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On Local Induction

Fragments of Peano Arithmetic and Collection (I

Cordén—Franco,

» Peano Arithmetic is axiomatized over a basic theory Lara-Martin
(say, Robinson's @ theory) by the induction scheme:

Introduction
loxt (0, V)AVYX (¢(x, v) = o(x+1,v)) = Vxo(x, v)
» Classical fragments:

I, = Q+ {lox: o(x,v) € X}
My =Q+{l,x: w(x,v)e,}

» Well known fact: IX, = IT1,.
» This equivalence fails for Parameter free schemes.

» We write p(x) € X, if p(x) € ¥, and x is the only free
variable of ¢(x).

> IX, = Q+ {lpx: p(x) € X}

» [T, is defined accordingly.

» (n>1) IX, is a proper extension of /Tl .



On Local Induction

Zn_l nd UCtlon and Collection (II)
. . Cordén—Franco,
(n>1) I, is a well-behaved fragment with good Lara-Martin
conservation properties Introduction

» (Parsons) I%, is M,;1—conservative over [Ag + X ,—IR.
» For every theory T, T 4+ X ,—-IR denotes the closure of
T under first order logic and (nested) applications of
2 ,—induction rule, ¥ ,—IR:

©(0,v) AVx (p(x,v) = o(x + 1,v))

>

» (KPD) /X, is X412 conservative over /¥ .
» Elegant characterizations of its class of provably total
computable functions are known.

» There is a host of both model theoretic and proof
theoretic tools particularly suited for the study of /%,,.



On Local Induction

Zn_l nd UCtlon ru |eS and Collection (I1)
. . . . Cordén—Franco,
> ,—induction rule expresses a very robust principle: Lara-Martin
» For every theory T extending /Ay, it holds that Introduction

[T,Z,—IR] = [T, X,-IRo] = [T, X, -IR] = [T, M,—IRo].

where, for every rule R, [T, R] is the closure of T under
first order logic and unnested applications of R, and
» > —IRq denotes the inference rule

Vx (p(x, v) = p(x + 1,v))

..
A0v) 5 xglay) o POVIE

» > —IR denotes the parameter free version of ¥ ,—IR.

» There is a natural correspondance between applications
of X1—IR and iteration of a convenient function:

[IAOazl_IR]m = IAO +VXE|Y(Fm(X) :)/)

» [T,Rlo=T, |[T,Rlks1=][T,R]x R].
> Fo(X) = (X+ 1)2, Fk+1(X) = Fk(X)X+1.



On Local Induction

Parameter free 2 ,—Induction and Callection (11
Cordén—Franco,
» (Adamowicz—Bigorajska; Mints) For every m > 1, if Lara-Martin
©1(x), ..., om(x) € £ and ¢ € My then ntroduction

/AO+I¢1+"‘+I . I—qp = IA0+VXE|y(Fm(X):)/)|_¢

» Z. Ratajczyk extended this result to provably total
computable functions of /X, using the fast growing
hierarchy. He also gave an independent proof of the

following result.
> (Kaye) For every m > 1, p1(x), ..., ¢m(x) € X, and
(GRS I PRS-

Izn+lgol+"‘+ltpml_w = [/zngzn—l—l_IR]m'_w



[1,—Induction rule
(n > 1) Ny=induction rule differs strongly from ¥ ,—IR.

» There is no nontrivial conservation between /X, and
1A + M—IR.

> [IAg, M1—IR] C [IAg, N =IRo] C [/ Ag, M1~IRg].

» Recall that [/Ao, I'I1—IR0] = [IAO,21—|R].

» Over [Ag + exp, (nested) applications of M,;1-IR
corresponds to (iterated) n—consistency statements.

» (Beklemishev) [IAg, M>—IR] = [/ Ao, X1-IR].

On Local Induction
and Collection (I1)

Cordén—Franco,
Lara—Martin

Introduction



On Local Induction

Parameter free I1,—Induction and Collection (1)
_ . _ Cordén—Franco,
(n>1) IN; also differs notably from /¥ . Lara-Martin
> /I_I; C /Z; C lzn Introduction

» [T1, is a very weak fragment, even w.r.t. /3.
» As a matter of fact, it is closer to /X,_1.

> It has been studied using ad hoc model theoretic
constructions (Kaye-Paris—Dimitracopoulos, 1988).

» A more systematic study has been carry out by
Beklemishev (1999) using an indirect approach through
Reflection principles. The key ingredients are:

» Results a la Kreisel-Levy, giving equivalences between
parameter free induction and (relativized) local
reflection principles.

» Conservation results for reflection principles, obtained
using methods from provability logic.

» As an application, characterizations of the classes of
provably total computable functions of /1 ; and
IZ, + T, are derived.



Some remarks

>

The problems we find in the study of /T1, are particular
cases of the more general problem of finding good
(informative) descriptions or axiomatizations of the
class of ¥, 11—consequences of /L.

» Observe that /Tl is X, ;—axiomatizable.
Local induction schemes allow us to address this
question in a direct and systematic way.
Our approach is model-theoretic, but inference rules
play an important rol in our analysis.

In this talk we restrict ourselves to /T1;" and /T1; . Most
results can be generalized to /Tl , n > 2, directly or by
relativization.
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. . On Local Induction
Our starting point and Cotlection (1)
Cordén—Franco,

Let 6 be a sentence. Lara-Martin

» Assume IT1] = 6. Then

Outline

0 e, INo+expl 0 (KPD'1988).
0 € B(T1) 7+ 0
0 c |_|1 760

» Assume ITT; 6. Then

0 ell3 -0

6 € B(X») IX] F 6 (Beklemishev,1999)

0 el IAg + My—IR =60 (Beklemishev,1999)



A first step using rules

On Local Induction
and Collection (I1)

Cordén—Franco,

Let 6 be a sentence. Lara-Martin
» Assume IT1] = 6. Then '
0Tl [[Ao, X1-IR] -0 o
0 € B(x1) ?7H0
0 el TH0
» Assume ITT; 6. Then
0 eIl 7H0
0 € B(X,) [[Ag, N5 —=IRe] -6
0, IAg+T-IREF 8




On Local Induction

FI” In the blanks and Collection (I1)

Cordén—Franco,

Let 6 be a sentence. Lara-Martin

» Assume IT1] = 6. Then

Outline

6 ey [[Ag,M1—IRo] -6 (0)
6 € B(X1) [180, ;IR F O 7 (1)
e Do+ T-IRFO 7 (2)

» Assume ITT; 6. Then

0 €3 [/Ao, |_|2—|R0] Fo 7 (3)

0 e B(Zg) [/Ao, n;—|R0] o

0Tl I1Ag +T>-IRF-6



Our goals o Cotecion (1
» We answer in the positive the open questions (1), (2) oo
and (3).

» Over /Ay + exp we can answer questions (1), (2) and
(3) using an approach via (Local) Reflection principles.

» We present here alternative techniques based on local
induction principles that work over /Ay and avoid the
use of the metamathematical machinery needed for an
approach via reflection principles.

» Since [/ Ao, L2—-IR] = /X4, (3) can be formulated as

Outline

Is /T TM3—conservative over /317

» We improve Kaye—Paris—Dimitracopoulos result (0) and
obtain an explicit characterization of the set of
lM>—consequences of /11 .

» We also obtain additional refinements of these results in
the spirit of Adamowicz-Bigorajska-Kaye-Ratajczyk
theorem.



Induction up to X ,—definable elements

» We denote by /(X,, ICp,) the theory given by /¥~
together with the induction scheme

©(0) AVx (p(x) = p(x+ 1)) = Vx € Kpo(x)

where p(x) € X, and 6(x) € X,.
» (X, Kn)-IR denotes the following inference rule:

©(0) AVx (p(x) = ¢(x +1))
Vx € Kno(x)

where ¢(x) € £, and §(x) € X,

» /(X;,K,) denotes the parameter free version.
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Our results (I)
» Assume [T 6. Then

RSN P} [ Ao, (X1,K1)-IR] F 6
0 € B(x1) [ Ao, (X7, K1)-IR] -6
e IAo + N—IR - 6

» Some refinements: Let ¢1(x),...,¢om(x) € M and

assume that [Ag + fy, +---+ 1, = 0. Then

hem, | [1 80, (51, K1)—IR] F1m 6
0 € B(%1) | [/ Ao, (B(E1) ™, K1)-IR] -y 0

(where k-, expresses provability using at most m
applications of the corresponding rule)

» Similar (weaker) results for M} =IRg and M;~IR can also
be proved.
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On Local Induction

Our reSU|tS (l I) and Collection (I1)
» Assume ITT; 6. Then Caroatanin”
6en; 157+ (Z2,K2)-IR - 0 "
0 € B(,) (17, (55, Ka)-IR] I 0
0 el 1Ag +TM-IR- 6

» [X; extends IX] + (X2, K2)-IR.
» Corollary. IT1; is [3—conservative over /3 1.



. . On Local Induction
Parameter free N;—induction and Cotlecsion (1)
- Ny = I(57, k) ey

» Analysis of the set of My,—consequences of /(X1, K1) is
relevant in connection with /1.

> Let us denote by I_Il__IRO the rule Local induction

and restricted
iteration

Vx (o(x) = o(x + 1)) _
0 s wxply 1 FE

> For every theory T extending /Ay,
[T,(X7,K1)-IR] = [T,N;=IRe]

> Fact: [Ag + exp = [IAg, T1-IR].



On Local Induction
[My—consequences of /(X1, K1) and Collection (1)
» Two key points: oot

» A version of Parsons theorem holds for /(X1, K1).
» The equivalence between applications of ¥;-IR and
iteration ‘localizes”.

Local induction

(Local Parsons theorem) Bl
(X1, K1) is My—conservative over [Ag + (X1, K1)-IR.
(Local iteration theorem) Let f(x) = (x + 1)2. Then
the following theories are equivalent:
> /Ao + (217’C1)—|R.
> [/Ao, (Zl, ’Cl)—lR]
» [Ag+Vu e K1 Vx 3y (FU(x) = y).
M7 is My—conservative over [/ Ag, (X1, /1)-IR].
» As a corollary we get the result labelled with (0).

v

v

v

v

Refinement: for every 6 € I,

My =60 < [IAo,(X1,K1,ZE)-IR] -6
& IMg+VueKiVx eIy (fi(x)=y) -0



> ,.1—Closed models

>

¥ h+1—closed models provide a simple and clear method
to obtain conservation results. The basic ideas were
developed by J. Avigad working on previous ideas of D.
Zambella and A. Visser.

Definition. Let T be a theory. We say that 2 =T is a
¥ py1—closed model of T if for each B =T,

A<, B = A=<, B

It generalizes the notion of an existentially closed model.

Proposition. (Existence)

Let T be a M, o—axiomatizable theory and A = T
countable. Then there exists B = T such that 2 <, B
and B is ¥, 1—closed for T.

Corollary. Every consistent and [, ,—axiomatizable
theory has a X, 1—closed model.

On Local Induction
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The basics of the method et

Cordén—Franco,

The basic device is the following result: Lara-Martin

Theorem (Avigad,'02)

Let Ty be a I, ,—axiomatizable theory such that every

> h+1—closed model for Ty is a model of T,. Then T, is

M, 1—conservative over Ty. asarally closed
Other key ingredient in most applications:

Lemma

Let A be a X ,11—closed model for T. Let p(X) € Mpy1 and
d € A such that 2 |= ¢(3). Then there exist §(v,X) € N,
and b € A such that

AE=0(b,3) and TFO(v,X)— ¢(X)



F|rst app||cat|ons On Local Induction

and Collection (1)
Cordén—Franco,
Let us prove results (0), (1) and (2). Lara-Martin
» Lemma 1. Every Y ,—closed model of
IAg + (X1,K1)-IR is a model of /(X1,K1).

» Local Parsons Theorem and result (0) follow from
Lemma 1 and Local lteration Theorem.

> A similar strategy fails for /T1; and /Ag + 1-IR, moaan T <%
because of the following fact:

» If T is recursive extension of /Ay and 2l is ¥ ;—closed
model of T, then 2 is not a model of /T1; .

» Lemma 2. If 2 |= [/Ag, M =IRo] then
K1(20) |= [/ Ao, M1—IRo].
» As a corollary [IAg, M7 —IRo] is Xo—conservative over
[/ Ao, M1—IRo], and result (1) follows using result (0).

» Lemma 3. Every X 1—closed model of /Ag + M1-IR is
model of [/Ag, M =IRg].

» Result (2) follows from (1) and Lemma 3.



Parameter free I_I2—|nductlon On Local Induction

and Collection (I1)

Cordén—Franco,
In the case n = 2, we have: Lara—Martin
1INy = I(55,K,).

2. 1(X2,Kp) is Ma—conservative over IX] + (X2, K2)-IR.
3. I¥; extends 1Y) + (X2, K2)-IR.
» Reduction: Existentially closed
IL7 + (2, K2)-IR = IS + (1080 + (2, K2)-IR).
» A refinement of the (proof of) Local lteration Theorem
shows that /X; extends /Ag + (X2, K2)-IR.

Theorem
IN5 is M3—conservative over 13 1.

» This improves a previous conservation result of L.
Beklemishev.

> As corollary, we get that the class of provable total
computable functions of /T1; is the class of primitive
recursive functions.



Conditional axioms

Let L denote the language of First Order Arithmetic.

Definition

A set of L—formulas, E, is a set of conditional axioms if
each element of E is a formula of the form a(V) — 5(V).

Let 7 be an L—theory and E be a set of conditional axioms.

» T + E is obtained by adding to T the universal closure

of each formula in E.
» Example: T + E = 1%, for T = [Ap and

E={l,x(V): ¢(x,V) € X1}

where I, (V) is the induction scheme

©(0, V) AVx (o(x, V) = o(x + 1,V)) = Vx o(x, V)

«

B
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Conditional axioms (cont'd)

» We can associate to each set of conditional axioms, E,
two auxiliary sets of conditional axioms:

» E— = E N Sent, and
» UE = {Wa(V) = V/E(V): a(V) = B(V) € E}

» The theories T + UE and T + E~ are obtained by
adding to T the sentences in UE and E~ respectively.

» Example: For E = |A; we have:
E= {VX(QD(Xv ‘7) AR ¢(X, ‘7)) - Icp,x(v) CpEX, YE nl}
) B(V)

UE = {VV (¥x (p(x, V) <> ¥(x,V))) = VWi, «(V): p € X1, ¥ €1}

E7 ={x(p(x) & ¥(x)) = lox = p(x) € X1, ¥(x) € Ny}
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On Local Induction

Conditional axioms: Inference rules and Collection (11
. . . . Cordén—Franco,

We also define an inference rule, E-Rule, with instances Lara-Martin
YV (V)

—————,  for each (V) — B(V) € E
ot foreach a(®) - 4(7)
» [T, E-Rule] denotes the closure of T under first order
logic and unnested applications of E-Rule. Conditional axioms
» T + E-Rule denotes the closure of T under first order EER—
logic and (nested) applications of E—Rule.

» We denote by E~—Rule the inference rule associated to
the set of conditional axioms E~.



On Local Induction

The baS|C redUCtlon and Collection (I1)

Cordén—Franco,

» For each set of formulas I1, we introduce the rule Lara-Martin
EM—Rule given by the instances

0(v,Z) — a(V)
0(v,2) — B(V)
for each a(V) — B(V) € E and 6(V,Z) € IN.
» A set of conditional axioms E is normal set of and conservation

conditional axioms w.r.t. [1,, if for every
(V) = B(V) € E, a(V) € Mpy1 and B € Myyo.

Conditional axioms

Lemma

Let T be a I, o—axiomatizable theory and E a set of
normal conditional axioms w.r.t. M1,. Then T + E is
M,.1—conservative over T 4+ EN"—Rule.



The basic reduction (cont'd) and Cotecsion (1)

Cordén—Franco,

» [t holds that [U, E—Ru|e] g [U, En"—Rule]. Lara—Martin

» E is [N,—reducible modulo T if for every theory U
extending T, it holds

[U, E""—Rule] = [U, E-Rule]

Conditional axioms
and conservation

Theorem
Let T be a l,42—axiomatizable theory and E a set of

normal conditional axioms w.r.t. I1,. Assume that E is
M,—reducible modulo T. Then

1. T + E is N,1—conservative over T + E—Rule.
2. T+ E is X,yp—conservative over T + UE.

3. If every M,o—axiomatizable extension of T + E~ is
closed under E—Rule, then T + E is ¥, p,—conservative
over T+ E~



The finite case

Theorem
Let F be a finite set of normal conditional sentences w.r.t.
M,. Then, for every I, >—axiomatizable theory T it holds
that

Thn, (T + F) C [T, F"-Rule]

where m is the number of elements of F.

Corollary

Let E be a set of normal conditional axioms w.r.t. [1,.
Assume that E is IN,—reducible modulo T. Then for every
finite set of sentences F C E with m elements, it holds that

Thn,. (T + F) C [T, E-Rule] .
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The finite case (proof)

Lemma
Let E = {41,...,¢¥m} a finite set of normal conditional
sentences w.r.t. [1,. Then

T + E""—Rule = [T, EM""-Rule]

> If ¢ is a sentence of the form a — 3, with oo € M1
and 8 € l,42, we define the rule
O(u) = «

Mn_ ule : — u .
YheRule: e (0w €M)

» T +"—Rule = [T,y "-Rule].

> It holds that for each sentence ¢ € 1,41, a proof of ¢
in T + EM—Rule only requires one application of each
rule wjl._'”—Rule.
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On Local Induction

Adamowicz—Bigorajska—Kaye—Ratajczyk's Thm Sl e )

Cordén—Franco,

Lara—Martin
Theorem
For every theory T extension of IX,, m > 1 and
‘101(X)a s aSDm(X) € 2;4_1,
Thnn+2(T + I§01 +eee ltpm) - [T7 znJrl_l’L-‘)]m
> IZ;rl is a set of normal conditional sentences w.r.t. Normal conditional

sentences

Moy .
> X ,41 is Mp41—reducible modulo /¥,



Parameter free [1;-Induction

> Let p1(x),...,om(x) € M} and @ € T, such that
NG+ Ly + -+ Iy, 6

Then [/ Ao, (£1, K1)—IR)]m I 6.
> Refinement: [IAg, (X1,K1)-IR)] Fm 6.
» If 0 € B(X1) then [IAo, (B(X1)™,K1)-IR)] Fm 6.

» If § € B(X1), then there exist sentences my,..., 7 € [}
and 01,...,0, € X1 such that [Ag - \/i_;(0; A ;) and
foreachj=1,...,r,

[[Ag+ 0j A7j, ] =IRo] Fpm 6
» If in addition @ € Iy, then

[IAO + oj A\ mj, I'Il—lR]m Fo
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