LINEARIZATION OF GRADED STRUCTURES AND WEIGHTED STRUCTURES

Janusz Grabowski

(Polish Academy of Sciences)

February 23, 2021

Plan of the talk

- Weighted algebroids
- Weighted structures
- Weighted Lie theory
- Holonomic vectors and linearization
- Functor of linearization
- Total linearization
- Variational calculus of statics and infinitesimal mechanics
- The classical Tulczyjew triple
- Euler-Lagrange equations

Weighted Lie groupoids and algebroids

Besides the compatibility of two graded bundle structures, we can consider a compatibility of a graded bundle structure with some other geometric structures, e.g. a Lie algebroid or a Lie groupoid structure.
Thanks to the fact that a graded bundle structure can be expressed in terms of an (\mathbb{R}, \cdot)-action, there is an obvious natural concept of such a compatibility.

Definition

A weighted algebroid of degree k is an algebroid equipped with a homogeneity structure h of degree k such that homotheties h_{t} act as algebroid morphisms for all $t \in \mathbb{R}$.

We use the name 'weighted', as the term graded is already used in various meanings.
Note that weighted Lie algebroids of degree 1 have already appeared in the literature under the name VB-algebroids.

Weighted structures

- Assuming the existence of a homogeneity structure h on a manifold equipped additionally with another structure, we can easily consider weighted objects for other than algebroid structures.

Definition

A weighted structure A (e.g. weighted groupoid structure) of degree k is a manifold G equipped as well with the structure A (e.g. Lie groupoid structure) as with a homogeneity structure h of degree k such that homotheties $h_{t}, t \in \mathbb{R}$, act as morphisms of the structure A (e.g. morphisms of Lie groupoid structure).

- Weighted Lie groupoids of degree 1 are called in the literature VB-groupoids.
- In these sense, weighted structures of degree 1 are VB-structures, e.g. VB-Poisson structures or VB-principal bundles.

Weighted Lie theory

- Example. If \mathcal{G} is a Lie groupoid (algebroid), then $\mathrm{T}^{k} \mathcal{G}$ is canonically a weighted Lie groupoid (algebroid) of degree k.
- If $m \subset \mathcal{G} \times \mathcal{G} \times \mathcal{G}$ is the graph of the partial multiplication in the groupoid \mathcal{G}, then $T^{k} m \subset T^{k} \mathcal{G} \times T^{k} \mathcal{G} \times T^{k} \mathcal{G}$ is the graph of the partial multiplication in $T^{\mathcal{G}} \rightrightarrows \mathrm{T}^{k} M$.

Theorem (Bruce-Grabowska-Grabowski)

There is a one-to-one correspondence between weighted Lie groupoids of degree k with simple-connected source fibers and integrable weighted Lie algebroids of degree k, i.e. compatible homogeneity structures can be differentiated and integrated.

- Example. Let G be a Lie groupoid with the Lie algebroid \mathcal{G}. The weighted Lie algebroid for $T^{k} G$ is $T^{k} \mathcal{G}$.

Holonomic vectors and linearization

- It is well know that $T^{k} M$ is canonically embedded in $T\left(T^{k-1} M\right)$ as the set of "holonomic vectors". Obviously, $\mathrm{T}\left(\mathrm{T}^{k-1} M\right) \rightarrow \mathrm{T}^{k-1} M$ is a vector bundle and these features we wish to generalise to arbitrary graded bundles.
- Consider F_{k} equipped with local coordinates $\left(x^{A}, y_{w}^{a}, z_{k}^{i}\right)$, where the weights are assigned as $w(x)=0, w\left(y_{w}\right)=w(1 \leq w<k)$ and $\mathrm{w}(z)=k$. The corresponding weight vector field is

$$
\nabla_{F_{k}}=w y_{w}^{a} \partial_{y_{w}^{a}}+k z_{k}^{i} \partial_{z_{k}^{i}} .
$$

- We can lift the graded structure to $\mathrm{T} F_{k}$. It is represented by the wight vector field

$$
\mathrm{d}_{\mathrm{T}} \nabla_{F_{k}}=w y_{w}^{a} \partial_{y_{w}^{a}}+k z_{k}^{i} \partial_{z_{k}^{i}}+w \dot{y}_{w}^{a} \partial_{\dot{y}_{w}^{a}}+k \dot{z}_{k}^{i} \partial_{\dot{z}_{k}^{i}} .
$$

- It is tangent to the submanifold $\dot{x}^{A}=0$, i.e. it defines a graded bundle structure on the vertical bundle $V F_{k}$ with coordinates

The graded structure of the vertical bundle

- Consider the vertical bundle $V F_{k}$ as a bi-graded subbundle of the tangent bundle $\mathrm{T} F_{k}$ with the other graded structure being the standard linear structure on $\vee F_{k}$.
- We can shift the graded structure $\mathrm{d}_{\mathrm{T}} \nabla_{F_{k}}$ by subtracting $\nabla_{V F_{k}}$, The corresponding weight vector field is $\nabla_{V F_{k}}^{1}=\mathrm{d}_{\mathrm{T}} \nabla_{F_{k}}-\nabla_{V F_{k}}$ (it is still a weight vector field) and employ homogeneous local coordinates with the bi-weights

so that the vertical bundle itself a graded-linear bundle of bi-degree ($k, 1$).
- Finally, we can remove the highest degree variables for $\nabla_{V F_{k}}^{1}$, i.e. the variables z_{k}^{i}. We end-up with a graded linear bundle of bi-degree $(k-1,1)$ - the linearization of F_{k}.

Linearization of graded bundles

Definition

The linearization of a graded bundle F_{k} is the graded-linear bundle of bi-degree $(k-1,1)$, defined as

$$
\mathrm{I}\left(F_{k}\right):=V F_{k}\left[\nabla_{V F_{k}}^{1} \leq k-1\right]
$$

where $\nabla_{V F_{k}}^{1}=d_{T} \nabla_{F_{k}}-\nabla V F_{k}$ and $\nabla V F_{k}$ is the Euler vector field of the vector bundle $V F_{k} \rightarrow F_{k}$.

- Thus on I $\left(F_{k}\right)$ we have local homogeneous coordinates

- The natural projection $p_{I\left(F_{k}\right)}^{V F_{k}}: V F_{k} \rightarrow I\left(F_{k}\right)$ is just 'forgetting' the coordinates z_{k}^{i}.
- Let us observe that the weight vector field $\nabla_{F_{k}}: F_{k} \rightarrow V F_{k}$ is a graded morphism of the graded bundle ($F_{k}, \nabla_{F_{k}}$) into the vector bundle ($\mathrm{V} F_{k}, \nabla \vee F_{k}$) (the weight vector field is linear).

Holonomic embedding

- In coordinates

$$
\nabla_{F_{k}}\left(x^{A}, y_{w}^{a}, z_{k}^{i}\right)=\left(x^{A}, y_{w}^{a}, z_{k}^{i}, w y_{w}^{a}, k z_{k}^{i}\right) .
$$

- We can compose the map $\nabla_{F_{k}}$ with the projection $p_{l\left(F_{k}\right)}^{V F_{k}}$ and obtain

$$
\iota_{F_{k}}=p_{l\left(F_{k}\right)}^{V F_{k}} \circ \nabla_{F} k: F_{k} \rightarrow I\left(F_{k}\right) .
$$

In coordinates,

$$
\iota_{F_{k}}\left(x^{A}, y_{w}^{a}, z_{k}^{i}\right)=\left(x^{A}, y_{w}^{a}, w y_{w}^{b}, k z_{k}^{j}\right) .
$$

Theorem

The map $\iota_{F_{k}}: F_{k} \rightarrow I\left(F_{k}\right)$ is a graded embedding of F_{k} into its linearization equipped with the total degree represented by the total weight vector field

$$
\nabla_{\mathrm{I}\left(F_{k}\right)}=w y_{w}^{a} \partial_{y_{w}^{a}}+w \dot{y}_{w}^{b} \partial_{\dot{y}_{w}^{b}}+k \dot{z}_{k}^{j} \partial_{\dot{z}_{k}^{j}}
$$

Linearization via 'time-derivative'

One can also understand the linearization as adding the 'time-derivative' of variables of non-zero degree. For instance, If $\left(x^{a}, y^{A}, z^{j}\right)$ are coordinates on a graded bundle F_{2} of degrees $0,1,2$, respectively. Then, the induced coordinate system on $I\left(F_{2}\right)$ is

$$
\left(x^{A}, y^{a}, \dot{y}^{b}, \dot{z}^{j}\right)
$$

where $x^{A}, y^{a}, \dot{y}^{b}$, and \dot{z}^{j} are of bi-degree $(0,0),(1,0),(0,1)$, and $(1,1)$, respectively, so we deal with a double vector bundle. The transformation laws for the extra coordinates are obtained by differentiation of transition functions $y^{\prime a}=y^{b} T_{b}^{a}(x)$ and $z^{\prime i}=z^{j} T_{j}{ }^{i}(x)+\frac{1}{2} y^{b} y^{a} T_{a b}^{i}(x)$:

$$
\begin{aligned}
& {\dot{y^{\prime}}}^{a}=\dot{y}^{b} T_{b}^{a}(x) \\
& {\dot{z^{\prime}}}^{i}=\dot{z}^{j} T_{j}^{i}(x)+\dot{y}^{b} y^{a} T_{a b}^{i}(x)
\end{aligned}
$$

Thus,

$$
\left(x^{A}, y^{a}, \dot{y}^{b}, \dot{z}^{j}\right) \mapsto\left(x^{A}, y^{a}\right)
$$

is a linear fibration over F_{1}. The embedding $\iota: F_{2} \hookrightarrow \mathrm{I}\left(F_{2}\right)$ reads

$$
\iota\left(x^{A}, y^{a}, z^{j}\right)=\left(x^{A}, y^{a}, y^{b}, 2 z^{j}\right)
$$

Functor of linearization

The described linearization procedure gives rise to a functor from the category of graded bundles into the category of GrL-bundles.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical linearization functor I : GrB \rightarrow GrL from the category of graded bundles into the category of GrL-bundles which assigns, for an arbitrary graded bundle F_{k} of minimal degree k, a canonical GrL-bundle $\mathrm{I}\left(F_{k}\right)$ of bi-degree $(k-1,1)$ which is linear over F_{k-1}, called the linearization of F_{k}, together with a graded embedding $\iota: F_{k} \hookrightarrow \mathrm{I}\left(F_{k}\right)$ of F_{k} as an affine subbundle of the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$.

Elements of $\iota\left(F_{k}\right) \subset I\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the linear-graded bundle I($\left.F_{k}\right)$.
Example. We have $\mathrm{I}\left(\mathrm{T}^{k} M\right) \simeq \mathrm{TT}^{k-1} M$ and

$$
\iota: \mathrm{T}^{k} M \hookrightarrow \mathrm{I}\left(\mathrm{~T}^{k} M\right) \simeq \mathrm{T}^{k-1} M
$$

is the canonical embedding of $\mathrm{T}^{k} M$ as holonomic vectors in $\mathrm{TT}^{k-1} M$.

Lie algebroid structures on graded bundles

Definition

The linear dual of a graded bundle F_{k} is the dual of the vector bundle $I\left(F_{k}\right) \rightarrow F_{k-1}$, and we will denote this $I^{*}\left(F_{k}\right)$.

Definition

We will say that a graded bundle F_{k} carries the structure of a weighted Lie algebroid if its linearization $I\left(F_{k}\right)$ is equipped with a weighted Lie algebroid structure, i.e. if there exists a graded morphism

$$
\varepsilon: \mathrm{T}^{*} \mathrm{I}\left(F_{k}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)
$$

such that $\left(I\left(F_{k}\right), \varepsilon\right)$ is a weighted Lie algebroid.
In the above we view $\mathrm{T}^{*} \mathrm{I}\left(F_{k}\right)$ and $\mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)$ as triple graded bundles. Note that F_{k} is canonically an affine subbundle in the vector bundle $\mathrm{I}\left(F_{k}\right) \rightarrow F_{k-1}$, so in an obvious sense, a double graded-affine bundle.

Total linerization of graded bundles

Applying the linearization functor consecutively to a graded bundle of minimal degree k, we arrive at a k-fold graded bundle od degree $(1, \ldots, 1)$, i.e. at a k-fold vector bundle. This functor from $\operatorname{GrB}[k]$ to $\mathrm{VB}[k]$ we call a total linearization. Its image consists of k-fold vector bundles equipped with an action of the symmetry group S_{k} permuting the order of vector bundle structures (symmetric k-fold vector bundles).

Theorem (Bruce-Grabowski-Rotkiewicz)

There is a canonical functor $\mathrm{L}[k]: \mathrm{GrB}[k] \rightarrow \mathrm{VB}[k]$ from the category of graded bundles of degree k into the category of k-fold vector bundles. It gives an equivalence of $\mathrm{GrB}[k]$ with the subcategory (not full) SymVB of symmetric k-fold vector bundles. There is a canonical graded embedding $\iota[k]: F_{k} \hookrightarrow \mathrm{~L}\left(F_{k}\right)$ of F_{k} as a subbundle of symmetric (holonomic) vectors.

Example. We have $\mathrm{L}\left(\mathrm{T}^{k} M\right) \simeq \mathrm{T}^{(k)} M$, where $\mathrm{T}^{(k)} M=\mathrm{TT} \cdots \mathrm{T} M$ is the iterated tangent bundle. The action of S_{k} comes from iterations of the canonical "flips" $\kappa:$ TTM \rightarrow TTM (see the homework).

Weighted Lie algebroids out of reductions

For a Lie groupoid $G \rightrightarrows M$, consider the subbundle $T^{k} G \subseteq T^{k} G$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(G):=\left.T^{k} G^{\underline{s}}\right|_{M},
$$

inherits graded bundle structure of degree k as a graded subbundle of $\mathrm{T}^{k} G$. Of course, $A=A^{1}(G)$ can be identified with the Lie algebroid of G.

Theorem

The linearization of $A^{k}(G)$ is given as

$$
\mid\left(A^{k}(G)\right) \simeq\left\{(Y, Z) \in A(G) \times \mathrm{T} A^{k-1}(G) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(G)$ with respect to the obvious projection of part Z onto $A^{k-1}(G)$, where $\rho: A(G) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(G) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

Variational calculus in statics

- Q - manifold of configurations
- 「 - admissible processes, i.e., one-dimensional oriented submanifolds with boundary (sometimes, however, we use a parametrization)
- $\mathcal{W}: \Gamma \rightarrow \mathbb{R}$ - the cost function

$$
\mathcal{W}(\gamma)=\int_{\gamma} W
$$

- for W being a positively homogeneous function on the set $\Delta \subset T Q$ of vectors δq tangent to admissible processes.

Mechanics: infinitesimal version

Let M be a manifold of positions of mechanical system. We will use first jets of smooth curves in M and first-order Lagrangians:

- Configurations: $Q=\mathrm{TM}$, $q=(x, \dot{x})$
- Functions: $S(q)=L(x, \dot{x})$
- Curves in Q come from
 homotopies: $\chi: \mathbb{R}^{2} \rightarrow M$
- Tangent vectors: TQ = TTM, i.e, equivalence classes of curves in $\mathrm{TM}, \delta q=\delta \dot{x}$.
Additionally,

$$
\begin{aligned}
& \kappa_{M}: \text { TTM } \rightarrow \text { TTM }, \\
& \kappa(\chi)(s, t)=\chi(t, s) .
\end{aligned}
$$

- Covectors: $\mathrm{T}^{*} Q=\mathrm{T}^{*} \mathrm{~T} M$

Canonical isomorphisms

- Tangent vectors $\delta \dot{x}$ are in one-to-one correspondence with vectors tangent to curves $t \mapsto \delta x(t)$ in TM

$$
\kappa_{M}: \operatorname{TT} M \ni \delta \dot{x} \mapsto(\delta x)^{\cdot} \in \mathrm{TT} M
$$

- We get also the tangent evaluation between $\mathrm{TT}^{*} M$ and TTM defined on elements \dot{p} and $(\delta x)^{\prime}$ with the same tangent projection δx on TM:

$$
\langle\langle\dot{p},(\delta x) \cdot\rangle\rangle=\left.\frac{d}{d t}\right|_{t=0}\langle p(t), \delta x(t)\rangle .
$$

- The map dual to κ,

$$
\alpha_{M}: \mathrm{TT}^{*} M \longrightarrow \mathrm{~T}^{*} \mathrm{~T} M
$$

gives us an identification of covectors from $\mathrm{T}^{*} \mathrm{TM}$ with elements of TT* M.

Dynamics

- By (usually implicit) first-order dynamics on a manifold N we will understand a submanifold D in TN.
- A curve $\gamma: \mathbb{R} \rightarrow N$ satisfies this dynamics (is a solution), if its tangent prolongation belongs to $D, \mathrm{t}(\gamma): \mathbb{R} \rightarrow D \subset \mathrm{TN}$.

Example

A vector field X on N, i.e. a section of the tangent bundle $X: N \rightarrow \mathrm{~T} N$, defines the dynamics $D=X(N) \subset \mathrm{T} N$.

- In local coordinates, for the vector field $X=f_{a}(q) \frac{\partial}{\partial q^{a}}$, we have

$$
D=\left\{\left(q^{a}, \dot{q}^{b}\right) \in \mathrm{T} N: \dot{q}^{b}=f_{b}(q)\right\}
$$

and the explicit dynamical equations $\frac{\mathrm{d} q^{a}}{\mathrm{~d} t}(t)=f_{a}(q(t))$ are the equations for trajectories of this vector field.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM})
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)$. Note that L can be as well singular for the price that \mathcal{D} is an implicit equation.

The Tulczyjew triple - Hamiltonian side

Hamiltonian side of the triple

whence the Hamilton equations.

Tulczyjew triple in mechanics

The dynamics is in the middle, the right-hand side is Lagrangian, the left-hand side - Hamiltonian.

The Legendre transform

- The Legendre transform is a pass from the Lagrange to the Hamilton description of the dynamics: we try to describe the Lagrangian phase dynamics as a Hamiltonian phase dynamics.
- It is easy in the case of hyperregular Lagrangians (the Legendre map $(q, p) \mapsto \lambda_{L}(q, \dot{q})=(q, p)$ is a diffeomorhism).
- In this case the Lagrangian phase dynamics D_{L} is simultaneously Hamiltonian with the Hamiltonian function

$$
\begin{aligned}
H(q, p) & =\dot{q}^{a} p_{a}-L(q, \dot{q}) \\
(q, \dot{q}) & =\lambda_{L}^{-1}(q, p)
\end{aligned}
$$

- In other words, the Lagrangian submanifolds $\mathrm{d} L(\mathrm{TM}) \subset \mathrm{T}^{*} \mathrm{TM}$ and $\mathrm{d} H\left(\mathrm{~T}^{*} M\right) \subset \mathrm{T}^{*} \mathrm{~T}^{*} M$ are related by the canonical isomorphism $\mathcal{R}_{\tau_{M}}$.

Euler-Lagrange equations

- The Euler-Lagrange equation for a curve $\underline{\gamma}: \mathbb{R} \rightarrow M$ takes in this model the form

$$
\mathrm{t}\left(\lambda_{L} \circ \gamma\right)=\mathcal{T} L \circ \gamma
$$

where $\mathcal{T} L=\varepsilon \circ \mathrm{d} L$ is the Tulczyjew differential and $\gamma=\mathrm{t}(\underline{\gamma})$ is the tangent prolongation of $\underline{\gamma}$.

- In this sense, the Euler-Lagrange equation can be viewed as a first-order differential equation on curves γ in TM:

- The equation just tells that the curve $\mathcal{T} L \circ \gamma$ is admissible, i.e. that it is a tangent prolongation of a curve (it must be $\lambda_{L} \circ \gamma$) on the phase space, $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Euler-Lagrange equations (continued)

- In local coordinates,

$$
\mathcal{T} L(q, \dot{q})=\left(q, \frac{\partial L}{\partial \dot{q}}(q, \dot{q}), \dot{q}, \frac{\partial L}{\partial q}(q, \dot{q})\right) .
$$

For $\gamma(t)=(q(t), \dot{q}(t))$ this implies the equations

$$
\dot{q}(t)=\frac{\mathrm{d} q}{\mathrm{~d} t}(t), \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}(q(t), \dot{q}(t))=\frac{\partial L}{\partial q}(q(t), \dot{q}(t)) .
$$

- These equations are second-order equations for curves $q=q(t)$ in M.
- Regularity of the Lagrangian is completely irrelevant for this formalism. Singular Lagrangians just produce complicated and implicit dynamics, but the geometric model is the same.

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{H} \subset \mathrm{~T}^{*} E^{*}$
$\mathcal{D}=\Pi^{\#}\left(\mathrm{~d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

The Euler-Lagrange equations read $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Euler-Lagrange equations for algebroids

If $\left(q^{a}\right)$ are local coordinates in M,
$\left(y^{i}\right)$ i $\left(\xi_{i}\right)$ are linear coordinates in fibers of, respectively, E and E^{*}, and

$$
\Pi=c_{i j}^{k}(q) \xi_{k} \partial_{\xi_{i}} \otimes \partial_{\xi_{j}}+\rho_{i}^{b}(q) \partial_{\xi_{i}} \otimes \partial_{q^{b}}-\sigma_{j}^{a}(q) \partial_{q^{a}} \otimes \partial_{\xi_{j}}
$$

then the Euler-Lagrange equations read

$$
\begin{aligned}
(1) \frac{\mathrm{d} q^{a}}{\mathrm{~d} t} & =\rho_{k}^{a}(q) y^{k} \\
\text { (2) } \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{j}}\right)(q, y) & =c_{i j}^{k}(q) y^{i} \frac{\partial L}{\partial y^{k}}(q, y)+\sigma_{j}^{a}(q) \frac{\partial L}{\partial q^{a}}(q, y)
\end{aligned}
$$

They are first-order differential equations (!) but for admissible curves in E, i.e. for curves satisfying (1). For $E=\mathrm{TM}$, they are exactly the tangent prolongations of curves in M, for which the equation is second-order.

Euler-Poincaré equations

A particular example of the equation (2) is not only the classical Euler-Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}(q, \dot{q})=\frac{\partial L}{\partial q^{a}}(q, \dot{q}) .
$$

but also the Lagrange-Poincaré equation for G-invariant Lagrangians on principal G-bundle

$$
\begin{gathered}
\left(\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}-\frac{\partial L}{\partial q^{a}}\right)(q, \dot{q}, v)-\left(B_{b a}^{k}(q) \dot{q}^{b}+D_{i a}^{k}(q) v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0, \\
\frac{d}{\mathrm{~d} t} \frac{\partial L}{\partial v^{j}}(q, \dot{q}, v)-\left(D_{a j}^{k}(q) \dot{q}^{a}+C_{i j}^{k} v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0,
\end{gathered}
$$

and the Euler-Poincaré equations, for instance the rigid body equations,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial v^{j}}(v)-C_{i j}^{k} v^{i} \frac{\partial L}{\partial v^{k}}(v)=0
$$

THANK YOU FOR YOUR ATTENTION!

Homework

- Problem 1. As tangent vectors are 'infinitesimal curves', elements of the iterated tangent bundle TTM are represented by homotopies $f: \mathbb{R}^{2} \ni(s, t) \rightarrow f(s, t) \in M$. Show that the transposition $(\kappa f)(s, t)=f(t, s)$ induces an automorphism of the double vector bundle TTM:

- Problem 2. Prove that holonomic vectors in TTM are described as those $v \in$ TTM which are invariant with respect to $\kappa, \kappa(v)=v$.

