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Aims

To present a general proof-theoretic machinery for
investigating statements about well-orderings from a
reverse mathematics point of view.
These statements are of the form WOP(f )

“ if X is well ordered then f (X ) is well ordered”

where f is a standard proof theoretic function from
ordinals to ordinals.
There are by now several examples of functions f where
the statement WOP(f ) has turned out to be equivalent to
one of the theories of reverse mathematics over a weak
base theory (usually RCA0).
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2X and Arithmetic Comprehension

2X := (|2X |, <
2X )

Theorem: (Girard 1987) Over RCA0 the following are
equivalent:

1 Arithmetic Comprehension

2 ∀X [WO(X)→WO(2X)].

Slogan: one quantifier = one exponential

2X is effectively computable from X.

Abstract property WO of real object 2X versus existence of
abstract sets ACA.
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The theory ACA+
0

ACA+
0 is ACA0 plus the axiom

∀X ∃Y [(Y )0 = X ∧ ∀n (Y )n+1 = jump((Y )n)].

• Hindman’s Theorem and the Auslander/Ellis theorem are
provable in ACA+

0 .
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εX and ACA+
0

Theorem: Over RCA0 the following are equivalent:

1 ACA+
0

2 ∀X [WO(X)→WO(εX)].

• A. Marcone, A. Montalbán: The epsilon function for
computability theorists, draft, 2007.

• B. Afshari, M. Rathjen: Reverse Mathematics and
Well-ordering Principles: A pilot study, APAL 160 (2009)
231-237.
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The ordering <εX

Let X = 〈X , <X 〉 be an ordering where X ⊆ N.
<εX

and its field |εX| are inductively defined as follows:
1 0 ∈ |εX|.
2 εu ∈ |εX| for every u ∈ X , where εu := 〈0,u〉.
3 If α1, . . . , αn ∈ |εX|, n > 1 and αn ≤εX

. . . ≤εX
α1, then

ωα1 + . . .+ ωαn ∈ |εX|

where ωα1 + . . .+ ωαn := 〈1, 〈α1, . . . , αn〉〉.
4 If α ∈ |εX| and α is not of the form εu, then ωα ∈ |εX|,

where ωα := 〈2, α〉.
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1 0 <εX
εu for all u ∈ X .

2 0 <εX
ωα1 + . . .+ ωαn for all ωα1 + . . .+ ωαn ∈ |εX|.

3 εu <εX
εv if u, v ∈ X and u <X v .

4 If ωα1 + . . .+ ωαn ∈ |εX|, u ∈ X and α1 <εX
εu then

ωα1 + . . .+ ωαn <εX
εu.

5 If ωα1 + . . .+ ωαn ∈ |εX|, u ∈ X , and εu <εX
α1 or εu = α1,

then εu <εX
ωα1 + . . .+ ωαn .

6 If ωα1 + . . .+ ωαn and ωβ1 + . . .+ ωβm ∈ |εX|, then

ωα1 + . . .+ ωαn <εX
ωβ1 + . . .+ ωβm iff

n < m ∧ ∀i ≤ n αi = βi or
∃i ≤ min(n,m)[αi <εX

βi ∧ ∀j < i αj = βj ].

Let εX = 〈|εX|, <εX
〉.
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O. Veblen, 1908

Veblen extended the initial segment of the countable for which
fundamental sequences can be given effectively.

• He applied two new operations to continuous increasing
functions on ordinals:

• Derivation
• Transfinite Iteration

• Let ON be the class of ordinals. A (class) function
f : ON→ ON is said to be increasing if α < β implies
f (α) < f (β) and continuous (in the order topology on ON)
if

f ( lim
ξ<λ

αξ) = lim
ξ<λ

f (αξ)

holds for every limit ordinal λ and increasing sequence
(αξ)ξ<λ.
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Derivations

• f is called normal if it is increasing and continuous.

• The function β 7→ ω + β is normal while β 7→ β + ω is not
continuous at ω since limξ<ω(ξ + ω) = ω but
(limξ<ω ξ) + ω = ω + ω.

• The derivative f ′ of a function f : ON→ ON is the function
which enumerates in increasing order the solutions of the
equation

f (α) = α,

also called the fixed points of f .
• If f is a normal function,

{α : f (α) = α}

is a proper class and f ′ will be a normal function, too.
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A Hierarchy of Ordinal Functions

• Given a normal function f : ON→ ON, define a hierarchy
of normal functions as follows:

• f0 = f
• fα+1 = fα′

•

fλ(ξ) = ξth element of
⋂
α<λ

{Fixed points of fα} for λ limit.
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The Feferman-Schütte Ordinal Γ0

• From the normal function f we get a two-place function,

ϕf (α, β) := fα(β).

We are interested in the hierarchy with starting function

f = `, `(α) = ωα.

• The least ordinal γ > 0 closed under ϕ`, i.e. the least
ordinal > 0 satisfying

(∀α, β < γ) ϕ`(α, β) < γ

is the famous ordinal Γ0 which Feferman and Schütte
determined to be the least ordinal ‘unreachable’ by
predicative means.
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ATR0 and ϕX0

Theorem: (Friedman, unpublished) Over RCA0 the
following are equivalent:

1 ATR0

2 ∀X [WO(X)→WO(ϕX0)].

• Friedman’s proof uses computability theory and also some
proof theory. Among other things it uses a result which
states that if P ⊆ P(ω)× P(ω) is arithmetic, then there is
no sequence {An | n ∈ ω} such that

• for every n, An+1 is the unique set such that P(An,An+1),
• for every n, A′

n+1 ≤T An.
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• A. Marcone, A. Montalbán: The Veblen function for
computability theorists, JSL 76 (2011) 575–602.

• M. Rathjen, A. Weiermann, Reverse mathematics and
well-ordering principles, Computability in Context:
Computation and Logic in the Real World (S. B. Cooper
and A. Sorbi, eds.) (Imperial College Press, 2011)
351–370.
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Countable coded ω-models

• An ω-model of a theory T in the language of second order
arithmetic is one where the first order part is standard.

• Such a model is isomorphic to one of the form

M = (N,X,0,1,+,×,∈)

with X ⊆ P(N).
• Definition. M is a countable coded ω-model of T if

X = {(C)n | n ∈ N}

for some C ⊆ N where (C)n = {k | 2n3k ∈ C}.
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Characterizing theories in terms of countable coded
ω-models

Theorem (RCA0)

ACA+
0 is equivalent to the statement that every set is

contained in a countable coded ω-model of ACA.

Theorem (ACA0)

ATR0 is equivalent to the statement that every set is
contained in a countable coded ω-model of ∆1

1-CA.
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A Theorem

Over RCA0 the following are equivalent:

1 ∀X [WO(X)→WO(ΓX)]

2 Every set is contained in an ω-model of ATR.

To appear in: Foundational Adventures, Proceedings in
honor of Harvey Friedman’s 60th birthday.
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Some famous theories of the 1960s and 1970s

• Every set X ⊆ N gives rise to a binary relation ≺X via
n ≺X m iff 2n3m ∈ X .

• Let BI be the schema

∀X [ WF(≺X )→ TI(≺X ,F ) ]

where F (x) is an arbitrary formula of L2.
• Let BI be the theory ACA0 + BI.

Theorem. The following theories have the same
proof-theoretic strength:

1 The theory of positive arithmetic inductive definitions ID1.
2 Kripke-Platek set theory, KP.
3 BI.
4 ACA0 + parameter-free Π1

1 − CA.

• Their proof-theoretic ordinal is the Howard-Bachmann
ordinal.
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The Big Veblen Number

• Veblen extended this idea first to arbitrary finite numbers
of arguments, but then also to transfinite numbers of
arguments, with the proviso that in, for example

Φf (α0, α1, . . . , αη),

only a finite number of the arguments

αν

may be non-zero.

• Veblen singled out the ordinal E(0), where E(0) is the least
ordinal δ > 0 which cannot be named in terms of functions

Φ`(α0, α1, . . . , αη)

with η < δ, and each αγ < δ.
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The Big Leap: H. Bachmann 1950

• Bachmann’s novel idea: Use uncountable ordinals to
keep track of the functions defined by diagonalization.

• Define a set of ordinals B closed under successor such
that with each limit λ ∈ B is associated an increasing
sequence 〈λ[ξ] : ξ < τλ〉 of ordinals λ[ξ] ∈ B of length
τλ ≤ B and limξ<τλ λ[ξ] = λ.

• Let Ω be the first uncountable ordinal. A hierarchy of
functions (ϕ

B

α)α∈B is then obtained as follows:

ϕ
B

0 (β) = 1 + β ϕ
B

α+1 =
(
ϕ

B

α

)′
ϕ

B

λ enumerates
⋂
ξ<τλ

(Range of ϕ
B

λ[ξ]) λ limit, τλ < Ω

ϕ
B

λ enumerates {β < Ω : ϕ
B

λ[β](0) = β} λ limit, τλ = Ω.
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The Howard-Bachmann ordinal

Let Ω be a “big” ordinal. By recursion on α we define sets
C

Ω
(α) and the ordinal ψ

Ω
(α) as follows:

C
Ω

(α) =


closure of {0,Ω}
under:

+, (ξ 7→ ωξ)
(ξ 7−→ ψ

Ω
(ξ))ξ<α

(1)

ψ
Ω

(α) ' min{ρ < Ω : ρ /∈ C
Ω

(α) }. (2)

The Howard-Bachmann ordinal is ψ
Ω

(εΩ+1), where εΩ+1
is the next ε-number after Ω.
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How to relativize the Howard-Bachmann ordinal?

• Let X be a well-ordering.

• Idea 1: Define CX
Ω

(α) by adding ε-numbers Eu BELOW Ω
for every u ∈ |X|:

CX
Ω

(α) =


closure of {0,Ω} ∪ {Eu | u ∈ |X|}
under:

+, (ξ 7→ ωξ)
(ξ 7−→ ψX

Ω
(ξ))ξ<α

(3)

ψX
Ω

(α) ' min{ρ < Ω : ρ /∈ CX
Ω

(α) }. (4)
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How to relativize the Howard-Bachmann ordinal?

• Idea 2: Define CX
Ω

(α) by adding ε-numbers Eu ABOVE Ω
for every u ∈ |X|:
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(α) }. (6)

• Let ψX
Ω

be ψX
Ω

(∗), where ∗ = sup{Eu | u ∈ |X|}.
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Another Theorem

Over RCA0 the following are equivalent:

1 ∀X [WO(X)→WO(ψX
Ω

)].

2 Every set is contained in a countable coded ω-model of BI.

Joint work with Pedro Francisco Valencia Vizcaino.
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History of proving completeness via search trees

An extremely elegant and efficient proof procedure for first
order logic consists in producing the search or
decomposition tree (in German “Stammbaum") of a given
formula. It proceeds by decomposing the formula
according to its logical structure and amounts to applying
logical rules backwards. This decomposition method has
been employed by Schütte (1956) to prove the
completeness theorem. It is closely related to the method
of “semantic tableaux" of Beth (1959) and methods of
Hintikka (1955). Ultimately, the whole idea derives from
Gentzen (1935).
The decomposition tree method can also be extended to
prove the ω-completeness theorem due to Henkin (1954)
and Orey (1956). Schütte (1951) used it to prove
ω-completeness in the arithmetical case.
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Prospectus

A statement of the form WOP(f ) is Π1
2 and therefore cannot

be equivalent to a theory whose axioms have a higher
complexity, like for instance Π1

1-comprehension.
After ω-models come β-models.
The question arises whether the methodology of this paper
can be extended to more complex axiom systems, in
particular to those characterizable via β-models?
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First of all, to get equivalences one has to climb up in the
type structure. Given a functor

F : (LO→ LO)→ (LO→ LO),

where LO is the class of linear orderings, we consider the
statement:

WOPP(F ) : ∀f ∈ (LO→ LO) [WOP(f )→WOP(F (f ))].

There is also a variant of WOPP(F ) which should basically
encapsulate the same “power”. Given a functor

G : (LO→ LO)→ LO

consider the statement:

WOPP1(G) : ∀f ∈ (LO→ LO) [WOP(f )→WO(G(f ))].
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Conjecture

Statements of the form

WOPP(F )

(or WOPP1(F )), where F comes from some ordinal ordinal
representation system used for an ordinal analysis of a
theory TF , are equivalent to statements of the form

“every set belongs to a countable coded β-model of TF ”.

The conjecture may be a bit vague, but it has been
corroborated in some cases (around Π1

1-CA), and, what is
perhaps more important, the proof technology exhibited in
this paper seems to be sufficiently malleable as to be
applicable to the extended scenario of β-models, too.
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β-models I

Every ω-model M of a theory T in the language of second
order arithmetic is isomorphic to a structure

A = 〈ω; X; 0,+,×, . . .〉

where X ⊆ P(ω).

Definition:

A is a β-model if the concept of well ordering is absolute with
respect to A, i.e. for all X ∈ X,

A |= WO(<X ) iff <X is a well ordering.

• n <X m :⇒ 2n3m ∈ X .
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Mostowski’s question

Is there a “syntactical" rule which characterizes
validity in all β-models?

T |=β F iff F holds in all β-models of T .
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The End
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