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Algebroid setting
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The Euler-Lagrange equations read 7T Lo~y = t(A; o 7).

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 29, 2021 3/31



Euler-Lagrange equations for algebroids

If (g?) are local coordinates in M,

(y") i (&) are linear coordinates in fibers of, respectively, E and E*,
and

M = cf(q)éds @ Og; + pf(q)e © Dgp — 07(q)0g» @ O,

then the Euler-Lagrange equations read

dqg?®
(1) s pr(q)y”,

d /oL K 0L oL
2) 4 <8yj>(q, ) cj(a)y’ By 5x(a.y) +07(q )a 5(a.y)
They are first-order differential equations (!) but for admissible curves in

E, i.e. for curves satisfying (1). For E = TM, they are exactly the tangent
prolongations of curves in M, for which the equation is second-order.
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Euler-Poincaré equations

A particular example of the equation (2) is not only the classical
Euler-Lagrange equation

d oL . oL )
E(‘)T‘;a(q’q) = aiqa(q, CI)-

but also the Lagrange-Poincaré equation for G-invariant Lagrangians on
principal G-bundle

(ditgc:_a - qua) (q’ q, V) - (Bl’)(a(q)qb + D/I;(q)v’) %(qa g, V) =0,
oL

£2L(9.4,v) — (Dl(a)a® + Chvi) 2 (. d,v) =0,

and the Euler-Poincaré equations, for instance the rigid body equations,

d oL } B
a% V)— ijVaVk(V)—O.
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Algebroid setting with vakonomic constraints

D St
¢ dL

Ti* : TE
/ \ O\
™ EDS

E* E*ZA/
4 N,

where S/ is the lagrangian submanifold in T*E induced by the Lagrangian
on the constraint S, and dL : S — T*E is the corresponding relation,

St ={ae € T.E: e €S and (e, ve) = dL(ve) for every ve € T.S}.

The vakonomically constrained phase dynamics is just D = ¢(S.) C TE™.
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Vakonomic E-L equations in coordinates

@ Suppose that the vakonomic constraint S is defined as the zero-set of
functions ®k.

@ Then, for a Lagrangian L(x,y) on E, we have

k
0= { (% o). S5 — b)) ) 19¥() =0

where p € C°°(S) are ‘Lagrange multipliers’.
@ Looking for curves in S; which are mapped by ¢ : T*E — TE™,

e(Xaayia Pb; gj) = (Xav gia pi(x)yka Cg(x)yiék + UJ‘?(X)pa) )
into admissible curves, we get the vakonomic E-L equations
Ok(x,y) =0, G¢ = pix)y*,
dtaa (X y,t)—CU( )ngLI(X Y, ) (X)dxa(x Y, )
_|_

k(£) 52 0, v) + ui(2) (55 (6, ) = i)y 927 (x,y) = 02() 32 (x,))
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Affine vakonomic constraints

In the case when S = A is an affine subbundle of an algebroid E (assume
for simplicity that A is supported on the whole M), we get the reduced

Tulczyjew triple for an affine vakonomic constraint:
D

glvp

— A LTE*4 A T*A < dL
//4 \ PA \T/\// PA \‘3/4
/ v(e)* *(A)/ /

N / ~

M

Here, AT is the affine dual bundle, i.e. the bundle of affine functions on
fibers of A, and Hamiltonians are sections of the so called affine phase
bundle P(AT) over v¥(A) — the dual of the linear model v(A) of A.
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TAQ — R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TXQ into the
tangent bundle TT¥~1Q as an affine subbundle of holonomic vectors:

o (k=1) (k) . (k=1) . .. (k—=1) (k)
q?q’q7"'? q ’q H q7q7q7"'? q ?q’q7"'? q ’q *
Thus we work with the standard Tulczyjew triple for TM, where
M = Tk-1Q, with the presence of vakonomic constraint TEQ Cc TTF1Q:

TT*kalQ T*TkalQ 1 T*TkQ
e /
T*Tk—lQ \ Tk—lQ XQ T*Q
TTF1Q L THQ
~ N2
Tk_lQ Tk_]'Q
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q,q, ..., (q)) generates the phase dynamics

. . i oL oL oL
D= (V,p,V,p): Vi—1 = Vi, Pi+Pi—1:W,PO:877Pk—1:m
0q qa dq
This leads to the higher Euler-Lagrange equations in the traditional form:
() _dg .
q dtl ) ! ) 9 )
oL d /oL dk [ oL
0= —_ — (== e (=) | ==
oq  dt (az;) o D g o9

These equations can be viewed as a system of ordinary differential
equations of order k on TXQ or, which is the standard point of view, as an
ordinary differential equation of order 2k on Q.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on I(Fy) gives the Tulczyjew triple

//FT

2
PRSI Fk

Here, the diagram consists of relations, & : T*F—>T"I(Fx) — TI*(F),
and Mi(Fyx) = Fx—1 Xpm Fk is the so called Mironian of Fg. In the classical
case, Mi(TAM) = TF=IM xpy T*M.

T L is the Tulczyjew differential and A\, the Legendre relation.

The fact that we obtain the Euler-Lagrange equations of higher order
comes from the vakonomic constraint and the additional gradation.
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Let g be a Lie algebra and put F, = g» = g[1] x g[2], with coordinates
(x',Z/) on g and coordinates (x', ¥/, zK) on 1(g2) = g[1] x g[1] x g[2].
The vector bundle projection is 7(x, y, z) = x and the corresponding
diagram looks like

D . T l(&) .,
Tl*f )/é v\T* dt
82 82
N 7L ;\

The embedding ¢ : go < 1(g2) takes the form «(x,z) = (x,x,z). In
coordinates (x,y,z,a, 3,7) on T*I(g2), the phase relation
T T go——>T*I(g2) relates (x, z, a0 + (,7) with (x, x, z,«, 8,7).
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Example continued

The Lie algebroid structure € : T*1(g2) —>T *(g2) reads

(X7y7z7a767,‘y)H (X7/8777Z7ad;57a)7

so £ relates (X7 zZ,00+ /87 7) with (X7 67 rs a'd;k(57 a)'
Given a Lagrangian L : go — R, the Tulczyjew differential relation
TL:gy— TI"(g2) therefore reads

TL(x,z)—{< ,5, (X 2),z,ad’B, >:Oz+5—gi(x,z)}.

Hence, for the phase dynamics,

=%, adip=d, a=g(5n)

oL d /0L
B = a(xl) 4 (8z(X’Z)> .

and
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Higher Euler equations

This leads to the Euler-Lagrange equations on g»:

X = z,

di't <gi(x, 2)— d% <gi(x,z)>> — adt (gi(x,z) _cht (gi(x,z)>> .

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

3 (G & (8 <o (- & (09

For instance, the ‘free’ Lagrangian L(x,z) = 3 3, /i(z")? induces the
equations on g (c are structure constants, no summation convention):

le Zc lex'5

The latter can be viewed as ‘hlgher Euler equations’.
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : A — R on
Ak = AK(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G). The relevant diagram here is

D CTIHAX(G)) = T*I(AK(G)) < T*AX(G)
I*(A%(G))
v\
£ I(AK(G)) <——— AX(G)

Here, I(AX(G)) is the corresponding Lie algebroid prolongation,
D =corodL(AX(G)), and )/ is the Legendre relation.

Note that we deal with reductions: in the case G is a Lie group,

ANG)=TH(G)/G and I(AX()) =TT 1(G)/G.

TA(G)
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x”* as base coordinates, and y? as fibre coordinates of
degree i =1,..., k in A¥, extended by the appropriate momenta 71‘{) of
degree j = 1,..., k in I*(AX), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):

1d /oL
Kk —1)r2 = _ a9t
(k= 1) ayp | kadt <ayf>

o L LS (LY Ly
97 oyd 21dt \ayd) " 31dt2 \ oy

(1) 1 d2 oL _(_1)kidk_1 L
(k— 1)l dth=2 \ ayd Kl dtk=1 \ ayd )’

which we recognize as the Jacobi—Ostrogradski momenta.
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
dtﬂ-s_plaq( )a A+.leba( ) )

where p2' and Cf, are structure functions of the Lie algebroid A = A(G).
The above equat|on can then be rewritten as

b oL 1d (oL k1 d=! (oL
(055 — ¥ C(x)) (8yf g <8yc> (=1 g G (@))
which we define to be the k-th order Euler-Lagrange equations on A(G).

The above higher order algebroid Euler-Lagrange equations are in
complete agrement with the ones obtained by JéZzwikowski & Rotkiewicz,
Colombo & de Diego, as well as Martinez. We clearly recover the standard
higher Euler-Lagrange equations on TXM as a particular example.
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T?R3 ~ R3 x R3[1] x R3[2],

3
1 . :
L(X,y,Z) - 5 (Z(yl)z - (zl)2> :
i=1
We can understand G = R3 here as a commutative Lie group, and since L
is G-invariant, we get immediately the reduction to the graded bundle
R3[1] x R3[2]. The Euler-Lagrange equations on T2IR3,

4oL 1d (L) _,
dt \ oy’ 2dt\oz')) 7’

give in this case

dy’ B 1d%Z/
dt  2de2’
so the Euler-Lagrange equation on R3 (y = x, z = X) reads
d?x’ B 1d*x/
dt2  2.dt*

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 29, 2021



Dynamics of strings

@ An evolution of strings is represented by surfaces in M. Passing to
infinitesimal parts we will view a Lagrangian L as a function

L:N>TM = R.

If L is positive homogeneous, the action functional does not depend
on the parametrization of the submanifold and the corresponding
Hamiltonian (if it exists) is a function on the dual vector bundle
A2T*M (the phase space).

@ The dynamics should be an equation (in general, implicit) for
2-dimensional submanifolds in the phase space, i.e.

D C A TA2T*M.

@ A submanifold S in the phase space A>T*M is a solution of D if and
only if its tangent space T,S at o € A°T*M is represented by a
bivector from D,,.

If we use a parametrization, then the tangent bivectors associated
with this parametrization must belong to D.
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The Hamiltonian side for multivector bundles

Recall that AT A2 T*M is a double graded bundle (actually a GrL-bundle)
AT N2 T*M

O
M AZTM
\ M /

We have:
@ the canonical Liouville 2-form on A2T*M:

1
92 = Ep,uu dxt A dXV7 Puv = —Pvu
@ the canonical multisymplectic form
1
w%/, =do3, = Edpm, Adx? AdxY;
@ the vector bundle morphism

By NPTATM = T A2T*M, u gwiy
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The Lagrangian side for multivector bundles

In local coordinates,
BI%/I(XM, Pk ).(Vga ygpv p’y,é,e,() = (Xua PXks _ygpa ).(VU) .

Using the canonical isomorphism of double vector bundles

R:T*N2T*M > T A2TM,
we can define oz%/, =TRo ,8,2\,,, which is another double graded bundle
morphism,

gt APTAPT*M = T* A2TM,

(of double graded bundles over A°TM and A2T*M).

In local coordinates,

A (X s X7, Yo Bysec) = (X, X7yl )
The map a%d can also be obtained as the dual of the canonical
isomorphism
K2 TA2TM = A2TTM.
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The Tulczyjew triple for strings

Combining the maps 5%4 and oz%/,, we get the following Tulczyjew triple for
multivector bundles, consisting of double graded bundle morphisms:

2

A2T A2 T*/\/I T* A2 TM

/\ 2TM /\ 2TM™ /\ 2TM™
A2T*M 74/\%* 7L/@T* /

The way of obtaining the implicit phase dynamics D, as a submanifold of
AT A2 T*M, from a Lagrangian L : A°TM — R or from a Hamiltonian
H: A>T*M — R is now standard.

T* A2 T*M
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The phase dynamics - Lagrangian side

A2TM - (kinematic) configurations, L : A°TM — R - Lagrangian
2
D& AT A2T*M T /\2Tl\/lg\/-
AN TM A2TM

A2T*M A2T*M

D = (ajy) "M (dL(A\*TM)))

y . oL oL
D= {(Xuvp)\fmx Uaygp>p’y56C) : yyp = %7 Pxe = W} .

Thus we get Lagrange (phase) equations.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 29, 2021 23 /31



The phase dynamics - Hamiltonian side

H:A°T*M — R

2
T* A2 T*M L AT A2 T*M <D

% . ~
/\2TI\/I A,?TM

/\2T* /\2T*M

= (B4) " (dH(A*T* M)
OH

. ) . oOH
D= {(vap)\naxyoaygpup'ﬂse() : ng - _@7 XVG - } .

Opvo
Thus we get Hamilton equations.
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The Euler-Lagrange and Hamilton equations

For a surface in A2TM,

(t,s) — (x(t,s),x""(s, 1)),

the Euler-Lagrange equations read

OxH Ox¥  OxH* Ox¥

v _
x dt ds  9s Ot
oL oxto (oL N oo (oL,
dxc ot ds \axme\° s ot \ oxpe % )
As for the Hamilton equations, we have

oH  OxMox¥ B OxH Ox¥

Opuw Ot Os Os Ot '’

B Bi  OxM Opue B Ox* Opys

ox° Ot Os ds Ot
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AT ET S

In the relativistic dynamics of strings, the manifold of infinitesimal
configurations is A>TM, where M is the space time with the Lorentz
metric g. This metric induces a scalar product h in fibers of A2TM: for

1 0 0 1 0 1o}
:7-;11/7/\7 :7'/;1,1/7/\
X Oxk  Oxv’ b= 5% OxH " OxV
we have
(U’W) — h‘uyﬂ/\>'<M1/)-</,‘<)\7
where

h,u,l/l'{)\ = Bux8vX — Bu)\8urk -

The Lagrangian is a function of the volume with respect to this metric,
the so called Nambu-Goto Lagrangian,

L(w) = v/ (w|w) = \/ hypoaxt XA

which is defined on the open submanifold of positive bivectors.
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Nambu-Goto dynamics

The dynamics D C A?T A? T*M is the inverse image by a%,, of the image
dL(A?TM) and it is described by the Lagrange (phase) equations

o _ 1 Ohurro ok oo
Yav = 35 gx0 XX,
_1 )
Puv = 7h/il/)\l’ix Ka

p
where
P =1/ h,ul/)\nk’uVXAK .

The dynamics D is also the inverse image by ﬁﬁ, of the lagrangian
submanifold in T* A? T* M, generated by the Morse family

H  NPT*MxR, -R,
2 (p,r) = r(y/(plp) — 1).

In the case of minimal surface, i.e. the Plateau problem, we replace the
Lorentz metric with a positively defined one.
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the Lagrangian reads

Lix x5 = 37 (502
Ry

The Euler-Lagrange equation for surfaces, being graphs of maps

(x,y) — (x,y,2z(x,y)), provides the well-known equation for minimal
surfaces, found already by Lagrange :

0 Zy 0 z,

x|\ o ol Ty
X 1—|—z§—|—z§ Y 1—|—z§—|—z}%

In another form:

=0.

(1+22)z,y — 22:2,24 + (1 + z}%)zxx =0.
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A generalization

We have a straightforward generalization for all integer n > 1 replacing 2:
n n

153 «
T*N’T*M M /\”T/\”T*M M T*N’TM

/\”TI\/I /\”Tl\/l /\”Tl\/l

/\n-l-* / /\n-l—* / /\n-l-* /

The map

By N"TA"T*M — T* A" T*M
comes from the canonical multisymplectic (n + 1)-form wf, on A"T*M,
being the differential of the canonical Liouville n-form

O = Pusgin..pin dXT A dx? - Adx".
The map «aj, is just the composition of 3, with the canonical
isomorphism of double vector bundles T* A" T*M and T* A" TM.
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