Higher Lagrangians and strings

Janusz Grabowski

(Polish Academy of Sciences)

May 29, 2021

Plan of the talk

- Tulczyjew triples for algebroids
- Vakonomic constraints
- Higher-order Lagrangians
- Higher-order Euler-Lagrange equations
- Example: Higher Euler equations
- Higher order Lagrangian mechanics on Lie algebroids
- Dynamics of strings
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- References

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{H} \subset T^{*} E^{*}$
$\mathcal{D}=\Pi^{\#}\left(\mathrm{~d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

The Euler-Lagrange equations read $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Euler-Lagrange equations for algebroids

If $\left(q^{a}\right)$ are local coordinates in M,
$\left(y^{i}\right)$ i $\left(\xi_{i}\right)$ are linear coordinates in fibers of, respectively, E and E^{*}, and

$$
\Pi=c_{i j}^{k}(q) \xi_{k} \partial_{\xi_{i}} \otimes \partial_{\xi_{j}}+\rho_{i}^{b}(q) \partial_{\xi_{i}} \otimes \partial_{q^{b}}-\sigma_{j}^{a}(q) \partial_{q^{a}} \otimes \partial_{\xi_{j}}
$$

then the Euler-Lagrange equations read

$$
\begin{aligned}
(1) \frac{\mathrm{d} q^{a}}{\mathrm{~d} t} & =\rho_{k}^{a}(q) y^{k} \\
\text { (2) } \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{j}}\right)(q, y) & =c_{i j}^{k}(q) y^{i} \frac{\partial L}{\partial y^{k}}(q, y)+\sigma_{j}^{a}(q) \frac{\partial L}{\partial q^{a}}(q, y)
\end{aligned}
$$

They are first-order differential equations (!) but for admissible curves in E, i.e. for curves satisfying (1). For $E=\mathrm{TM}$, they are exactly the tangent prolongations of curves in M, for which the equation is second-order.

Euler-Poincaré equations

A particular example of the equation (2) is not only the classical Euler-Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}(q, \dot{q})=\frac{\partial L}{\partial q^{a}}(q, \dot{q}) .
$$

but also the Lagrange-Poincaré equation for G-invariant Lagrangians on principal G-bundle

$$
\begin{gathered}
\left(\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}-\frac{\partial L}{\partial q^{a}}\right)(q, \dot{q}, v)-\left(B_{b a}^{k}(q) \dot{q}^{b}+D_{i a}^{k}(q) v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0, \\
\frac{d}{\mathrm{~d} t} \frac{\partial L}{\partial v^{j}}(q, \dot{q}, v)-\left(D_{a j}^{k}(q) \dot{q}^{a}+C_{i j}^{k} v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0,
\end{gathered}
$$

and the Euler-Poincaré equations, for instance the rigid body equations,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial v^{j}}(v)-C_{i j}^{k} v^{i} \frac{\partial L}{\partial v^{k}}(v)=0
$$

Algebroid setting with vakonomic constraints

where S_{L} is the lagrangian submanifold in $\mathrm{T}^{*} E$ induced by the Lagrangian on the constraint S, and $\widetilde{d L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,

$$
S_{L}=\left\{\alpha_{e} \in \mathrm{~T}_{e}^{*} E: e \in S \text { and }\left\langle\alpha_{e}, v_{e}\right\rangle=\mathrm{d} L\left(v_{e}\right) \text { for every } v_{e} \in \mathrm{~T}_{e} S\right\}
$$

The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset \mathrm{T} E^{*}$.

Vakonomic E-L equations in coordinates

- Suppose that the vakonomic constraint S is defined as the zero-set of functions Φ^{k}.
- Then, for a Lagrangian $L(x, y)$ on E, we have
$S_{L}=\left\{\left.\left(x, y, \frac{\partial L}{\partial x}(x, y), \frac{\partial L}{\partial y}(x, y)-\mu_{k}(x, y) \frac{\partial \Phi^{k}}{\partial y}(x, y)\right) \right\rvert\, \Phi^{k}(x, y)=0\right\}$
where $\mu_{k} \in C^{\infty}(S)$ are 'Lagrange multipliers'.
- Looking for curves in S_{L} which are mapped by $\varepsilon: \mathrm{T}^{*} E \rightarrow \mathrm{~T} E^{*}$,

$$
\varepsilon\left(x^{a}, y^{i}, p_{b}, \xi_{j}\right)=\left(x^{a}, \xi_{i}, \rho_{k}^{b}(x) y^{k}, c_{i j}^{k}(x) y^{i} \xi_{k}+\sigma_{j}^{a}(x) p_{a}\right)
$$

into admissible curves, we get the vakonomic E-L equations

$$
\Phi^{k}(x, y)=0, \quad \frac{d x^{a}}{d t}=\rho_{k}^{a}(x) y^{k}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial y^{j}}(x, y, t)-c_{i j}^{\prime}(x) y^{i} \frac{\partial L}{\partial y^{\prime}}(x, y, t)-\sigma_{j}^{a}(x) \frac{\partial L}{\partial x^{a}}(x, y, t)=
$$

$\dot{\mu}_{k}(t) \frac{\partial \Phi^{k}}{\partial y^{j}}(x, y)+\mu_{k}(t)\left(\frac{d}{d t} \frac{\partial \Phi^{k}}{\partial y^{j}}(x, y)-c_{i j}^{\prime}(x) y^{i} \frac{\partial \Phi^{k}}{\partial y^{\prime}}(x, y)-\sigma_{j}^{a}(x) \frac{\partial \Phi^{k}}{\partial x^{a}}(x, y)\right)$

Affine vakonomic constraints

In the case when $S=A$ is an affine subbundle of an algebroid E (assume for simplicity that A is supported on the whole M), we get the reduced Tulczyjew triple for an affine vakonomic constraint:

Here, A^{\dagger} is the affine dual bundle, i.e. the bundle of affine functions on fibers of A, and Hamiltonians are sections of the so called affine phase bundle $\mathrm{P}\left(A^{\dagger}\right)$ over $v^{*}(A)$ - the dual of the linear model $v(A)$ of A.

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors:

$$
(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q}) \mapsto(q, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \dot{q}, \ddot{q}, \ldots, \stackrel{(k-1)}{q}, \stackrel{(k)}{q})
$$

Thus we work with the standard Tulczyjew triple for TM, where $M=\mathrm{T}^{k-1} Q$, with the presence of vakonomic constraint $\mathrm{T}^{k} Q \subset \mathrm{TT}^{k-1} Q$:

Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \dot{q}, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial^{(k)}}\right) .
\end{array}
$$

These equations can be viewed as a system of ordinary differential equations of order k on $T^{k} Q$ or, which is the standard point of view, as an ordinary differential equation of order $2 k$ on Q.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $I\left(F_{k}\right)$ gives the Tulczyjew triple

Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \triangleright \mathrm{~T}^{*} \mathrm{I}\left(F_{k}\right) \rightarrow \mathrm{T} \mathrm{I}^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)=F_{k-1} \times_{M} \bar{F}_{k}$ is the so called Mironian of F_{k}. In the classical case, $\operatorname{Mi}\left(\mathrm{T}^{k} M\right)=\mathrm{T}^{k-1} M \times_{M} \mathrm{~T}^{*} M$.
$\mathcal{T} L$ is the Tulczyjew differential and λ_{L} the Legendre relation.
The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Example

Let g be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on g_{2} and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $\mid\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The vector bundle projection is $\tau(x, y, z)=x$ and the corresponding diagram looks like

The embedding $\iota: g_{2} \hookrightarrow I\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$. In coordinates $(x, y, z, \alpha, \beta, \gamma)$ on $\mathrm{T}^{*} \mathrm{I}\left(g_{2}\right)$, the phase relation $\mathrm{T}^{*} \iota: \mathrm{T}^{*} g_{2} \longrightarrow \mathrm{~T}^{*} \mathrm{I}\left(g_{2}\right)$ relates $(x, z, \alpha+\beta, \gamma)$ with $(x, x, z, \alpha, \beta, \gamma)$.

Example continued

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} \mathrm{I}\left(g_{2}\right) — \triangleright \mathrm{I}^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

so $\hat{\varepsilon}$ relates $(x, z, \alpha+\beta, \gamma)$ with $\left(x, \beta, \gamma, z, \operatorname{ad}_{x}^{*} \beta, \alpha\right)$.
Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{~T} \mathrm{I}^{*}\left(g_{2}\right)$ therefore reads

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

$$
z=\dot{x}, \quad \operatorname{ad}_{x}^{*} \beta=\dot{\beta}, \quad \alpha=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)
$$

and

$$
\beta=\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right) .
$$

Higher Euler equations

This leads to the Euler-Lagrange equations on g_{2} :

$$
\begin{aligned}
\dot{\mathrm{d}} & =z \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) & =\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) .
\end{aligned}
$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right) .
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on g ($c_{i j}^{k}$ are structure constants, no summation convention):

$$
I_{j} \dddot{x}^{j}=\sum_{i, k} c_{i j}^{k} I_{k} x^{i} \ddot{x}^{k} .
$$

The latter can be viewed as 'higher Euler equations'.

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is

Here, $\mathrm{I}\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ \mathrm{~d} L\left(A^{k}(\mathcal{G})\right)$, and λ_{L} is the Legendre relation.
Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$
A^{k}(\mathcal{G})=\mathrm{T}^{k}(\mathcal{G}) / \mathcal{G} \quad \text { and } \quad \mathrm{I}\left(A^{k}(\mathcal{G})\right)=\mathrm{TT}^{k-1}(\mathcal{G}) / \mathcal{G}
$$

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^{A} as base coordinates, and y_{i}^{a} as fibre coordinates of degree $i=1, \ldots, k$ in A^{k}, extended by the appropriate momenta π_{b}^{j} of degree $j=1, \ldots, k$ in $I^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$
\begin{aligned}
& k \pi_{a}^{1}=\frac{\partial L}{\partial y_{k}^{a}}, \\
& (k-1) \pi_{b}^{2}=\frac{\partial L}{\partial y_{k-1}^{b}}-\frac{1}{k} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{k}^{b}}\right), \\
& \vdots \\
& \pi_{d}^{k}=\frac{\partial L}{\partial y_{1}^{d}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{d}}\right)+\frac{1}{3!} \frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial y_{3}^{d}}\right)-\cdots \\
& +(-1)^{k} \frac{1}{(k-1)!} \frac{d^{k-2}}{d t^{k-2}}\left(\frac{\partial L}{\partial y_{k-1}^{d}}\right)-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{d}}\right),
\end{aligned}
$$

which we recognize as the Jacobi-Ostrogradski momenta.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where ρ_{a}^{A} and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k -th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3} \simeq \mathbb{R}^{3} \times \mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right)
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since L is G-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$. The Euler-Lagrange equations on $T^{2} \mathbb{R}^{3}$,
give in this case

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{i}}-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z^{i}}\right)\right)=0
$$

$$
\frac{\mathrm{d} y^{i}}{\mathrm{~d} t}=\frac{1}{2} \frac{\mathrm{~d}^{2} z^{i}}{\mathrm{~d} t^{2}}
$$

so the Euler-Lagrange equation on $\mathbb{R}^{3}(y=\dot{x}, z=\ddot{x})$ reads

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} t^{2}}=\frac{1}{2} \frac{\mathrm{~d}^{4} x^{i}}{\mathrm{~d} t^{4}}
$$

Dynamics of strings

- An evolution of strings is represented by surfaces in M. Passing to infinitesimal parts we will view a Lagrangian L as a function

$$
L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}
$$

If L is positive homogeneous, the action functional does not depend on the parametrization of the submanifold and the corresponding Hamiltonian (if it exists) is a function on the dual vector bundle $\wedge^{2} T^{*} M$ (the phase space).

- The dynamics should be an equation (in general, implicit) for 2-dimensional submanifolds in the phase space, i.e.

$$
\mathcal{D} \subset \wedge^{2} T \wedge^{2} T^{*} M
$$

- A submanifold S in the phase space $\wedge^{2} T^{*} M$ is a solution of \mathcal{D} if and only if its tangent space $\mathrm{T}_{\alpha} S$ at $\alpha \in \wedge^{2} \mathrm{~T}^{*} M$ is represented by a bivector from \mathcal{D}_{α}.
If we use a parametrization, then the tangent bivectors associated with this parametrization must belong to \mathcal{D}.

The Hamiltonian side for multivector bundles

Recall that $\wedge^{2} T \wedge^{2} T^{*} M$ is a double graded bundle (actually a GrL-bundle)

We have:

- the canonical Liouville 2-form on $\wedge^{2} T^{*} M$:

$$
\theta_{M}^{2}=\frac{1}{2} p_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}, p_{\mu \nu}=-p_{\nu \mu}
$$

- the canonical multisymplectic form

$$
\omega_{M}^{2}=\mathrm{d} \theta_{M}^{2}=\frac{1}{2} \mathrm{~d} p_{\mu \nu} \wedge \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}
$$

- the vector bundle morphism

$$
\beta_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T}^{*} M, \quad: u \mapsto i_{u} \omega_{M}^{2}
$$

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,

$$
\alpha_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M,
$$

(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

$$
\alpha_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right)=\left(x^{\mu}, \dot{x}^{\nu \sigma}, y_{\eta \rho}^{\eta}, p_{\lambda \kappa}\right) .
$$

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism

$$
\kappa_{M}^{2}: \mathrm{T} \wedge^{2} \mathrm{~T} M \rightarrow \wedge^{2} \mathrm{TT} M
$$

The Tulczyjew triple for strings

Combining the maps β_{M}^{2} and α_{M}^{2}, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

The way of obtaining the implicit phase dynamics D, as a submanifold of $\wedge^{2} T \wedge^{2} T^{*} M$, from a Lagrangian $L: \wedge^{2} T M \rightarrow \mathbb{R}$ or from a Hamiltonian $H: \wedge^{2} \top^{*} M \rightarrow \mathbb{R}$ is now standard.

The phase dynamics - Lagrangian side

$\wedge^{2} \mathrm{~T} M$ - (kinematic) configurations, $L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}$ - Lagrangian

$$
\begin{gathered}
\left.\mathcal{D}=\left(\alpha_{M}^{2}\right)^{-1}\left(\mathrm{~d} L\left(\wedge^{2} \mathrm{~T} M\right)\right)\right) \\
\mathcal{D}=\left\{\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right): \quad y_{\eta \rho}^{\eta}=\frac{\partial L}{\partial x^{\rho}}, \quad p_{\lambda \kappa}=\frac{\partial L}{\partial \dot{x}^{\lambda \kappa}}\right\} .
\end{gathered}
$$

Thus we get Lagrange (phase) equations.

The phase dynamics - Hamiltonian side

$H: \wedge^{2} \top^{*} M \rightarrow \mathbb{R}$

$$
\begin{gathered}
\mathcal{D}=\left(\beta_{M}^{2}\right)^{-1}\left(\mathrm{~d} H\left(\wedge^{2} \mathrm{~T}^{*} M\right)\right) \\
\mathcal{D}=\left\{\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right): \quad y_{\eta \rho}^{\eta}=-\frac{\partial H}{\partial x^{\rho}}, \quad \dot{x}^{\nu \sigma}=\frac{\partial H}{\partial p_{\nu \sigma}}\right\} .
\end{gathered}
$$

Thus we get Hamilton equations.

The Euler-Lagrange and Hamilton equations

For a surface in $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}(s, t)\right)
$$

the Euler-Lagrange equations read

$$
\begin{aligned}
\dot{x}^{\mu \nu} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
\frac{\partial L}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial}{\partial s}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right)-\frac{\partial x^{\mu}}{\partial s} \frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right) .
\end{aligned}
$$

As for the Hamilton equations, we have

$$
\begin{aligned}
\frac{\partial H}{\partial p_{\mu \nu}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
-\frac{\partial H}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial p_{\mu \sigma}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial p_{\mu \sigma}}{\partial t}
\end{aligned}
$$

An example

In the relativistic dynamics of strings, the manifold of infinitesimal configurations is $\wedge^{2} T M$, where M is the space time with the Lorentz metric g. This metric induces a scalar product h in fibers of $\wedge^{2} T M$: for

$$
w=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}, \quad u=\frac{1}{2} \dot{x}^{\prime \mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}
$$

we have

$$
(u \mid w)=h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\prime \kappa \lambda}
$$

where

$$
h_{\mu \nu \kappa \lambda}=g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}
$$

The Lagrangian is a function of the volume with respect to this metric, the so called Nambu-Goto Lagrangian,

$$
L(w)=\sqrt{(w \mid w)}=\sqrt{h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\kappa \lambda}}
$$

which is defined on the open submanifold of positive bivectors.

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} T \wedge^{2} \mathrm{~T}^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} T M\right)$ and it is described by the Lagrange (phase) equations

$$
\begin{aligned}
y_{\alpha \nu}^{\alpha}= & \frac{1}{2 \rho} \frac{\partial h_{\mu \kappa \lambda \sigma}}{\partial x^{\nu}} \dot{x}^{\mu \kappa} \dot{x}^{\lambda \sigma} \\
p_{\mu \nu} & =\frac{1}{\rho} h_{\mu \nu \lambda \kappa} \dot{x}^{\lambda \kappa}
\end{aligned}
$$

where

$$
\rho=\sqrt{h_{\mu \nu \lambda \kappa} \dot{x}^{\mu \nu} \dot{x}^{\lambda \kappa}} .
$$

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

$$
\begin{aligned}
H & : \wedge^{2} \mathrm{~T}^{*} M \times \mathbb{R}_{+} \rightarrow \mathbb{R} \\
& :(p, r) \mapsto r(\sqrt{(p \mid p)}-1) .
\end{aligned}
$$

In the case of minimal surface, i.e. the Plateau problem, we replace the Lorentz metric with a positively defined one.

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the Lagrangian reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces, being graphs of maps $(x, y) \mapsto(x, y, z(x, y))$, provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0
$$

A generalization

We have a straightforward generalization for all integer $n \geq 1$ replacing 2 :

The map

$$
\beta_{M}^{n}: \wedge^{n} \mathrm{~T} \wedge^{n} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{n} \mathrm{~T}^{*} M
$$

comes from the canonical multisymplectic $(n+1)$-form ω_{M}^{n} on $\wedge^{n} T^{*} M$, being the differential of the canonical Liouville n-form

$$
\theta_{M}^{n}=p_{\mu_{1} \mu_{2} \ldots \mu_{n}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \cdots \wedge \mathrm{~d} x^{n}
$$

The map α_{M}^{n} is just the composition of β_{M}^{n} with the canonical isomorphism of double vector bundles $\mathrm{T}^{*} \wedge^{n} \mathrm{~T}^{*} M$ and $\mathrm{T}^{*} \wedge^{n} \mathrm{~T} M$.

References

- A.J. Bruce, K. Grabowska \& J. Grabowski, Higher order mechanics on graded bundles, J. Phys. A 48 (2015), 205203 (32pp).
- A.J. Bruce, K. Grabowska \& J. Grabowski, Graded bundles in the category of Lie groupoids, SIGMA 11 (2015), 090 (25pp).
- A.J. Bruce, K. Grabowska \& J. Grabowski, Linear duals of graded bundles and higher analogues of (Lie) algebroid, J. Geom. Phys. 101 (2016), 71-99.
- A.J. Bruce, J. Grabowski \& M. Rotkiewicz, Polarisation of graded bundles, SIGMA 12 (2016), 106 (30pp).
- K. Grabowska, J. Grabowski \& P. Urbański, Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings, J. Geom. Mech. 6 (2014), 503-526.
- J. Grabowski\& M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys. 59 (2009), 1285-1305.
- J. Grabowski \& M. Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), 21-36.

THANK YOU FOR YOUR ATTENTION!

