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1 IntroductionThis paper is devoted to the study of �nite arithmetics, the research area con-centrated on semantical and computational properties of arithmetical notionsrestricted to �nite interpretations. Almost all computational applications oflogic or arithmetic consider arithmetical notions in essentially �nite frame-work. Therefore it is surprising that so little attention is directed to thisarea. This is particularly surprising when we observe that a few of classicalpapers in computer science (see e.g. Hoare [3], Gurevich [2]) postulate thisresearch direction as particularly important.Discussing the problem of analyzing algorithms in an implementation-independent way, Hoare essentially postulates proving their properties inappropriate axiomatic versions of �nite arithmetic. We know that particu-lar implementations of integers or unsigned integers (natural numbers) areessentially �nite arithmetics with a distinguished upper bound.By Trachtenbrot's theorem [17] we know that �rst order theories of non-trivial �nite arithmetics cannot be axiomatizable. We know that the �rstorder logic allowing arbitrary interpretations is axiomatizable. However, re-stricted to �nite models it is axiomatizable only for poor vocabularies �for which it is recursive. Probably this was one of the reasons why Hoare'spostulate did not motivate logicians to study the case of arithmetics witha �nite bound. Nevertheless, let us observe that working in the standardin�nite model of natural numbers is not easier in any way. The �rst ordertheory of this model is not arithmetical. On the other hand, the �rst ordertheory of any �nite arithmetic is at most co-recursively enumerable, that is�01. Therefore we can expect much better axiomatic approximations in the�nite case.For this reason, we should �rstly consider properties of �nite arithmeticsfrom the logical point of view. Only recently a few papers devoted mainlyto this area have appeared, see [10], [14], [8], [12], [7].1 Probably one ofthe reasons for the lack of interest in �nite arithmetics in the past was theexpectation that nothing surprising can be found under the restriction toa �nite framework. Presently, we know that �nite arithmetics have a lotof unexpected semantical and computational properties. Exponentiation iseasier than multiplication [7], divisibility itself is as complicated as addition1We do not claim that �nite arithmetics were not considered in older papers at all, butnot as the main topic.



and multiplication [12].In this paper we give a solution of a problem presented at the Finite ModelTheory Workshop B�edlewo 2003. The problem is to determine the strength ofcoprimality in �nite models. We show that, although semantically essentiallyweaker than the full arithmetic, it is recursively equally complicated.The other source of our inspiration was the method of truth de�nitionsin �nite models proposed in [10] and further investigated in [11], [5] and[6]. The crucial problem there was �nding a way of representing some non-trivial in�nite relations in �nite models. This motivated the notion of FM�representability.2 It is known that a large class of arithmetical relations canbe FM�represented. One of the motivating problems of our investigation isthe question how much built-in arithmetic we need to apply the method oftruth de�nitions. We characterize FM�representability for the �nite arith-metic of coprimality. Our characterization � surprisingly � means thatcoprimality is su�ciently strong for the application of the truth de�nitionsmethod in �nite models.Finally, as a byproduct of our research, we obtain an improvement of sometheorems by Bès and Richard [1] characterizing the expressive power of co-primality in the standard in�nite model equipped with some weak fragmentsof the standard ordering.2 Basic notionsWe start with the crucial de�nition of FM�domain.De�nition 1 Let R = (R1; : : : ; Rk) be a �nite sequence of arithmetical re-lations on ! and let A = (!;R): We consider �nite initial fragments of thismodel. Namely, for n � 1; by An we denote the following structureAn = (f0; : : : ; n� 1g; Rn1 ; : : : ; Rns );where, for i = 1; : : : ; k, the relation Rni is the restriction of Ri to the setf0; : : : ; n� 1g.The FM�domain of A, denoted by FM(A), is the family fAn : n > 0g:2This notion was �rst considered in [10]. (�FM� stands for �Finite Models�.) The paper[13] discusses some variants of the notion of FM�representability.



We assume that all considered models are in relational vocabularies.Thus, we think of addition or multiplication as ternary relations which de-scribe graphs of corresponding functions. Nevertheless, we will write, e.g.'(x+y) with the intended meaning 9z (+(x; y; z)^'(z)). Thus, the formula'(f(x)) means that there exists z which is the value for f(x) and ' is trueabout this z.De�nition 2 We say that ' is true of a1; : : : ; ar 2 ! in all su�ciently large�nite models from FM(A) (shortly FM(A) j=sl '[a1; : : : ; ar]) if and only if9k8n � k An j= '[a1; : : : ; ar]:Sometimes we also say that ' is true of a1; : : : ; ar in almost all �nite modelsfrom FM(A).Of course, k as above should be chosen in such a way that k >maxfa1; : : : ; arg.De�nition 3 We say that R � !r is FM�represented in FM(A) by a formula'(x1; : : : ; xr) if and only if for each a1; : : : ; ar 2 ! the following conditionshold:(i) FM(A) j=sl '[a1; : : : ; ar] if and only if R(a1; : : : ; ar),(ii) FM(A) j=sl :'[a1; : : : ; ar] if and only if :R(a1; : : : ; ar).The main characterization of the notion of FM�representability inFM(N), for N = (!;+;�), is given by the following theorem (see [10]).Theorem 4 (FM�representability theorem) Let R � !n. R is FM�representable in FM(N) if and only if R is decidable with a recursively enu-merable oracle.The �rst question related to FM�representability is the following: Howweak arithmetical notions are su�cient for the FM�representability theorem?In [10] the theorem has been proven for addition, multiplication and concate-nation. It is a straightforward observation that concatenation is super�uous.A few less trivial results in this direction were obtained in [7] and [12]. Inparticular, in the last paper it was proven that:



Theorem 5 For each R � !r, R is FM�representable in FM(N) if and onlyif R is FM�representable in FM�domain of divisibility, FM((!; j)), whereajb � 9x ax = b.It is surprising that such a weak relation as divisibility is su�cient here.So, the following natural problem appears. Can this theorem be improvedby replacing divisibility by some weaker notions? For example, coprimality,where the coprimality relation, ?, is de�ned by the following equivalence:a?b � 8x((xja ^ xjb)) 8y xjy):The answer is obviously negative. Let us consider the function f de�ned asf(x) = 8<: 4 if x = 2,2 if x = 4,x otherwise.f is an automorphism of (!;?). Moreover, f also preserves coprimalitywhen it is restricted to initial segments f0; : : : ; ng, for n � 4,. Therefore,the set f2g is not FM�representable in FM((!;?)). However, surprisingly,in a weaker sense coprimality is as di�cult as addition and multiplication,see Theorems 10, 18, and 19.Let us observe that in the standard model coprimality, and even mul-tiplication, are relatively weak relations. Indeed, the �rst order theory of(!;�;�P ) is decidable, see [9], where P is the set of prime numbers and �Pis the ordering relation restricted to this set.We use the notion, �X , for various sets X � !, with the analogousmeaning. The complement of the predicate ? is denoted by 6?.In our work, we use the notion of a �rst order interpretation. For details,see the paper by Szczerba [16], where the method was codi�ed for the �rsttime in the model-theoretic framework. We recall shortly the main ideas.Let � and � be vocabularies and, for simplicity, let � contain only one n-ary predicate R. A sequence �' = ('U ; '�; 'R) of formulae in the vocabulary� is a �rst order interpretation of models of the vocabulary � if the freevariables of 'U are x1; : : : ; xr, the free variables of '� are x1; : : : ; x2r and thefree variables of 'R are x1; : : : ; xrn. The sequence �' de�nes in a model Aof the vocabulary � a model of the vocabulary � in the following sense. Auniverse U , de�ned by 'U , is the set of n�tuples from A:U = f(a1; : : : ; ar) : A j= 'U [a1; : : : ; ar]g:



The equality relation is given by '� which should de�ne an equivalencerelation on U . The interpretation of R is de�ned byR(a1; : : : ; an) if and only if9�a1 2 a1 : : :9�an 2 an A j= 'R[�a1; : : : ; �an];where a1,. . .an are equivalence classes of the relation de�ned by '� in U .The number r is called the width of the interpretation.We write I �'(A) for the model de�ned by �' in A.De�nition 6 We say that �' is an interpretation of FM(A) in FM(B) if thereis a monotone, unbounded function f : ! �! ! such that for each n � 1,I �'(Bn) �= Af(n):If �' is of width 1, 'U de�nes an initial segment in each model from FM(B)and the isomorphism between Af(n) and Bn is just identity then we say that�' is an IS�interpretation.An IS�interpretation was used in [12] for proving Theorem 5. In ourinterpretation of FM(N) in FM((!;?)) we de�ne arithmetic on indices ofprime numbers.3 The main theoremIn what follows models of the form (!;?) or FM((!;?)) are called coprimal-ity models.Let fpi : i 2 !g be the enumeration of primes, that is p0 = 2; p1 = 3, . . .For a natural number a we use the notion of the support of a, de�ned asSupp(a) = fpi : pijag. We de�ne the equivalence relation � as follows:a � b () Supp(a) = Supp(b):For each a, the equivalence class of a is denoted by [a]. Let us observe, thatin each model from FM((!;?)) as well as in (!;?) we cannot distinguishbetween elements being in the same equivalence class of �.



De�nition 7 A relation R � !r is coprimality invariant if � is a congru-ence relation for R. This means that for all tuples a1; : : : ; ar and b1; : : : ; brsuch that ai � bi, for i = 1; : : : ; r,(a1; : : : ; ar) 2 R () (b1; : : : ; br) 2 R:We de�ne relations R+ and R� by the following conditions:R+([pi]; [pk]; [pm]) if and only if i+ k = m;R�([pi]; [pk]; [pm]) if and only if ik = m:We identify these relations with their coprimality invariant versions onelements of !, instead of !=�. R+ and R� give an interpretation of additionand multiplication on indices of prime numbers. Our main result is that theyare interpretable in FM((!;?))For the proof of our main theorem we need some facts about the distrib-ution of prime numbers.Let �(x) be a function de�ned as�(x) = Xp � xp � prime 1:The prime number theorem states that the limit �(x)=(x= ln(x)) convergesto 1 for x going to in�nity. We need the following consequences of the primenumber theorem.Proposition 8 For each b 2 ! there is K such that for each n � K andfor each i < b there is a prime q such thatin � q < (i + 1)n:Sierpi«ski has observed in [15] that K = eb su�ces.Proposition 9 Let 0 < " < 1. There is N such that for all x � N theinterval (x; x(1 + ")) contains a prime.Essentially, Proposition 9 is one of the corollaries of the prime numbertheorem mentioned in [4].The main theorem of this section is the following.



Theorem 10 There is an interpretation �' of width 1 of FM(N) inFM((!;?)) such that for each k there is n such that �' de�nes in themodel (f0; : : : ; n� 1g;?) the relations R+ and R� on an initial segment off0; : : : ; n� 1g of size at least k.Moreover, the equality predicate is not used in the formulae from �'.Proof. We will prove the theorem through a sequence of lemmas.Firstly, we de�ne some auxiliary notions. Let '�(x; y) be the formula8z(z?x � z?y):Obviously, this formula de�nes the relation � in (!;?). Ambiguously, wedenote relations de�ned by '�(x; y) in models (!;?) and FM((!;?)) by�. In all these models � is a congruence relation. (It means that � is anequivalence and for all a; b; a0; b0 2 ! such that a � a0 and b � b0 we havea?b if and only if a0?b0.) Therefore, in all considered models we cannotdi�erentiate elements which are in the relation�. So, we can consider modelsM=� instead of M . The equivalence class of a 2 jM j with respect to � isdenoted by [a]. The elements of M=� which are of the form [a] for a 2 jM j,can be identi�ed with �nite sets of primes, Supp(a).We de�ne some useful predicates.� P (x) := 8z; y(z 6?x ^ y 6?x) z 6?y) � x is a power of prime,� x 2 y := P (x) ^ x6?y � x is a power of prime dividing y.� fp; qg� a function denoting, for a pair of primes p; q, an element of anequivalence class of pq. We have no multiplication but elements a suchthat a � pq are de�ned by the formula 8z(z?a � (z?p ^ z?q)). Ofcourse we cannot de�ne the unique a with this property. Nevertheless,this element is unique up to �. So, when considering models of theform M=�, it is simply unique.We have some operations de�nable on the equivalence classes of �.Lemma 11 There are formulae in the coprimality language '[(x; y; z),'\(x; y; z), '�(x; y; z) such that in each coprimality model M , the follow-ing conditions hold for each a; b; c 2 jM j:� M j= '[[a; b; c] if and only if Supp(a) [ Supp(b) = Supp(c),



� M j= '�[a; b; c] if and only if Supp(a) n Supp(b) = Supp(c),� M j= '\[a; b; c] if and only if Supp(a) \ Supp(b) = Supp(c).Proof. As '[(x; y; z) we can take8w(w?z � (w?x ^ w?y)):'�(x; y; z) can be written as8w(P (w)) (w 6?z � (w 6?x ^ w?y))):'\ is expressible in terms of '[ and '�. �� It follows that in all coprimality models we can reconstruct a partiallattice of �nite sets of primes. However, the operation [ is total only in thein�nite model (!;?).The crucial fact is that in �nite models from FM((!;?)) we can comparesmall elements of a given model by the following formula '�(x; y) :=9z(P (z) ^ z?x ^ z?y ^ 9w '[(x; z; w) ^ :9w '[(y; z; w)):By '�(x; y) we mean the formula '�(x; y) _ '�(x; y).For a �nite set X � !, we write �X for the product of all numbers in X.Lemma 12 For each c there is N such that for all n � N and for all a; bwith 1 � a; b � n and maxf�Supp(a);�Supp(b)g � c the following holds(f0; : : : ; n� 1g;?) j= '�[a; b] if and only if �Supp(a) < �Supp(b)Proof. Let A = (f0; : : : ; n � 1g;?). The direction from left to right issimple. If A j= '�[a; b] then there is a prime d 2 jAj such that d�Supp(a) �n� 1 and d�Supp(b) > n� 1. So, Supp(a) < Supp(b).To prove the other direction let us set a1 = �Supp(a) and b1 = �Supp(b)and let a1 < b1. Then, '� is satis�ed by a and b if and only if (n�1b1 ; n�1a1 ] con-tains a prime. In the worst case b1 = a1+1 and in this case (n�1b1 ; n�1b1 (1+ 1a1 )]should contain a prime. Thus it su�ces to take N from Proposition 9 for" = 1=a1. ��



Now, our aim is to de�ne in models from FM(!;?)) the relationsR+, R�. We de�ne these relations on an initial segment of the model(f0; : : : ; n� 1g;?).Firstly, we introduce a tool for coding pairs of primes.Code(p; x; y; q) ()DefP (p) ^ P (q) ^ P (x) ^ P (y) ^ � q is the ��greatest prime less then fp; x; yg�:The statement in quotation marks can be written down as8z8w[('[(x; y; z) ^ '[(p; z; w))) '�(q; w)]^8r[(P (r) ^ '�(q; r))) 9z9w('[(x; y; z) ^ '[(p; z; w) ^ '�(w; r))]:In the above formula, the variable w plays the role of the set fp; x; yg. Then,with the help of '� we easily express the maximality of q.The intended meaning of the formula Code(p; x; y; q) is that q is a code ofan unordered pair consisting of x and y. The prime q is determined uniquelyup to the equivalence �. The prime p is called a base of a coding. Now, wede�ne a formula which states that coding with the base p is injective belowx. GoodBase(p; x) :=P (p) ^ 8q1 : : :8q4f[î�4(P (qi) ^ '�(qi; x)) ^ :'�(fq1; q2g; fq3; q4g)])9c19c2(Code(p; q1; q2; c1) ^ Code(p; q3; q4; c2) ^ :'�(c1; c2)g:The above formula states that p is a good base for our coding for primeswhich are less than x. Namely, for each pair of primes below x we obtain adi�erent code q taking p as a base. The existence of a good base for eachgiven x is guaranteed by Proposition 8. We subsume the above considerationin the following lemma.Lemma 13 For each k there is N and p � N such that For all n � N ,Code(p; x1; x2; z) de�nes an injective coding of pairs of primes less than k ineach model (f0; : : : ; n� 1g;?).Proof. Let k be given and let K be chosen from Proposition 8 for b = k2.Next, let p be a prime greater than K. By Proposition 8 p is a good base



for our coding in all models (f0; : : : ; n� 1g;?), for n � N = k2p. �� When the exact base for our coding of pairs of primes is inessential wewrite simply hx; yi for a prime coding a pair x, y. Of course, in such a casea proper base for our coding should be assured to exist. Nevertheless, sincewe always will be interested in coding pairs of primes from a given initialsegment, the existence of a proper base follows in this case by Lemma 13.The last lemma allows to turn recursive de�nitions of addition and mul-tiplication on indices of primes into explicit ones. The �rst needed relationis the successor relation on indices of primes. It is de�ned asS�(x) = y ()Def '�(x; y) ^ P (x) ^ P (y)^8z (P (z)) :('�(x; z) ^ '�(z; y))):Let us observe that if S�(pz) is de�ned in a given �nite model then it is thecase that S�(pz) = pz+1. We have the following.Lemma 14 Partial functions on indices of primes FM�representable in co-primality models equipped with the relation � are closed under the scheme ofprimitive recursion.Proof. Let g : !n �! ! and h : !n+2 �! ! be functions on indices ofprimes FM�representable in coprimality models. We need to show that thefunction f : !n+1 �! ! de�ned asf(0; �x) = g(�x);f(i+ 1; �x) = h(i+ 1; �x; f(i; �x)):is FM�representable in coprimality models with �. For simplicity we assumethat n = 1. Since we have � and ?, we can de�ne, by Lemma 13, a functionhx; yi coding pairs of primes as primes. The formula de�ning f(pi; px) = ptstates that there is a set which describes a recursive computation of f(pi; px)with the output pt. It can be written as9Xfhp0; g(px)i 2 X^8pz8pw['�(pz; pi)) (hpz+1; pwi 2 X ()9pv(hpz; pvi 2 X ^ pw � h(pz+1; px; pv)))]^hpi; pti 2 Xg:



Let us observe that quanti�cation over a set of primes X can be interpretedas �rst order quanti�cation over numbers. Instead of X we can take a suchthat X = Supp(a). Thus, if we have formulas de�ning g and h, all the othernotions can be de�ned in models for coprimality and �. �� Now, let '+ and '� be formulae, provided by means of Lemma 14, whichde�ne addition and multiplication on indices of primes. They de�ne R+ andR� only on some initial segment of primes from a given �nite model, but thissegment grows with the size of a model.We de�ne the universe of our interpretation by the formula 'U(x1) whichstates that '+ and '� de�ne addition and multiplication on the setfy : P (y) ^ (y � x1 _ y � x1)g:Such a formula exists because there is a �nite axiomatization ofFM((!;+;�)) within the class of all �nite models given explicitly in[11]. Thus, we have shown that FM((!;+;�)) is interpretable in �nitemodels of coprimality even without equality. This ends the proof of Theorem10. ��4 Some applications in �nite modelsAs a corollary of Theorem 10, we obtain a partial characterization of relationswhich are FM�representable in FM((!;?)).De�nition 15 Let R � !r. We de�ne R� asR� = f(x1; : : : ; xr) : 9a1 : : :9ar(î�r(xi � pai) ^ (a1; : : : ; ar) 2 Rg:Corollary 16 Let R � !r. R is FM�representable in FM(N) if and only ifR� is FM�representable in FM((!;?)).Now we are going to characterize the complexity of the �rst order theoryof FM((!;?)) and of relations which are FM�represented in FM((!;?)).Firstly, we need a partial result in this direction.



Let us de�ne the relation S � !2 such that(x; y) 2 S if and only if 9z(z � x ^ y � pz):Lemma 17 The relation S is FM�representable in FM((!;?)).Proof. To simplify the exposition we consider all the equivalences be-tween formulae in the sense of being true in all su�ciently large models fromFM((!;?)). They will be justi�ed for �xed parameters a; b for which wewant to decide whether (a; b) 2 S. Thus, we may safely assume that b � p,for some prime p.Let x0; x1; : : : be the enumeration of all consecutive products of di�erentprimes ordered according to <. This enumeration lists ��representatives ofall ��equivalence classes. For x 2 ! we de�ne ind(x) as the unique i suchthat x � xi. We de�ne an auxiliary relation W such that(x; y) 2 W () y � pind(x):Now, take n = ind(x) and let a0; : : : ; an be an initial segment of the aboveenumeration. By Proposition 8, there is a prime t such that each interval(tai; tai+1), for i < n, contains a prime. Let q0; : : : ; qn be a sequence of primessuch that qi = minfs : P (s) ^ tai � qigand let B = �i�nqi. Then, let p0; : : : ; pk be a sequence of consecutive primessuch that pk � y and let C = �i�kpi. Let us observe that B and C arede�nable from x, t and y in terms of � and ?. Moreover, any t which allowsthis de�nition is good for our purpose. Thus, we can use B and C in ourformulae.Now, we show how to write a formula 'W (x; y) which, for any pair of �xedparameters as x and y, holds in almost all �nite models from FM((!;?))exactly when (x; y) 2 W . The formula 'W (x; y) expresses the fact thatsets coded by B and C, constructed as above, are equicardinal. This canbe witnessed by a set X which is a set of pairs of primes from B and Cdetermining a bijection between B and C. In the formula 'W below we use9=1z for the quanti�er �there exists exactly one z�.9Xf8q 2 B 9=1p 2 C hq; pi 2 X ^ 8p 2 C 9=1q 2 B hq; pi 2 Xg:



Of course, the existence of such an X proves that B and C are equicardinal.By the same argument as in the proof of Lemma 14 we can replace quantifyingover X by �rst order quanti�cation.Now, we show how to de�ne S from W . Let T be the following relation.For all x; y 2 !, (x; y) 2 T () ind(x) = y:This relation is recursive, thus also FM�representable in FM((!;+;�)) and,by Corollary 16, the starred version of T is FM�representable in FM((!;?)).T � satis�es the following condition: for all x; y,(x; y) 2 T � () 9z(pz � x ^ pind(z) � y):So, let 'T �(x; y) FM�represent T �.Let us also recall the de�nitions of S and W :(x; y) 2 S () 9(z � x ^ pz � y);(x; y) 2 W () y � pind(x):Let us observe that in all su�ciently large �nite models an element w suchthat 'W (x; w) is just pind(x).Now, the formula 'S(x; y) which FM�represents S can be written as9w('W (x; w) ^ 'T �(y; w)):Then, for all �xed parameters a and b, and for almost all �nite models Mfrom FM((!;?)), the following equivalence holds:M j= 'S(a; b) () (a; b) 2 S:For the direction from left to right let us assume that for some t we have'W (a; t) and 'T �(b; t). This means thatt � pind(a)and that for some s we haveps � b and pind(s) � t:This gives pind(a) � pind(s) and ind(a) = ind(s). Therefore, s � a and ps � b,which gives (a; b) 2 S.



Now let us assume that (a; b) 2 S. Then for some z we havez � a and pz � b:This gives that ind(z) = ind(a), pz � b and pind(z) � t, for t = pind(z). Then'T �(b; t). Additionally, t � pind(a) and 'W (a; t). Therefore, 'S(x; b). ��Theorem 18 Let R � !r. R is FM�representable in FM((!;?)) if andonly if R is FM�representable in FM(N) and R is coprimality invariant.Proof. All relations which are FM�representable in FM((!;?)) are copri-mality invariant. Therefore, the implication from left to right is obvious. So,we prove the converse.For the sake of readability we consider only unary relations. Let us �x acoprimality invariant relation R � ! which is FM�representable in FM(N).By Corollary 16, let us take a formula �(x) FM�representing R� in the FM�domain of coprimality.By Lemma 17, there is a formula  (x; y), with coprimality as the onlypredicate, such that  (x; y) FM�represents S in the FM�domain of copri-mality. Then the formula '(x) de�ned as9y( (x; y) ^ 8z('�(z; y)) : (x; z)) ^ �(y))FM�represents R. �� Finally, let us consider the recursive complexity of the elementary theoryof FM((!;?)). The classical Trachtenbrot theorem says that we can reducethe halting problem to the problem of satis�ability in �nite models. By ourinterpretation, it su�ces to consider only �nite models for coprimality.Theorem 19 (Trachtenbrot's theorem for coprimality FM�domain)The �rst order theory of FM((!;?)) is �01�complete. Moreover, the theoremremains valid even if we do not have equality in the language.



5 An application in the standard modelMaurin has shown in [9] that the �rst order theory of (!;�;�P ), where �Pis the standard ordering restricted to primes, is decidable. On the otherhand, Bès and Richard have shown in [1] that adding the ordering on primesand squares of primes to coprimality allows an interpretation of addition andmultiplication. In what follows, we prove a similar result for the structure(!;?;�P2), where P2 is the set of primes and products of two di�erent primes.Namely, we show that the relations R+ and R� are de�nable in (!;?;�P2).It follows that the �rst order theory of this model is as hard as the theoryof (!;+;�). (Let us mention that it is not known whether R+ and R� arede�nable in the structure considered by Bès and Richard.)Below, we show how to develop a coding for pairs of prime numbers belowa given prime k. Then, the rest of the argument is the same as in the caseof �nite models. However, we cannot use coding of pairs of primes fromthe preceding sections since it uses a comparison of primes with products ofthree di�erent primes. We de�ned such a coding there since it gives a simplerconstruction. Moreover, if one wants to estimate a fragment of a �nite modelon which we have de�nitions of R+ and R� then such a coding gives a betterbound than the coding which we are going to present now. On the otherhand, in the in�nite model, we want to add to coprimality a relation as weakas possible to obtain our de�nability result.Theorem 20 R+ and R� are de�nable in (!;?;�P2), where �P2 is the or-dering relation restricted to primes and products of two di�erent primes.Proof. We only show how to de�ne coding of pairs of primes by one prime,while the rest of the proof remains the same as in the �nite case.Let a prime k be given. We show how to code pairs of primes less orequal to k. Let " be such that(1 + ")3 < k2=(k2 � 1); (*)and let p be a prime such that for all n � p, the interval(n; n(1 + "))contains a prime number. Then, our new formula Code(p; x; y; r) is thefollowing: P (p) ^ P (x) ^ P (y) ^ P (r)^



9r19r2(�r1 is the smallest prime greater than px�^�r2 is the smallest prime greater than py�^�r is the greatest prime less than r1r2�):All the notions needed in the above formula are de�nable in (!;?;�P2).Now, we only argue that the coding with p chosen as above is injective belowk. Let q; q0 be two primes less or equal to k. By the choice of " and p, thereis a code r for this pair with the propertyp2(qq0 � 1)(1 + ")2 < r < p2qq0(1 + ")2:The �rst inequality follows from the fact that pq < r1 and pq0 < r2. Thus,r is greater than any z such that z(1 + ") < p2qq0. The maximal z with thisproperty is greater than p2(qq0 � 1)(1 + ")2. Indeed,p2(qq0 � 1)(1 + ")2(1 + ") � p2qq0(1� 1=qq0)(1 + ")3� p2qq0(1� 1=k2)(1 + ")3< p2qq0;where the last strict inequality follows by (*).The second inequality follows from the fact that r1 < pq(1 + "), r2 <pq0(1 + "), and r < r1r2.Therefore, for any pair of primes q; q0 � k, the code r for this pair is inthe interval (p2(qq0 � 1)(1 + ")2; p2qq0(1 + ")2). However, since for any otherpair of primes t; t0 � k, qq0 di�ers from tt0 by at least one, these intervals aredisjoint for di�erent pairs of primes. This proves that our coding methodwith p as a base is injective below k. ��References[1] Bès, A. and Richard, D., Undecidable extensions of Skolemarithmetic, Journal of Symbolic Logic, 63(1998), pp. 379�401.[2] Gurevich, Y., Logic and the Challenge of Computer Science, inCurrent Trends in Theoretical Computer Science (ed. E.Börger) Computer Science Press, 1988, 1�7.p
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