{T}^*M \longrightarrow \mathsf{T}^*\mathsf{T}M$$

gives us an identification of covectors from T^*TM with elements of TT^*M .

Dynamics

- By (usually implicit) first-order dynamics on a manifold N we will understand a submanifold D in TN.
- A curve $\gamma : \mathbb{R} \to N$ satisfies this dynamics (is a solution), if its tangent prolongation belongs to D, $t(\gamma) : \mathbb{R} \to D \subset TN$.

Example

A vector field X on N, i.e. a section of the tangent bundle $X : N \to TN$, defines the dynamics $D = X(N) \subset TN$.

• In local coordinates, for the vector field $X = f_a(q) \frac{\partial}{\partial q^a}$, we have

$$D = \{ (q^a, \dot{q}^b) \in \mathsf{T}N : \dot{q}^b = f_b(q) \}$$

and the explicit dynamical equations $\frac{dq^a}{dt}(t) = f_a(q(t))$ are the equations for trajectories of this vector field.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathsf{T}N$ can be viewed as implicit dynamics whose solutions are curves $\gamma : \mathbb{R} \to N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:

 $\mathcal{D} = \varepsilon_M(\mathsf{d} L(\mathsf{T} M))) = \mathcal{T} L(\mathsf{T} M),$

the image of the Tulczyjew differential $\mathcal{T}L$, is the phase dynamics,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\}$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right)$. Note that L can be as well singular for the price that \mathcal{D} is an implicit equation.

The Tulczyjew triple - Hamiltonian side

Hamiltonian side of the triple

$$\mathcal{D} = \Pi_M^{\#}(\mathsf{d}H(\mathsf{T}^*M))$$
$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial x}, \quad \dot{x} = \frac{\partial H}{\partial p} \right\},\$$

whence the Hamilton equations.

J.Grabowski (IMPAN)

Tulczyjew triple in mechanics

The dynamics is in the middle, the right-hand side is Lagrangian, the left-hand side – Hamiltonian.

- The Legendre transform is a pass from the Lagrange to the Hamilton description of the dynamics: we try to describe the Lagrangian phase dynamics as a Hamiltonian phase dynamics.
- It is easy in the case of hyperregular Lagrangians (the Legendre map (q, p) → λ_L(q, q) = (q, p) is a diffeomorhism).
- In this case the Lagrangian phase dynamics D_L is simultaneously Hamiltonian with the Hamiltonian function

 $\begin{array}{rcl} H(q,p) &=& \dot{q}^a p_a - L(q,\dot{q})\,, \\ (q,\dot{q}) &=& \lambda_L^{-1}(q,p)\,. \end{array}$

• In other words, the Lagrangian submanifolds $dL(TM) \subset T^*TM$ and $dH(T^*M) \subset T^*T^*M$ are related by the canonical isomorphism \mathcal{R}_{τ_M} .

Euler-Lagrange equations

• The Euler-Lagrange equation for a curve $\gamma:\mathbb{R}\to M$ takes in this model the form

$$\mathsf{t}(\lambda_L \circ \gamma) = \mathcal{T}L \circ \gamma \,,$$

where $\mathcal{T}L = \varepsilon \circ dL$ is the Tulczyjew differential and $\gamma = t(\underline{\gamma})$ is the tangent prolongation of γ .

• In this sense, the Euler-Lagrange equation can be viewed as a first-order differential equation on curves γ in TM:

 The equation just tells that the curve *TL* ∘ γ is admissible, i.e. that it is a tangent prolongation of a curve (it must be λ_L ∘ γ) on the phase space, *TL* ∘ γ = t(λ_L ∘ γ).

Euler-Lagrange equations (continued)

In local coordinates,

$$\mathcal{T}L(q,\dot{q}) = (q, \frac{\partial L}{\partial \dot{q}}(q,\dot{q}), \dot{q}, \frac{\partial L}{\partial q}(q,\dot{q})).$$

For $\gamma(t) = (q(t), \dot{q}(t))$ this implies the equations

$$\dot{q}(t) = rac{\mathrm{d}q}{\mathrm{d}t}(t)\,,\quad rac{\mathrm{d}}{\mathrm{d}t}rac{\partial L}{\partial \dot{q}}(q(t),\dot{q}(t)) = rac{\partial L}{\partial q}(q(t),\dot{q}(t))\,.$$

- These equations are second-order equations for curves q = q(t) in M.
- Regularity of the Lagrangian is completely irrelevant for this formalism. Singular Lagrangians just produce complicated and implicit dynamics, but the geometric model is the same.

Algebroid setting

Euler-Lagrange equations for algebroids

If (q^a) are local coordinates in M, (y^i) i (ξ_i) are linear coordinates in fibers of, respectively, E and E^* , and

 $\Pi = c_{ij}^k(q)\xi_k\partial_{\xi_i}\otimes\partial_{\xi_j} + \rho_i^b(q)\partial_{\xi_i}\otimes\partial_{q^b} - \sigma_j^a(q)\partial_{q^a}\otimes\partial_{\xi_j}\,,$

then the Euler-Lagrange equations read

(1)
$$\frac{\mathrm{d}q^{a}}{\mathrm{d}t} = \rho_{k}^{a}(q)y^{k},$$

(2) $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial y^{j}}\right)(q,y) = c_{ij}^{k}(q)y^{i}\frac{\partial L}{\partial y^{k}}(q,y) + \sigma_{j}^{a}(q)\frac{\partial L}{\partial q^{a}}(q,y).$

They are first-order differential equations (!) but for admissible curves in E, i.e. for curves satisfying (1). For E = TM, they are exactly the tangent prolongations of curves in M, for which the equation is second-order.

Euler-Poincaré equations

A particular example of the equation (2) is not only the classical Euler-Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}^a}(q,\dot{q}) = \frac{\partial L}{\partial q^a}(q,\dot{q})\,.$$

but also the Lagrange-Poincaré equation for $\ G\$ -invariant Lagrangians on principal $\ G\$ -bundle

$$\begin{split} \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}^{a}} - \frac{\partial L}{\partial q^{a}}\right)(q,\dot{q},v) - \left(B_{ba}^{k}(q)\dot{q}^{b} + D_{ia}^{k}(q)v^{i}\right)\frac{\partial L}{\partial v^{k}}(q,\dot{q},v) = 0\,,\\ \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial v^{j}}(q,\dot{q},v) - \left(D_{aj}^{k}(q)\dot{q}^{a} + C_{ij}^{k}v^{i}\right)\frac{\partial L}{\partial v^{k}}(q,\dot{q},v) = 0\,, \end{split}$$

and the Euler-Poincaré equations, for instance the rigid body equations,

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial v^{j}}(v) - C_{ij}^{k}v^{i}\frac{\partial L}{\partial v^{k}}(v) = 0.$$

THANK YOU FOR YOUR ATTENTION!

Homework

Problem 1. As tangent vectors are 'infinitesimal curves', elements of the iterated tangent bundle TTM are represented by homotopies f : ℝ² ∋ (s, t) → f(s, t) ∈ M. Show that the transposition (κf)(s, t) = f(t, s) induces an automorphism of the double vector bundle TTM:

• Problem 2. Prove that holonomic vectors in TTM are described as those $v \in TTM$ which are invariant with respect to κ , $\kappa(v) = v$.