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Algebroid setting

DH� _

��

D� _
��

DL� _

��
T∗E ∗

""

��

Π#
// TE ∗

##

��

T∗E

!!

��

εoo

E
ρ //

��

TM

��

E

��

ρoo

dLll

λL

vv

T L
ll

E ∗ //

##

dH

99

E ∗

""

E ∗oo

""
M // M Moo

H : E ∗ −→ R

DH ⊂ T∗E ∗

D = T L(E )

D = Π#(dH(E ∗))

L : E −→ R

DL ⊂ T∗E

The Euler-Lagrange equations read T L ◦ γ = t(λL ◦ γ).
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Euler-Lagrange equations for algebroids

If (qa) are local coordinates in M,
(y i ) i (ξi ) are linear coordinates in fibers of, respectively, E and E ∗,
and

Π = ckij (q)ξk∂ξi ⊗ ∂ξj + ρbi (q)∂ξi ⊗ ∂qb − σ
a
j (q)∂qa ⊗ ∂ξj ,

then the Euler-Lagrange equations read

(1)
dqa

dt
= ρak(q)yk ,

(2)
d

dt

(
∂L

∂y j

)
(q, y) = ckij (q)y i

∂L

∂yk
(q, y) + σaj (q)

∂L

∂qa
(q, y) .

They are first-order differential equations (!) but for admissible curves in
E , i.e. for curves satisfying (1). For E = TM, they are exactly the tangent
prolongations of curves in M, for which the equation is second-order.
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Euler-Poincaré equations

A particular example of the equation (2) is not only the classical
Euler-Lagrange equation

d

dt

∂L

∂q̇a
(q, q̇) =

∂L

∂qa
(q, q̇) .

but also the Lagrange-Poincaré equation for G -invariant Lagrangians on
principal G -bundle(

d
dt

∂L
∂q̇a −

∂L
∂qa

)
(q, q̇, v)−

(
Bk
ba(q)q̇b + Dk

ia(q)v i
)
∂L
∂vk (q, q̇, v) = 0 ,

d
dt

∂L
∂v j (q, q̇, v)−

(
Dk
aj(q)q̇a + C k

ij v
i
)

∂L
∂vk (q, q̇, v) = 0 ,

and the Euler-Poincaré equations, for instance the rigid body equations,

d

dt

∂L

∂v j
(v)− C k

ij v
i ∂L

∂vk
(v) = 0 .
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Algebroid setting with vakonomic constraints

D� _
��

SLoo
� _

��
TE ∗

##

��

T∗E

%%

��

εoo

TM

��

E ⊃ S

��

ρoo

d̃L

hh

λL

uu
E ∗

##

E ∗oo

##
M Moo

where SL is the lagrangian submanifold in T∗E induced by the Lagrangian
on the constraint S , and d̃L : S → T∗E is the corresponding relation,

SL = {αe ∈ T∗eE : e ∈ S and 〈αe , ve〉 = dL(ve) for every ve ∈ TeS} .

The vakonomically constrained phase dynamics is just D = ε(SL) ⊂ TE ∗.
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Vakonomic E–L equations in coordinates

Suppose that the vakonomic constraint S is defined as the zero-set of
functions Φk .

Then, for a Lagrangian L(x , y) on E , we have

SL =

{(
x , y ,

∂L

∂x
(x , y),

∂L

∂y
(x , y)− µk(x , y)

∂Φk

∂y
(x , y)

)
|Φk(x , y) = 0

}
.

where µk ∈ C∞(S) are ‘Lagrange multipliers’.

Looking for curves in SL which are mapped by ε : T∗E → TE ∗,

ε(xa, y i , pb, ξj) = (xa, ξi , ρ
b
k(x)yk , ckij (x)y iξk + σaj (x)pa) ,

into admissible curves, we get the vakonomic E-L equations

Φk(x , y) = 0 , dxa

dt = ρak(x)yk ,
d

dt
∂L
∂y j (x , y , t)− c lij(x)y i ∂L

∂y l (x , y , t)− σaj (x) ∂L∂xa (x , y , t) =

µ̇k(t)∂Φk

∂y j (x , y) + µk(t)
(

d
dt
∂Φk

∂y j (x , y)− c lij(x)y i ∂Φk

∂y l (x , y)− σaj (x)∂Φk

∂xa (x , y)
)
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Affine vakonomic constraints

In the case when S = A is an affine subbundle of an algebroid E (assume
for simplicity that A is supported on the whole M), we get the reduced
Tulczyjew triple for an affine vakonomic constraint:

D� _
��

P(A†)
εA◦R−1

A � ,2

��

""

TE ∗

��

##

T∗A

��

!!

εA�lr

A
ρA //

��

TM

��

A
ρAoo

������

dLmm

v∗(A)

&&&&

dH
88

E ∗
v(ι)∗oo v(ι)∗ //

""

v∗(A)

%%
M M M

Here, A† is the affine dual bundle, i.e. the bundle of affine functions on
fibers of A, and Hamiltonians are sections of the so called affine phase
bundle P(A†) over v∗(A) – the dual of the linear model v(A) of A.
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TkQ → R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TkQ into the
tangent bundle TTk−1Q as an affine subbundle of holonomic vectors:(

q, q̇, q̈, . . . ,
(k−1)
q ,

(k)
q

)
7→
(
q, q̇, q̈, . . . ,

(k−1)
q , q̇, q̈, . . . ,

(k−1)
q ,

(k)
q

)
.

Thus we work with the standard Tulczyjew triple for TM, where
M = Tk−1Q, with the presence of vakonomic constraint TkQ ⊂ TTk−1Q:

TT∗Tk−1Q

yy

��

T∗TTk−1Qoo T∗TkQ�lr

tt

��

T∗Tk−1Q //

��

Tk−1Q ×Q T∗Q

��
TTk−1Q
yy

TkQ
||

_?
oo

Tk−1Q Tk−1Q

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 29, 2021 9 / 31



Higher order Euler-Lagrange equations

The Lagrangian function L = L(q, q̇, . . . ,
(k)
q ) generates the phase dynamics

D =

 (v , p, v̇ , ṗ) : v̇i−1 = vi , ṗi + pi−1 =
∂L

∂
(i)
q

, ṗ0 =
∂L

∂q
, pk−1 =

∂L

∂
(k)
q

 .

This leads to the higher Euler-Lagrange equations in the traditional form:

(i)
q =

diq

dt i
, i = 1, . . . , k ,

0 =
∂L

∂q
− d

dt

(
∂L

∂q̇

)
+ · · ·+ (−1)k

dk

dtk

 ∂L

∂
(k)
q

 .

These equations can be viewed as a system of ordinary differential
equations of order k on TkQ or, which is the standard point of view, as an
ordinary differential equation of order 2k on Q.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on l(Fk) gives the Tulczyjew triple
D� _
��

P(F †k )
Π̂ε̂ � ,2

��

��

T l∗(Fk)

��

$$

T∗Fk

��

��

ε̂�lr

Fk
ρ̂ //

��

TFk−1

��

Fk
ρ̂oo

������

dLii

λL
vv

T L�io

Mi(Fk)
$$$$

dH
99

l∗(Fk)oo //

%%
Mi(Fk)

$$
Fk−1 Fk−1 Fk−1

Here, the diagram consists of relations, ε̂ : T∗Fk−−�T∗ l(Fk)→ T l∗(Fk),
and Mi(Fk) = Fk−1 ×M F̄k is the so called Mironian of Fk . In the classical
case, Mi(TkM) = Tk−1M ×M T∗M.

T L is the Tulczyjew differential and λL the Legendre relation.

The fact that we obtain the Euler-Lagrange equations of higher order
comes from the vakonomic constraint and the additional gradation.
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Example

Let g be a Lie algebra and put F2 = g2 = g [1]× g [2], with coordinates
(x i , z j) on g2 and coordinates (x i , y j , zk) on l(g2) = g [1]× g [1]× g [2].
The vector bundle projection is τ(x , y , z) = x and the corresponding
diagram looks like

D� _
��

T∗ l(g2)
ε

tt
T l∗(g2)

��

$$
T∗g2

��

&&

ε̂�lr

T∗ι�bj

Tg [1]

��

g [1]× g [2]
ρ̂oo

������

dLoo

λL
ss

T L�ip

l∗(g2)
$$

// g [1]× g∗[2]
&&

g [1] g [1]

The embedding ι : g2 ↪→ l(g2) takes the form ι(x , z) = (x , x , z). In
coordinates (x , y , z , α, β, γ) on T∗ l(g2), the phase relation
T∗ι : T∗g2−−�T∗ l(g2) relates (x , z , α + β, γ) with (x , x , z , α, β, γ).
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Example continued

The Lie algebroid structure ε : T∗ l(g2)−−�T l∗(g2) reads

(x , y , z , α, β, γ) 7→ (x , β, γ, z , ad∗yβ, α) ,

so ε̂ relates (x , z , α + β, γ) with (x , β, γ, z , ad∗xβ, α).
Given a Lagrangian L : g2 → R, the Tulczyjew differential relation
T L : g2 → T l∗(g2) therefore reads

T L(x , z) =

{(
x , β,

∂L

∂z
(x , z), z , ad∗xβ, α

)
: α + β =

∂L

∂x
(x , z)

}
.

Hence, for the phase dynamics,

z = ẋ , ad∗xβ = β̇ , α =
d

dt

(
∂L

∂z
(x , z)

)
,

and

β =
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

)
.
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Higher Euler equations

This leads to the Euler-Lagrange equations on g2:

ẋ = z ,

d

dt

(
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

))
= ad∗x

(
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

))
.

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

d

dt

(
∂L

∂x
(x , ẋ)− d

dt

(
∂L

∂z
(x , ẋ)

))
= ad∗x

(
∂L

∂x
(x , ẋ)− d

dt

(
∂L

∂z
(x , ẋ)

))
.

For instance, the ‘free’ Lagrangian L(x , z) = 1
2

∑
i Ii (z

i )2 induces the
equations on g (ckij are structure constants, no summation convention):

Ij
...
x j =

∑
i ,k

ckij Ikx
i ẍk .

The latter can be viewed as ‘higher Euler equations’.
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : Ak → R on
Ak = Ak(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G). The relevant diagram here is

D ⊂T l∗(Ak(G))

��

%%

T∗ l(Ak(G))
εoo

xx

T∗Ak(G)
T∗ι�lr

��

l∗(Ak(G))

TA(G) l(Ak(G))
ρoo Ak(G)

ιoo

dL

WW

λL
�gn

Here, l(Ak(G)) is the corresponding Lie algebroid prolongation,
D = ε ◦ r ◦ dL(Ak(G)), and λL is the Legendre relation.

Note that we deal with reductions: in the case G is a Lie group,

Ak(G) = Tk(G)/G and l(Ak(G)) = TTk−1(G)/G .
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using xA as base coordinates, and yai as fibre coordinates of

degree i = 1, . . . , k in Ak , extended by the appropriate momenta πjb of
degree j = 1, . . . , k in l∗(Ak), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):

kπ1
a =

∂L

∂yak
,

(k − 1)π2
b =

∂L

∂ybk−1

− 1

k

d

dt

(
∂L

∂ybk

)
,

...

πkd =
∂L

∂yd1
− 1

2!

d

dt

(
∂L

∂yd2

)
+

1

3!

d2

dt2

(
∂L

∂yd3

)
− · · ·

+(−1)k
1

(k − 1)!

dk−2

dtk−2

(
∂L

∂ydk−1

)
− (−1)k

1

k!

dk−1

dtk−1

(
∂L

∂ydk

)
,

which we recognize as the Jacobi–Ostrogradski momenta.
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d

dt
πka = ρAa (x)

∂L

∂xA
+ yb1 C

c
ba(x)πkc ,

where ρAa and C c
ba are structure functions of the Lie algebroid A = A(G).

The above equation can then be rewritten as

ρAa (x) ∂L
∂xA

=(
δca

d
dt − yb1 C

c
ba(x)

) (
∂L
∂y c

1
− 1

2!
d
dt

(
∂L
∂y c

2

)
· · · −(−1)k 1

k!
dk−1

dtk−1

(
∂L
∂y c

k

))
which we define to be the k-th order Euler–Lagrange equations on A(G).

The above higher order algebroid Euler-Lagrange equations are in
complete agrement with the ones obtained by Jóźwikowski & Rotkiewicz,
Colombo & de Diego, as well as Mart́ınez. We clearly recover the standard
higher Euler–Lagrange equations on TkM as a particular example.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 29, 2021 17 / 31



The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3 ' R3 × R3[1]× R3[2],

L(x , y , z) =
1

2

(
3∑

i=1

(y i )2 − (z i )2

)
.

We can understand G = R3 here as a commutative Lie group, and since L
is G -invariant, we get immediately the reduction to the graded bundle
R3[1]× R3[2]. The Euler-Lagrange equations on T2R3,

d

dt

(
∂L

∂y i
− 1

2

d

dt

(
∂L

∂z i

))
= 0 ,

give in this case
dy i

dt
=

1

2

d2z i

dt2
,

so the Euler-Lagrange equation on R3 (y = ẋ , z = ẍ) reads

d2x i

dt2
=

1

2

d4x i

dt4
.
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Dynamics of strings

An evolution of strings is represented by surfaces in M. Passing to
infinitesimal parts we will view a Lagrangian L as a function

L : ∧2TM → R .

If L is positive homogeneous, the action functional does not depend
on the parametrization of the submanifold and the corresponding
Hamiltonian (if it exists) is a function on the dual vector bundle
∧2T∗M (the phase space).

The dynamics should be an equation (in general, implicit) for
2-dimensional submanifolds in the phase space, i.e.

D ⊂ ∧2T ∧2 T∗M .
A submanifold S in the phase space ∧2T∗M is a solution of D if and
only if its tangent space TαS at α ∈ ∧2T∗M is represented by a
bivector from Dα.
If we use a parametrization, then the tangent bivectors associated
with this parametrization must belong to D.
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The Hamiltonian side for multivector bundles

Recall that ∧2T∧2 T∗M is a double graded bundle (actually a GrL-bundle)

∧2T ∧2 T∗M
vv &&

∧2T∗M
((

∧2TM

ww
M

.

We have:

the canonical Liouville 2-form on ∧2T∗M:

θ2
M =

1

2
pµν dxµ ∧ dxν , pµν = −pνµ ;

the canonical multisymplectic form

ω2
M = dθ2

M =
1

2
dpµν ∧ dxµ ∧ dxν ;

the vector bundle morphism

β2
M : ∧2 T ∧2 T∗M → T∗ ∧2 T∗M , : u 7→ iuω

2
M .
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The Lagrangian side for multivector bundles

In local coordinates,

β2
M(xµ, pλκ, ẋ

νσ, yηθρ, ṗγ,δ,ε,ζ) = (xµ, pλκ,−yηηρ, ẋνσ) .

Using the canonical isomorphism of double vector bundles

R : T∗ ∧2 T∗M → T∗ ∧2 TM ,

we can define α2
M = R ◦ β2

M , which is another double graded bundle
morphism,

α2
M : ∧2 T ∧2 T∗M → T∗ ∧2 TM ,

(of double graded bundles over ∧2TM and ∧2T∗M).

In local coordinates,

α2
M(xµ, pλκ, ẋ

νσ, yηθρ, ṗγδεζ) = (xµ, ẋνσ, yηηρ, pλκ) .

The map α2
M can also be obtained as the dual of the canonical

isomorphism
κ2
M : T ∧2 TM → ∧2TTM .
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The Tulczyjew triple for strings

Combining the maps β2
M and α2

M , we get the following Tulczyjew triple for
multivector bundles, consisting of double graded bundle morphisms:

T∗ ∧2 T∗M

��

""

∧2T ∧2 T∗M
α2
M //

β2
Moo

��

##

T∗ ∧2 TM

��

!!
∧2TM

��

∧2TM

��

oo // ∧2TM

��

∧2T∗M
##

∧2T∗M //oo

$$

∧2T∗M
""

M M //oo M

.

The way of obtaining the implicit phase dynamics D, as a submanifold of
∧2T ∧2 T∗M, from a Lagrangian L : ∧2TM → R or from a Hamiltonian
H : ∧2T∗M → R is now standard.
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The phase dynamics - Lagrangian side

∧2TM - (kinematic) configurations, L : ∧2TM → R - Lagrangian

D �
� // ∧2T ∧2 T∗M

α2
M //

%%

��

T∗ ∧2 TM

##

��

∧2TM ∧2TM

dLcc

PL
uu

∧2T∗M ∧2T∗M

M M

D = (α2
M)−1(dL(∧2TM)))

D =

{
(xµ, pλκ, ẋ

νσ, yηθρ, ṗγδεζ) : yηηρ =
∂L

∂xρ
, pλκ =

∂L

∂ẋλκ

}
.

Thus we get Lagrange (phase) equations.
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The phase dynamics - Hamiltonian side

H : ∧2T∗M → R

T∗ ∧2 T∗M

%%

��

∧2T ∧2 T∗M

&&

��

β2
Moo D_?oo

∧2TM ∧2TM

∧2T∗M

dH

77

∧2T∗M

M M

D = (β2
M)−1(dH(∧2T∗M))

D =

{
(xµ, pλκ, ẋ

νσ, yηθρ, ṗγδεζ) : yηηρ = − ∂H
∂xρ

, ẋνσ =
∂H

∂pνσ

}
.

Thus we get Hamilton equations.
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The Euler-Lagrange and Hamilton equations

For a surface in ∧2TM,

(t, s) 7→ (xσ(t, s) , ẋµν(s, t)) ,

the Euler-Lagrange equations read

ẋµν =
∂xµ

∂t

∂xν

∂s
− ∂xµ

∂s

∂xν

∂t
,

∂L

∂xσ
=

∂xµ

∂t

∂

∂s

(
∂L

∂ẋµσ
(t, s)

)
− ∂xµ

∂s

∂

∂t

(
∂L

∂ẋµσ
(t, s)

)
.

As for the Hamilton equations, we have

∂H

∂pµν
=

∂xµ

∂t

∂xν

∂s
− ∂xµ

∂s

∂xν

∂t
,

− ∂H
∂xσ

=
∂xµ

∂t

∂pµσ
∂s
− ∂xµ

∂s

∂pµσ
∂t

.
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An example

In the relativistic dynamics of strings, the manifold of infinitesimal
configurations is ∧2TM, where M is the space time with the Lorentz
metric g . This metric induces a scalar product h in fibers of ∧2TM: for

w =
1

2
ẋµν

∂

∂xµ
∧ ∂

∂xν
, u =

1

2
ẋ ′µν

∂

∂xµ
∧ ∂

∂xν

we have
(u|w) = hµνκλẋ

µν ẋ ′κλ ,

where
hµνκλ = gµκgνλ − gµλgνκ .

The Lagrangian is a function of the volume with respect to this metric,
the so called Nambu-Goto Lagrangian,

L(w) =
√

(w |w) =
√
hµνκλẋµν ẋκλ ,

which is defined on the open submanifold of positive bivectors.
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Nambu-Goto dynamics

The dynamics D ⊂ ∧2T ∧2 T∗M is the inverse image by α2
M of the image

dL(∧2TM) and it is described by the Lagrange (phase) equations

yααν = 1
2ρ
∂hµκλσ
∂xν ẋµκẋλσ,

pµν = 1
ρhµνλκẋ

λκ ,

where

ρ =
√
hµνλκẋµν ẋλκ .

The dynamics D is also the inverse image by β2
M of the lagrangian

submanifold in T∗ ∧2 T∗M, generated by the Morse family

H : ∧2 T∗M × R+ → R ,
: (p, r) 7→ r(

√
(p|p)− 1) .

In the case of minimal surface, i.e. the Plateau problem, we replace the
Lorentz metric with a positively defined one.
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Plateau problem

In particular, if M = R3 = {(x1 = x , x2 = y , x3 = z)} with the Euclidean
metric, the Lagrangian reads

L(xµ, ẋκλ) =

√∑
κ,λ

(ẋκλ)
2
.

The Euler-Lagrange equation for surfaces, being graphs of maps
(x , y) 7→ (x , y , z(x , y)), provides the well-known equation for minimal
surfaces, found already by Lagrange :

∂

∂x

 zx√
1 + z2

x + z2
y

+
∂

∂y

 zy√
1 + z2

x + z2
y

 = 0 .

In another form:

(1 + z2
x )zyy − 2zxzyzxy + (1 + z2

y )zxx = 0 .
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A generalization

We have a straightforward generalization for all integer n ≥ 1 replacing 2:

T∗ ∧n T∗M

��

##

∧nT ∧n T∗M
αn
M //

βnMoo

��

$$

T∗ ∧n TM

��

""
∧nTM

��

∧nTM

��

oo // ∧nTM

��

∧nT∗M

$$

∧nT∗M //oo

%%

∧nT∗M
##

M M //oo M

.

The map
βnM : ∧n T ∧n T∗M → T∗ ∧n T∗M

comes from the canonical multisymplectic (n + 1)-form ωn
M on ∧nT∗M,

being the differential of the canonical Liouville n-form
θnM = pµ1µ2...µn dx1 ∧ dx2 · · · ∧ dxn .

The map αn
M is just the composition of βnM with the canonical

isomorphism of double vector bundles T∗ ∧n T∗M and T∗ ∧n TM.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 29, 2021 29 / 31



References

A.J. Bruce, K. Grabowska & J. Grabowski, Higher order
mechanics on graded bundles, J. Phys. A 48 (2015), 205203 (32pp).
A.J. Bruce, K. Grabowska & J. Grabowski, Graded bundles in the
category of Lie groupoids, SIGMA 11 (2015), 090 (25pp).
A.J. Bruce, K. Grabowska & J. Grabowski, Linear duals of graded
bundles and higher analogues of (Lie) algebroid, J. Geom. Phys. 101
(2016), 71–99.
A.J. Bruce, J. Grabowski & M. Rotkiewicz, Polarisation of graded
bundles, SIGMA 12 (2016), 106 (30pp).
K. Grabowska, J. Grabowski & P. Urbański, Geometry of
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