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Synoptic History (1)

1962. In answer to a question of Dana Scott, in the mid
1950’s Robert Vaught shows that there is a model of true
arithmetic that is isomorphic to a proper initial segment of
itself. This result is later included in a joint paper of Vaught
and Morley.

1973. Harvey Friedman’s landmark paper contains a proof of
the striking result that every countable nonstandard model of
PA is isomorphic to a proper initial segment of itself.

1977. Alex Wilkie shows that if M and N are countable
nonstandard models of PA, then ThΠ2(M) ⊆ ThΠ2(N ) iff
there are arbitrarily high initial segment of N that are
isomorphic to M.
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Synoptic History (2)

1978. Hamid Lessan shows that a countable model M of
ΠPA

2 is isomorphic to a proper initial segment of itself iff M is
1-tall and 1-extendible, where 1-tall means that the set of
Σ1-definable elements of M is not cofinal in M, and
1-extendible means that there is an end extension M∗ of M
that satisfies I∆0 and ThΣ1(M) = ThΣ1(M∗).
1978. With the introduction of the key concepts of recursive
saturation and resplendence (in the 1970’s), Vaught’s result
was reclothed by John Schlipf as asserting that every
resplendent model of PA is isomorphic to a proper elementary
initial segment of itself.

1978. Craig Smorynski’s influential lectures and expositions
systematize and extend Friedman-style embedding theorems
around the key concept of (partial) recursive saturation.
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Synoptic History (3)

1979. Leonard Lipshitz uses the Friedman embedding
theorem and the MRDP theorem to show that a countable
nonstandard model of PA is Diophantine correct iff it can be
embedded into arbitrarily low nonstandard initial segments of
itself (the result was suggested by Stanley Tennenbaum).

1980. Petr Hájek and Pavel Pudlák show that if I is a cut
closed under exponentiation that is shared by two nonstandard
models M and N of PA such that M and N have the same
I -standard system, and ThΣ1(M, i)i∈I ⊆ ThΣ1(N , i)i∈I , then
there is an embedding j of M onto a proper initial segment of
N such that j(i) = i for all i ∈ I .

1981. Jeff Paris notes that an unpublished construction of
Robert Solovay shows that every countable recursively
saturated model of I∆0 + BΣ1 is isomorphic to a proper initial
segment of itself.
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Synoptic History (4)

1983. Žarko Mijajlović shows that if M is a countable model
of PA and a /∈ ∆M1 , then there is a self-embedding of M onto
a submodel N (where N is not necessarily an initial segment
of M) such that a /∈ N. He also shows that N can be
arranged to be an initial segment of M if there is no b > a
with b ∈ ∆M1 (he attributes this latter result to Marker and
Wilkie).

1985. Costas Dimitracopoulos shows that every countable
nonstandard model of I∆0 + BΣ2 is isomorphic to a proper
initial segment of itself.

1986. Aleksandar Ignjatović refines the aforementioned work
of Mijajlović.
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Synoptic History (5)

1987. Jean-Pierre Ressayre proves an optimal result: for
every countable nonstandard model M of IΣ1 and for every
a ∈M there is an embedding j of M onto a proper initial
segment of itself such that j(x) = x for all x ≤ a; moreover,
this property characterizes countable models of IΣ1 among
countable models of I∆0.

1987. Bonnie Gold refines Lipshitz’s aforementioned result by
showing that if M and N are models of PA with M⊆end N ,
then N is Diophantine correct relative to M iff for every
a ∈ N\M there is an embedding j : N → N such that
j(N) < a and j(m) = m for all m ∈ M.

1988. Independently of Ressayre, Dimitracopoulos and Paris
show that every countable nonstandard model of IΣ1 is
isomorphic to a proper initial segment of itself. They also
generalize Lessan’s aforementioned result by weakening ΠPA

2

to I∆0 + exp +BΣ1.
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Synoptic History (6)

1991. Richard Kaye’s text presents a number of refinements
of Friedman’s theorem, including:

A necessary and sufficient condition for the existence of a
Σn-elementary embedding j of a countable model M onto an
initial segment I between two prescribed elements a < b of
M such that j(a) = a;

The existence of continuum-many initial segments of every
countable nonstandard model of M of PA that are isomorphic
to M.

1997. Kazuyuki Tanaka extends Ressayre’s aforementioned
result to countable nonstandard models of WKL0.
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Partial Recursive Functions and Embeddings (1)

Unless otherwise stated, all models are countable models of
IΣ1.

Definition. A partial function f from M to M is a partial
M-recursive function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. (Sharpened Friedman Theorem) Suppose c ∈ M,
and {a, b} ⊆ N with a < b. The following statements are
equivalent:
(1) SSy(M) = SSy(N ), and for every ∆0-formula δ(x , y) we
have:

M |= ∃y δ(c , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is an initial embedding j :M→N with j(c) = a
and a < j(M) < b.
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Partial Recursive Functions and Embeddings (2)

Theorem. Suppose {a, b} ⊆ M with a < b. The following
statements are equivalent:

(1) There is an initial embedding j :M→M with j(a) = a
and a < j(M) < b.

(2) There is a cut I of M with a < I < b and
Th (M, a) = Th(I , a).

(3) There is a cut I of M with a < I < b and
Th

Σ1
(M, a) = Th

Σ1
(I , a).

(4) f (a) < b for all partial M-recursive functions.
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Partial Recursive Functions and Embeddings (3)

Definition. Suppose P ⊆M be a set of parameters. A partial
function f from M to M is a P-partial M-recursive function
of M if the graph of f is definable in M by a Σ1-formula
with parameters in P.

Theorem. (Sharpened Hájek-Pudlák). Suppose I is a cut
shared by M and N , and I is closed under exponentiation.
Assume furthermore that c ∈M, with I < c, and {a, b} ⊆ N
with I < a < b. The following statements are equivalent:

(i) SSyI (M) = SSyI (N ), and for every ∆0-formula
δ(x , y , z), and all i ∈ I we have:

M |= ∃y δ(c , y , i) =⇒ N |= ∃y < b δ(a, y , i).

(ii) There is an initial embedding j :M→N such that
j(c) = a, a < j(M) < b, and j(i) = i for all i ∈ I .
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Partial Recursive Functions and Embeddings (4)

Theorem. Suppose {a, b} ⊆ M with I < a < b, where I is a
cut of M that is closed under exponentiation. The following
statements are equivalent:

(1) There is an initial embedding j :M→M with
a < j(M) < b, and I ∪ {a} ⊆ Fix(j).

(2) There is a cut I ∗ of M with a < I ∗ < b and
Th (M, a, i)i∈I = Th(I ∗, a, i)i∈I .

(3) There is a cut I ∗ of M with a < I ∗ < b such that
Th

Σ1
(M, a, i)i∈I = Th

Σ1
(I ∗, a, i)i∈I .

(4) f (a) < b for all I -partial M-recursive functions f .
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Total Recursive Functions and Embeddings (1)

Definition. A (total) function f from M to M is a total
M-recursive function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ N with a < b. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∀x∃y δ(x , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is some c ∈ M such that for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∃yδ(c , y) =⇒ N |= ∃y < b δ(a, y).

(3) There is an initial embedding j :M→N with
a < j(M) < b.
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Total Recursive Functions and Embeddings (2)

Theorem (Wilkie) . M is isomorphic to arbitrarily high
initial segments of N iff SSy(M) = SSy(N ) and
ThΠ2(M) ⊆ ThΠ2(N ).

Theorem. Suppose {a, b} ⊆ M with a < b. The following
statements are equivalent:

(1) There is an initial embedding j :M→M with
a < j(M) < b.

(2) There is a cut I of M with a < I < b and
Th(M) = Th(I ).

(3) f (a) < b for all M-recursive functions f.
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New Proof of Tanaka’s Theorem (1)

Theorem (Tanaka ) Every countable nonstandard model of
WKL0 has a nontrivial self-embedding in the following sense:
given (M,A) |= WKL0, there is a proper initial segment I of
M such that

(M,A) ∼= (I ,A � I ),

where A � I := {A ∩ I : A ∈ A}.
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New Proof of Tanaka’s Theorem (2)

Our new proof has three stages, as outlined below.

Stage I: Given a countable nonstandard model (M,A) of
WKL0, and a ∈ M in this stage we will first use the muscles
of IΣ1 in the form of the strong Σ1-collection to locate an
element b in M such that f (a) < b for all M-partial recursive
functions of M.

Stage 2 Outline: We build an end extension N of M such
that (1) N |= BΣ1 + exp, (2) N is recursively saturated, and
(3) f (a) < b for all N -partial recursive functions of M, and
(4) SSyM(N ) = A.

Stage 3 Outline: We use a fine-tuned version of Solovay’s
embedding theorem to embed N onto a proper initial
segment J of M. By elementary considerations, this will yield
a proper cut I of J with (M,A) ∼= (I ,A � I ).
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New Proof of Tanaka’s Theorem (3)

Stage 2 Details: Fix some nonstandard n∗ ∈ M with n∗ >> b
(e.g., n∗ = supexp(b) is more than sufficient). Then by since
M satisfies IΣ1 there is some element c ∈ M that codes the
fragment of TrueMΠ1

consisting of elements of TrueMΠ1
that are

below n∗, i.e.,

cE := {m ∈ M : m ∈ TrueMΠ1
and m < n∗}.

We observe that cE contains all sentences of the form
∃y δ(a, y)→ ∃y < b δ(a, y) that hold in M, where δ is some
∆0-formula and a and b are names for a and b. Within M,
we define the “theory” T0 by:

T0 := I∆0 + BΣ1 + c .
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New Proof of Tanaka’s Theorem (3)

Next we rely on a result of Clote-Hájek-Paris that says
IΣ1 ` Con(I∆0 + BΣ1 + TrueΠ1) in order to conclude:
(∗) M |= Con(T0).

We observe that T0 has a ∆1-definition in M . Hence by
∆0

1-comprehension available in WKL0 we also have:

(∗∗) T0 ∈ A.
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New Proof of Tanaka’s Theorem (4)

We wish to build a chain 〈Nn : n ∈ ω〉 of internal models
within (M,A), i.e., the elementary diagram
En := Th(Nn, a)a∈Nn of each Nn is coded as a member of A;
note that En has all sorts of nonstandard sentences.
Enumerate A as 〈An : n ∈ ω〉 . Our official requirements for
〈Nn : n ∈ ω〉 is that for each n ∈ ω we have:

(1) Nn |= T0.
(2) En ∈ A.
(3) M⊂end Nn ≺ Nn+1.
(4) An ∈ SSyM(Nn+1).
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New Proof of Tanaka’s Theorem (5)

To begin with, we invoke (∗), (∗∗), and the completeness
theorem for first order logic (available in WKL0) to get hold
of N0.

Given Nn, we note that the following theory Tn+1 ∈ A since
A is a Turing ideal and Tn+1 is Turing reducible to the join of
En and An (in what follows d is a new constant symbol, and t
is the numeral representing t in the ambient model)

Tn+1 := En + {t ∈Ack d : t ∈ An}+ {t /∈Ack d : t /∈ An} .

It is easy to see that Tn+1 is consistent in the sense of
(M,A) since (M,A) can verify that Tn+1 is finitely
interpretable in Nn. This allows us to get hold of the desired
Nn+1 using the compacntess theorem for first order logic that
is available in WKL0. The recursive saturation of Nn+1 follows
immediately from (2), using a well-known argument.
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New Proof of Tanaka’s Theorem (6)

Let N :=
⋃
n∈ω
Nn. We are finished with the second stage of

the proof since:

N |= I∆0 + BΣ1, N is recursively saturated, and f (a) < b for
all N -partial recursive functions f .
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New Proof of Tanaka’s Theorem (7)

Stage 3 Details: Thanks to (5), and the following fine-tuned
version of Solovay’s theorem, there is a self-embedding φ of
N onto a cut between a and b.

Theorem Suppose N is a countable model of IΣ0 + BΣ1

that is recursively saturated, and there are a < b in N such
that f (a) < b for every N -partial recursive function f . Then
there is an initial embedding φ : N → N with φ(a) = a and
a < φ(N) < b.

Let J := φ(N), and I := φ(M). Then I < J < M. It is now
easy to see that φ induces an embedding

φ̂ : (M,A)→ (I ,A � I ),
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Controlling Fixed points (1)

Theorem. Suppose I is proper cut of M. The following
conditions are equivalent.
(1) There is an initial self-embedding j :M→M such that
Ifix(j) = I .

(2) I is closed under exponentiation.
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Controlling Fixed points (2)

Theorem. Suppose I is proper initial segment of M. The
following conditions are equivalent.

(1) There is an initial self-embedding j :M→M such that
Fix(j) = I .

(2) I is a strong cut of M, and I ≺Σ1 M.
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Controlling Fixed points (3)

Theorem. The following conditions are equivalent.

(1) There is an initial self-embedding j :M→M such that
Fix(j) = K 1(M).

(2) N is a strong cut of M.
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