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Weighted Lie groupoids and algebroids

Besides the compatibility of two graded bundle structures, we can consider
a compatibility of a graded bundle structure with some other geometric
structures, e.g. a Lie algebroid or a Lie groupoid structure.
Thanks to the fact that a graded bundle structure can be expressed in
terms of an (R, ·)-action, there is an obvious natural concept of such a
compatibility.

Definition

A weighted algebroid of degree k is an algebroid equipped with a
homogeneity structure h of degree k such that homotheties ht act as
algebroid morphisms for all t ∈ R.

We use the name ‘weighted’, as the term graded is already used in various
meanings.
Note that weighted Lie algebroids of degree 1 have already appeared in the
literature under the name VB-algebroids.
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Weighted structures

Assuming the existence of a homogeneity structure h on a manifold
equipped additionally with another structure, we can easily consider
weighted objects for other than algebroid structures.

Definition

A weighted structure A (e.g. weighted groupoid structure) of degree k is a
manifold G equipped as well with the structure A (e.g. Lie groupoid
structure) as with a homogeneity structure h of degree k such that
homotheties ht , t ∈ R, act as morphisms of the structure A (e.g.
morphisms of Lie groupoid structure).

Weighted Lie groupoids of degree 1 are called in the literature
VB-groupoids.

In these sense, weighted structures of degree 1 are VB-structures, e.g.
VB-Poisson structures or VB-principal bundles.
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Weighted Lie theory

Example. If G is a Lie groupoid (algebroid), then TkG is canonically a
weighted Lie groupoid (algebroid) of degree k .

If m ⊂ G × G × G is the graph of the partial multiplication in the
groupoid G, then Tkm ⊂ TkG × TkG × TkG is the graph of the partial
multiplication in TG ⇒ TkM.

Theorem (Bruce-Grabowska-Grabowski)

There is a one-to-one correspondence between weighted Lie groupoids of
degree k with simple-connected source fibers and integrable weighted Lie
algebroids of degree k, i.e. compatible homogeneity structures can be
differentiated and integrated.

Example. Let G be a Lie groupoid with the Lie algebroid G. The
weighted Lie algebroid for TkG is TkG.
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Holonomic vectors and linearization

It is well know that TkM is canonically embedded in T(Tk−1M) as
the set of “holonomic vectors”. Obviously, T(Tk−1M)→ Tk−1M is a
vector bundle and these features we wish to generalise to arbitrary
graded bundles.
Consider Fk equipped with local coordinates (xA, yaw , z

i
k), where the

weights are assigned as w(x) = 0, w(yw ) = w (1 ≤ w < k) and
w(z) = k . The corresponding weight vector field is

∇Fk
= w yaw∂ya

w
+ k z ik∂z ik

.
We can lift the graded structure to TFk . It is represented by the
wight vector field

dT∇Fk
= w yaw∂ya

w
+ k z ik∂z ik

+ w ẏaw∂ẏa
w

+ k ż ik∂ż ik
.

It is tangent to the submanifold ẋA = 0, i.e. it defines a graded
bundle structure on the vertical bundle VFk with coordinates

( xA︸︷︷︸
(0)

, yaw︸︷︷︸
(w)

, z ik︸︷︷︸
(k)

; ẏbw︸︷︷︸
(w)

, ż jk︸︷︷︸
(k)

) .

J.Grabowski (IMPAN) Graded bundles in geometry and physics February 23, 2021 6 / 29



The graded structure of the vertical bundle

Consider the vertical bundle VFk as a bi-graded subbundle of the
tangent bundle TFk with the other graded structure being the
standard linear structure on VFk .

We can shift the graded structure dT∇Fk
by subtracting ∇VFk

, The
corresponding weight vector field is ∇1

VFk
= dT∇Fk

−∇VFk
(it is still

a weight vector field) and employ homogeneous local coordinates with
the bi-weights

( xA︸︷︷︸
(0,0)

, yaw︸︷︷︸
(w ,0)

, z ik︸︷︷︸
(k,0)

; ẏbw︸︷︷︸
(w−1,1)

, ż jk︸︷︷︸
(k−1,1)

) ,

so that the vertical bundle itself a graded-linear bundle of bi-degree
(k, 1).

Finally, we can remove the highest degree variables for ∇1
VFk

, i.e. the

variables z ik . We end-up with a graded linear bundle of bi-degree
(k − 1, 1)– the linearization of Fk .
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Linearization of graded bundles

Definition

The linearization of a graded bundle Fk is the graded-linear bundle of
bi-degree (k − 1, 1), defined as

l(Fk) := VFk [∇1
VFk
≤ k − 1] ,

where ∇1
VFk

= dT∇Fk
−∇VFk

and ∇VFk
is the Euler vector field of the

vector bundle VFk → Fk .

Thus on l(Fk) we have local homogeneous coordinates

( xA︸︷︷︸
(0,0)

, yaw︸︷︷︸
(w ,0)

; z ik︸︷︷︸
(k,0)

, ẏbw︸︷︷︸
(w−1,1)

, ż jk︸︷︷︸
(k−1,1)

).

The natural projection pVFk

l(Fk ) : VFk → l(Fk) is just ‘forgetting’ the

coordinates z ik .
Let us observe that the weight vector field ∇Fk

: Fk → VFk is a
graded morphism of the graded bundle (Fk ,∇Fk

) into the vector
bundle (VFk ,∇VFk

) (the weight vector field is linear).
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Holonomic embedding

In coordinates

∇Fk
(xA, yaw , z

i
k) = (xA, yaw , z

i
k ,w yaw , k z

i
k) .

We can compose the map ∇Fk
with the projection pVFk

l(Fk ) and obtain

ιFk
= pVFk

l(Fk ) ◦ ∇Fk : Fk → l(Fk) .

In coordinates,

ιFk
(xA, yaw , z

i
k) = (xA, yaw ,w ybw , k z

j
k) .

Theorem

The map ιFk
: Fk → l(Fk) is a graded embedding of Fk into its

linearization equipped with the total degree represented by the total
weight vector field

∇l(Fk ) = w yaw∂ya
w

+ w ẏbw∂ẏb
w

+ k ż jk∂ż jk
.
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Linearization via ‘time-derivative’

One can also understand the linearization as adding the ‘time-derivative’
of variables of non-zero degree. For instance, If (xa, yA, z j) are coordinates
on a graded bundle F2 of degrees 0, 1, 2, respectively. Then, the induced
coordinate system on l(F2) is

(xA, ya, ẏb, ż j) ,

where xA, ya, ẏb, and ż j are of bi-degree (0, 0), (1, 0), (0, 1), and (1, 1),
respectively, so we deal with a double vector bundle. The transformation
laws for the extra coordinates are obtained by differentiation of transition
functions y ′a = ybT a

b (x) and z ′i = z jT i
j (x) + 1

2y
byaT i

ab(x):

ẏ ′
a

= ẏbT a
b (x),

ż ′
i

= ż jT i
j (x) + ẏbyaT i

ab(x) .

Thus, (xA, ya, ẏb, ż j) 7→ (xA, ya)

is a linear fibration over F1. The embedding ι : F2 ↪→ l(F2) reads

ι(xA, ya, z j) = (xA, ya, yb, 2z j) .
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Functor of linearization

The described linearization procedure gives rise to a functor from the
category of graded bundles into the category of GrL-bundles.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor l : GrB→ GrL from the category
of graded bundles into the category of GrL-bundles which assigns, for an
arbitrary graded bundle Fk of minimal degree k , a canonical GrL-bundle
l(Fk) of bi-degree (k − 1, 1) which is linear over Fk−1, called the
linearization of Fk , together with a graded embedding ι : Fk ↪→ l(Fk) of Fk
as an affine subbundle of the vector bundle l(Fk)→ Fk−1.

Elements of ι(Fk) ⊂ l(Fk) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle l(Fk).
Example. We have l(TkM) ' TTk−1M and

ι : TkM ↪→ l(TkM) ' TTk−1M

is the canonical embedding of TkM as holonomic vectors in TTk−1M.

J.Grabowski (IMPAN) Graded bundles in geometry and physics February 23, 2021 11 / 29



Lie algebroid structures on graded bundles

Definition

The linear dual of a graded bundle Fk is the dual of the vector bundle
l(Fk)→ Fk−1, and we will denote this l∗(Fk).

Definition

We will say that a graded bundle Fk carries the structure of a weighted Lie
algebroid if its linearization l(Fk) is equipped with a weighted Lie algebroid
structure, i.e. if there exists a graded morphism

ε : T∗ l(Fk)→ T l∗(Fk) ,

such that (l(Fk), ε) is a weighted Lie algebroid.

In the above we view T∗ l(Fk) and T l∗(Fk) as triple graded bundles. Note
that Fk is canonically an affine subbundle in the vector bundle
l(Fk)→ Fk−1, so in an obvious sense, a double graded-affine bundle.
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Total linerization of graded bundles

Applying the linearization functor consecutively to a graded bundle of
minimal degree k , we arrive at a k-fold graded bundle od degree
(1, . . . , 1), i.e. at a k-fold vector bundle. This functor from GrB[k] to
VB[k] we call a total linearization. Its image consists of k-fold vector
bundles equipped with an action of the symmetry group Sk permuting the
order of vector bundle structures (symmetric k-fold vector bundles).

Theorem (Bruce-Grabowski-Rotkiewicz)

There is a canonical functor L[k] : GrB[k]→ VB[k] from the category of
graded bundles of degree k into the category of k-fold vector bundles. It
gives an equivalence of GrB[k] with the subcategory (not full) SymVB of
symmetric k-fold vector bundles. There is a canonical graded embedding
ι[k] : Fk ↪→ L(Fk) of Fk as a subbundle of symmetric (holonomic) vectors.

Example. We have L(TkM) ' T(k)M, where T(k)M = TT · · ·TM is the
iterated tangent bundle. The action of Sk comes from iterations of the
canonical “flips” κ : TTM → TTM (see the homework).
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Weighted Lie algebroids out of reductions

For a Lie groupoid G ⇒ M, consider the subbundle TkG s ⊂ TkG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fk = Ak(G ) := TkG s
∣∣∣
M
,

inherits graded bundle structure of degree k as a graded subbundle of
TkG . Of course, A = A1(G ) can be identified with the Lie algebroid of G .

Theorem

The linearization of Ak(G ) is given as

l(Ak(G )) ' {(Y ,Z ) ∈ A(G )× TAk−1(G )| ρ(Y ) = Tτ(Z )} ,

viewed as a vector bundle over Ak−1(G ) with respect to the obvious
projection of part Z onto Ak−1(G ), where ρ : A(G )→ TM is the standard
anchor of the Lie algebroid and τ : Ak−1(G )→ M is the obvious
projection. Moreover, the above bundle is canonically a weighted Lie
algebroid, a Lie algebroid prolongation in the sense of Popescu and
Mart́ınez.
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Variational calculus in statics

bb

∆

δq

Q - manifold of configurations

Γ - admissible processes, i.e., one-dimensional oriented submanifolds
with boundary (sometimes, however, we use a parametrization)

W : Γ→ R - the cost function

W(γ) =

∫
γ
W ,

for W being a positively homogeneous function on the set ∆ ⊂ TQ of
vectors δq tangent to admissible processes.

J.Grabowski (IMPAN) Graded bundles in geometry and physics February 23, 2021 15 / 29



Mechanics: infinitesimal version

Let M be a manifold of positions of mechanical system. We will use first
jets of smooth curves in M and first-order Lagrangians:

Configurations: Q = TM,
q = (x , ẋ)

Functions: S(q) = L(x , ẋ)

Curves in Q come from
homotopies: χ : R2 → M

Tangent vectors: TQ = TTM,
i.e, equivalence classes of curves
in TM, δq = δẋ .

Additionally,
κM : TTM → TTM,
κ(χ)(s, t) = χ(t, s).

Covectors: T∗Q = T∗TM

b

ẋ(t)

b

b

b

b

b

b

t

s
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Canonical isomorphisms

Tangent vectors δẋ are in one-to-one correspondence with vectors
tangent to curves t 7→ δx(t) in TM

κM : TTM 3 δẋ 7→ (δx)· ∈ TTM
b

b

b

b

b

b

t

s

b

b

b

b

b

b

b

b

bδq

We get also the tangent evaluation between TT∗M and TTM defined
on elements ṗ and (δx)· with the same tangent projection δx on TM:

〈〈ṗ, (δx)·〉〉 =
d

dt

∣∣∣∣
t=0

〈p(t), δx(t)〉.

The map dual to κ,
αM : TT∗M −→ T∗TM

gives us an identification of covectors from T∗TM with elements of
TT∗M.
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Dynamics

By (usually implicit) first-order dynamics on a manifold N we will
understand a submanifold D in TN.

A curve γ : R→ N satisfies this dynamics (is a solution), if its
tangent prolongation belongs to D, t(γ) : R→ D ⊂ TN.

Example

A vector field X on N, i.e. a section of the tangent bundle
X : N → TN, defines the dynamics D = X (N) ⊂ TN.

In local coordinates, for the vector field X = fa(q) ∂
∂qa , we have

D = {(qa, q̇b) ∈ TN : q̇b = fb(q)}

and the explicit dynamical equations dqa

dt (t) = fa(q(t)) are the equations
for trajectories of this vector field.
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The Tulczyjew triple - Lagrangian side

Any D ⊂ TN can be viewed as implicit dynamics whose solutions are
curves γ : R→ N s.t. γ̇ ∈ D. For the Lagrangian phase equations:

M - positions,
TM - (kinematic)
configurations,
L : TM → R - Lagrangian
T∗M - phase space

D �
� // TT∗M

""

��

T∗TM

πTM ""

εMoo

��

TM TM

dLjj

λL

uu

T L
ll

T∗M T∗M

M M

D = εM(dL(TM))) = T L(TM) ,

the image of the Tulczyjew differential T L, is the phase dynamics,

D =

{
(x , p, ẋ , ṗ) : p =

∂L

∂ẋ
, ṗ =

∂L

∂x

}
,

whence the Euler-Lagrange equation: ∂L
∂x = d

dt

(
∂L
∂ẋ

)
. Note that L can be

as well singular for the price that D is an implicit equation.
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The Tulczyjew triple - Hamiltonian side

canonical isomorphism
T∗TM ' T∗T∗M,

E : T∗M ×M TM → R
H̃(p, v) = 〈 p, v 〉 − L(v)
H : T∗M → R

Hamiltonian side of the triple

T∗T∗M

##

��

Π#
M // TT∗M

""

��

D_?oo

TM TM

T∗M

dH

88

T∗M

M M

D = Π#
M(dH(T∗M))

D =

{
(x , p, ẋ , ṗ) : ṗ = −∂H

∂x
, ẋ =

∂H

∂p

}
,

whence the Hamilton equations.
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Tulczyjew triple in mechanics

D� _
��

T∗T∗M

  

��

TT∗M
αM //

��

��

βMoo T∗TM

��

��

TM

��

TM //

��

oo TM

����

dLii

T∗M

!!

dH

::

T∗M //

  

oo T∗M

  
M M //oo M

The dynamics is in the middle, the right-hand side is Lagrangian, the
left-hand side – Hamiltonian.
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The Legendre transform

The Legendre transform is a pass from the Lagrange to the Hamilton
description of the dynamics:
we try to describe the Lagrangian phase dynamics as a Hamiltonian
phase dynamics.

It is easy in the case of hyperregular Lagrangians (the Legendre map
(q, p) 7→ λL(q, q̇) = (q, p) is a diffeomorhism).

In this case the Lagrangian phase dynamics DL is simultaneously
Hamiltonian with the Hamiltonian function

H(q, p) = q̇apa − L(q, q̇) ,

(q, q̇) = λ−1
L (q, p) .

In other words, the Lagrangian submanifolds dL(TM) ⊂ T∗TM and
dH(T∗M) ⊂ T∗T∗M are related by the canonical isomorphism RτM .
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Euler-Lagrange equations

The Euler-Lagrange equation for a curve γ : R→ M takes in this
model the form

t(λL ◦ γ) = T L ◦ γ ,

where T L = ε ◦ dL is the Tulczyjew differential and γ = t(γ) is the
tangent prolongation of γ.

In this sense, the Euler-Lagrange equation can be viewed as a
first-order differential equation on curves γ in TM:

TT∗M

τT∗M

��
T∗M TM

λL
oo
T L

ff

Rγ
oo

t(λL◦γ)

jj

The equation just tells that the curve T L ◦ γ is admissible, i.e. that
it is a tangent prolongation of a curve (it must be λL ◦ γ) on the
phase space, T L ◦ γ = t(λL ◦ γ).
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Euler-Lagrange equations (continued)

In local coordinates,

T L(q, q̇) = (q,
∂L

∂q̇
(q, q̇), q̇,

∂L

∂q
(q, q̇)) .

For γ(t) = (q(t), q̇(t)) this implies the equations

q̇(t) =
dq

dt
(t) ,

d

dt

∂L

∂q̇
(q(t), q̇(t)) =

∂L

∂q
(q(t), q̇(t)) .

These equations are second-order equations for curves q = q(t) in
M.

Regularity of the Lagrangian is completely irrelevant for this
formalism. Singular Lagrangians just produce complicated and
implicit dynamics, but the geometric model is the same.
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Algebroid setting

DH� _

��

D� _
��

DL� _

��
T∗E ∗

""

��

Π#
// TE ∗

##

��

T∗E

!!

��

εoo

E
ρ //

��

TM

��

E

��

ρoo

dLll

λL

vv

T L
ll

E ∗ //

##

dH

99

E ∗

""

E ∗oo

""
M // M Moo

H : E ∗ −→ R

DH ⊂ T∗E ∗

D = T L(E )

D = Π#(dH(E ∗))

L : E −→ R

DL ⊂ T∗E

The Euler-Lagrange equations read T L ◦ γ = t(λL ◦ γ).

J.Grabowski (IMPAN) Graded bundles in geometry and physics February 23, 2021 25 / 29



Euler-Lagrange equations for algebroids

If (qa) are local coordinates in M,
(y i ) i (ξi ) are linear coordinates in fibers of, respectively, E and E ∗,
and

Π = ckij (q)ξk∂ξi ⊗ ∂ξj + ρbi (q)∂ξi ⊗ ∂qb − σ
a
j (q)∂qa ⊗ ∂ξj ,

then the Euler-Lagrange equations read

(1)
dqa

dt
= ρak(q)yk ,

(2)
d

dt

(
∂L

∂y j

)
(q, y) = ckij (q)y i

∂L

∂yk
(q, y) + σaj (q)

∂L

∂qa
(q, y) .

They are first-order differential equations (!) but for admissible curves in
E , i.e. for curves satisfying (1). For E = TM, they are exactly the tangent
prolongations of curves in M, for which the equation is second-order.
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Euler-Poincaré equations

A particular example of the equation (2) is not only the classical
Euler-Lagrange equation

d

dt

∂L

∂q̇a
(q, q̇) =

∂L

∂qa
(q, q̇) .

but also the Lagrange-Poincaré equation for G -invariant Lagrangians on
principal G -bundle(

d
dt

∂L
∂q̇a −

∂L
∂qa

)
(q, q̇, v)−

(
Bk
ba(q)q̇b + Dk

ia(q)v i
)
∂L
∂vk (q, q̇, v) = 0 ,

d
dt

∂L
∂v j (q, q̇, v)−

(
Dk
aj(q)q̇a + C k

ij v
i
)

∂L
∂vk (q, q̇, v) = 0 ,

and the Euler-Poincaré equations, for instance the rigid body equations,

d

dt

∂L

∂v j
(v)− C k

ij v
i ∂L

∂vk
(v) = 0 .

J.Grabowski (IMPAN) Graded bundles in geometry and physics February 23, 2021 27 / 29



THANK YOU FOR YOUR ATTENTION!
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Homework

Problem 1. As tangent vectors are ‘infinitesimal curves’, elements of
the iterated tangent bundle TTM are represented by homotopies
f : R2 3 (s, t)→ f (s, t) ∈ M. Show that the transposition
(κf )(s, t) = f (t, s) induces an automorphism of the double vector
bundle TTM:

TTM
κM //

τTM

$$
TτM

��

TTM
TτM
$$

τTM

��

TM
id //

τM

��

TM

τM

��

TM
id //

τM

$$

TM
τM

$$
M

id // M

Problem 2. Prove that holonomic vectors in TTM are described as
those v ∈ TTM which are invariant with respect to κ, κ(v) = v .
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