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1. Introduction

Let Jk(n,m) denote the complex vector space of k-jets of map germs from Cn to
Cm mapping the origin to the origin. The open dense subset Jreg

k (n,m) consists of jets
with regular linear part. Jreg

k (1, 1) is a group under composition of jets, and it acts via
reparametrisation on Jk(1, n).

The dimension of the complex vector space Jk(1, 1) is k, and with a natural choice of
basis Jreg

k (1, 1) can be identified with the following linear subgroup of GL(k):

Gk =




α1 α2 α3 . . . αk

0 α2
1 2α1α2 . . . 2α1αk−1 + . . .

0 0 α3
1 . . . 3α2

1αk−2 + . . .
0 0 0 . . . ·

· · · . . . αk
1

 : α1 ∈ C
∗, αi ∈ C


,

where the polynomial in the (i, j) entry is

pi, j(ᾱ) =
∑

a1+a2+...+ai= j

αa1αa2 . . . αai .

This paper is an exploration of this subgroup of GLk and the non-reductive quotient
Jk(1, n)/Jk(1, 1), which is roughly speaking the moduli of k-jets of curves in Cn. Prin-
ciples and ideas of classical reductive geometric invariant theory of Mumford do not
apply in this situation, for more details about the background see [13, 5].

We illustrate the importance of this moduli space for two classical problems.
The first problem goes back to René Thom and his study of degreneracy loci of holo-

morphic maps between manifolds. Consider a holomorphic map f : N → M between
two complex manifolds, of dimensions n ≤ m. For a singularity class O ⊂ Jk(n,m) we
can define the set

ZO[ f ] = {p ∈ N; fp ∈ O},

that is the set of points where the germ fp belongs to O. Then, under some additional
technical assumptions, ZO[ f ] is an analytic subvariety of N. The computation of the
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Poincaré dual class αO[ f ] ∈ H∗(N,Z) of this subvariety is one of the fundamental prob-
lems of global singularity theory. It turns out that these classes—the Thom polynomi-
als of singularities—are certain equivariant intersection numbers on the moduli space
Jk(1, n)/Jreg

k (1, 1).
The second problem is an old conjecture of Green and Griffiths about holomorphic

curves in smooth projective varieties. Their conjecture, from 1979, says that any pro-
jective variety X of general type contains a proper subvariety Y ( X such that any entire
holomorphic curve f : C → X sits in Y , that is f (C) ⊂ Y . The strategy of Green,
Griffiths, Demailly and Siu, and the recent work of Diverio, Merker and Rousseau [12]
leads us to prove the positivity of an intersection number on the Demailly bundle, whose
fibers are canonically isomorphic to Jk(1, n)/Jreg

k (1, 1).
This survey paper is an extended version of my IMPANGA lectures given in the

Banach Center, Warsaw in January 2011. I would like to thank to Piotr Pragacz for the
warm welcome there.

Most results presented here have already been published in the papers [3, 4, 5]. The
only exception is the formula for the Euler characteristic of Demailly jet bundles in §8
Appendix and the relation to the curvilinear Hilbert scheme in the last section.

2. Equivariant cohomology

It is well-known that any group action on a topological space carries topological in-
formation about the space.

Let G be a topological group. A principal G-bundle is a map E → B, which is locally
a projection U × G → U. One of the main fundamental principles in topology is to
find universal objects such that all objects in a given category can be "pulled-back" from
this. Here a universal principal G-bundle is a bundle π : EG → BG such that every
principal G-bundle E → B is a pull-back via a map B → BG, which is unique up to
homotopy. EG is contractible. In fact, if P is a contractible space with a free G-action
then P→ P/G is a universal principle G-bundle.

Theorem 1. EG exists for all topological group G, and unique up to equivariant homo-
topy.

Example 1. BC∗ = P∞(C), and C∞ → P∞(C) is a universal principle C∗ bundle.
Similarly,

BGLn = Hom(Cn,C∞)/GLn = Gr(n,∞),

and EGL(n) = Hom(Cn,C∞)→ Gr(n,∞) is the universal principle GL(n)-bundle. From
this we can construct

EGLn ×GLn C
n → BGLn,

which is a universal vector bundle, namely any vector bundle of rank n can be pulled
back from this.
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The next step is to define equivariant cohomology. Let X be a G-space, i.e. a topo-
logical space with a G-action. If the action is free, then G-equivariant cohomology is
the ordinary cohomology of the quotient H∗(X/G). For non-free actions the quotient
X/G is not well-behaved and H∗(X/G) does not carries enough information. We need to
"resolve" the action by replacing X with X × EG. This has a free (diagonal) G-action,
and define

H∗G(X) = H∗(EG ×G X)

Example 2. H∗G(pt) = H∗(BG) = C[h]W , where h = LieT is the Cartan algebra acted
on by the Weil group W. For example H∗GLn

(pt) = S W = C[x1, . . . , xn]S n , the algebra of
symmetric polynomials.

Properties of equivariant cohomology:
(1) f : X → Y G-map induces H( f ) : HG(Y)→ HG(X)
(2) h : G → H homomorphism, then EH can serve as EG and we have a projection

EH ×G X → EH ×H X which induces H(h) : HH(X)→ HG(X)
(3) H∗G(pt) = H∗(BG) = C[h]W , and H∗G(X) is a H∗G(pt)-module. For example

H∗GLn
(pt) = S W = C[x1, . . . , xn]S n .

Proposition 1. Induction, Restriction Let X be a G-space.
• Restriction: If H ⊂ G then X is naturally a H-space, and there is an induced

map H∗G(pt)→ H∗H(pt).

H∗H(X) = H∗H(pt) ⊗H∗G(pt) H∗G(X)

• Induction: If G ⊂ K then K ×G X is naturally a K-space, and there is an induced
map H∗K(pt)→ H∗G(pt).

HK(K ×G X) = HG(X)

but as a HK(pt)-module.

Example 3. Let G = GLn. We have a left-right action of the upper Borel B ⊂ GLn on
G ×B G. We compute HB×B(G ×B G) in the following steps:

H∗B×B(B) = H∗(B) = S ,

so by induction
H∗G×B(G ×B B) = S ∈ S W-mod-S ,

therefore by restriction

H∗B×B(G) = S ⊗S W S ∈ S -mod-S

and by induction again

H∗G×B(G ×B G) = S ⊗S W S ∈ S W-mod-S

and by restriction

H∗B×B(G ×B G) = S ⊗S W S ⊗S W S ∈ S -mod-S .
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2.1. The equivariant DeRham model. Let G be a Lie group with Lie algebra g. For a
smooth G-manifold M we can define equivariant differential forms, for more details see
[7]. The equivariant differential forms are differential form valued polynomial functions
on g:

ΩG(M) = {α : g→ Ω(M) : α(gX) = gα(X) for g ∈ G, X ∈ g} = (C[g] ⊗Ω(M))G

where (g · α)(X) = g · (α(g−1 · X)). Here C[g] denotes the algebra of complex values
polynomial functions on g.

We define an equivariant exterior differential dG on C[g] ⊗Ω(M) by the formula

(dGα)(X) = (d − ι(XM))α(X),

where ι(XM) denotes the contraction by the vector field XM. This increases the degree of
an equivariant form by one if the Z-grading is given on C[g] ⊗Ω(M) by

deg(P ⊗ α) = 2 deg(P) + deg(α)

for P ∈ C[g], α ∈ Ω(M). The homotopy formula ι(X)d + dι(X) = L(X) implies that

d2
G(α)(X) = −L(X)α(X) = 0

for any α ∈ C[g] ⊗Ω(M), and therefore (dG,ΩG(M)) is a complex.

Definition 1. The equivariant cohomology of the G-manifold M is the cohomology of
the complex (dG,ΩG(M)):

H∗G(M) = H∗dG

Note that α ∈ ΩG(M) is equivariantly closed if

α(X) = α(X)0 + . . . + α(X)n such that ι(XM)α(X)i = dα(X)i−2.

Here α(X)i ∈ Ωi(M) is the degree-i part of α(X) ∈ Ω(M). In other words, αi : g →
Ωi(m) is a polynomial function.

The functoriality properties of equivariant cohomology now come for free:
(1) If H → G is a homomorphism of Lie groups then the restriction map C[g] →

C[h] induces a homomorphism of differential graded algebras ΩG(M)→ ΩH(M)
and finally a homomorphism HG(M)→ HH(M).

(2) If φ : N → M is a map of G-manifolds which interwines the actions of G
then pull-back by φ induces a homomorphism of differential graded algebras
φ∗ : ΩG(M)→ ΩG(N) and homomorphism HG(M)→ HG(N).

3. Equivariant localization

3.1. Integrating equivariant forms. If G is a Lie group and M is a G-manifold, we
can integrate equivariant forms obtaining a map∫

M
: ΩG(M)→ C[g]G
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by the formula (∫
M
α

)
(X) =

∫
M
α(X) =

∫
M
α[n](X)

That is, if α is an equivariant differential form, then we integrate the top degree part
of it, and a result is a polynomial function on g. This is well-defined: if α is equiv-
ariantly exact, i.e. α = dGβ for some β ∈ ΩG(M) then α(X)n = dβ(X)n, and therefore∫

M
α(X) = 0. Thus if α is equivariantly closed then

∫
M
α only depends on the equivariant

cohomology class represented by α.
It can be shown (see Proposition 7.10 in [7]) that if G is a compact Lie group, and

M0(X) is the zero locus of the vector field XM, then the form α(X)n is exact outside
M0(X). This suggests that the integral

∫
M
α(X) only depends on the restriction α(X)|M0(X).

Here we state the localization thorem in the special case when XM has isolated zeros.

Theorem 2 (Atiyah/Bott/Berline/Vergne). Let G = T be a complex torus, M a T-
manifold, α ∈ ΩT (M). Then∫

M
α = (2π)l

∑
p∈MT

α0(p)
EulerT (TpM)

In other words: ∫
M
α(X) = (2π)l

∑
p∈MT

α(X)0(p)∏
i λi

where λi are the weights of the Lie action

X : ξ ∈ TpM → [XM(p), ξ] ∈ TpM.

Most often we apply localization to compute certain intersection numbers on M. My
favorite example illustrating the strength of the localization method is the following.

3.2. How many lines intersect 2 given lines and go through a point in P3? We
think points, lines and planes in P3 as 1, 2, 3-dimensional subspaces in C4. For R ∈
Grass(3,C4), L ∈ Grass(1,C4) define

C2(R) = {V ∈ Grass(2, 4) : V ⊂ R}, C1(L) = {V ∈ Grass(2, 4) : L ⊂ V}

Standard Schubert calculus says that C1(L) (resp C2(R)) represents the cohomology
class c1(τ) (resp c2(τ)) where τ is the tautological rank 2 bundle over Grass(2, 4).

So the answer is

C1(L1) ∩C1(L2) ∩C2(R) =

∫
Grass(2,4)

c1(τ)2c2(τ).

Apply equivariant localization. The sufficient data are the following.
• The diagonal torus T 4 ⊂ GL(4) acts on C4 with weights µ1, µ2, µ3, µ4 ∈ t

∗ ⊂

H∗T (pt).
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• The induced action on Grass(2, 4) has
(

4
2

)
fixed points, the coordinate subspaces

indexed by (i, j).
• The tangent space of Grass(2, 4) at (i, j) is (C2)∗i, j⊗C

2
s,t, where {s, t} = {1, 2, 3, 4}\

{i, j}, and C2
i, j ∈ Grass(2, 4) is the subspace spanned by the i, j basis. Therefore,

the weights on T(i, j)Grass are µs − µi, µs − µ j with s , i, j.
• The weights of τ are identified with the Chern roots, so ci(τ) is represented by

the ith elementary symmetric polynomial in the weights of τ.

ABBV localization then gives

(1)
∫

Gr(2,4)
c1(τ)2c2(τ) =

∑
σ∈S 4/S 2

σ ·
(µ1 + µ2)2µ1µ2

(µ3 − µ1)(µ4 − µ1)(µ3 − µ2)(µ4 − µ2)
= 2.

On the right hand side we sum over all
(

4
2

)
fixed points by taking appropriate permutation

of the indices.
It is not clear at first glance, why this rational expression is an integer. But it turns out

that the sum is indepenent of µi’s and it is 2.

3.3. Iterated residues. We saw in the previous example that the ABBV localization
results a sum of rational expressions, but adding these together is not an obvious task.
There is a short and elegant way to do this by identifying the summands as iterated
residues of a certain meromorphic differential form on Cd for some d, and then by ap-
plying the Residue theorem saying that the sum of the residues at finite points is equal
to minus the residue at infinity.

The set-up is the following.

• z1, . . . , zd – coordinates on Cd.
• ω1, . . . , ωN – affine linear forms on Cd; ωi = a0

i + a1
i z1 + . . . + ad

i zd.
• h(z) a function h(z1 . . . zd), and dz = dz1 ∧ · · · ∧ dzd holomorphic d-form.

Definition 2. We define the iterated residue of h(z) dz∏N
i=1 ωi

at infinity as follows

(2) Res
z1=∞

. . .Res
zd=∞

h(z) dz∏N
i=1 ωi

def
=

(
1

2πi

)d ∫
|z1 |=R1

. . .

∫
|zd |=Rd

h(z) dz∏N
i=1 ωi

,

where 1 � R1 � . . . � Rd. The torus {|zm| = Rm; m = 1 . . . d} is oriented in such a way
that Resz1=∞ . . .Reszd=∞ dz/(z1 · · · zd) = (−1)d.

In practice, the iterated residue 2 may be computed using the following algorithm:
for each i, use the expansion

(3)
1
ωi

=

∞∑
j=0

(−1) j (a
0
i + a1

i z1 + . . . + aq(i)−1
i zq(i)−1) j

(aq(i)
i zq(i)) j+1

,
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where q(i) is the largest value of m for which am
i , 0, then multiply the product of

these expressions with (−1)dh(z1 · · · zd), and then take the coefficient of z−1
1 . . . z−1

d in the
resulting Laurent series.

Example 4. • 1
z1(z1−z2) has two different Laurent expansions, but on |z1| � |z2| we

use 1
z1(z1−z2) =

∑∞
i=0(−1)i zi−1

1
zi+1

2
to get Res∞ 1

z1−z2
= 1.

• Resz=∞
1

(z1−z2)(2z1−z2) = coeff(z1z2)−1
1
z2

2
(1 + z1

z2
+

z2
1

z2
2

+ . . .)(1 + 2z1
z2

+
4z2

1
z2

2
+ . . .) = 3

Let’s turn back to our toy example presented in §3.2. Define the differential form

ω =
(z2 − z1)2(z1 + z2)2z1z2 dz∏4

i=1(µi − z1)
∏4

i=1(µi − z2)

This is a meromorphic form in z2 on P1 with poles at z2 = µi, 1 ≤ i ≤ 4 and z2 = ∞. The
poles at µi are non-degenerate and therefore applying the Residue Theorem we get

Res
z2=∞

ω =

4∑
i=1

−
(µi − z1)2(µi + z1)2µiz1dz1∏4

j=1(µ j − z1)
∏

j,i(µ j − µi)︸                                ︷︷                                ︸
z2=µi

=

4∑
i=1

−
(µi − z1)(µi + z1)2µiz1dz1∏

j,i(µ j − z1)
∏

j,i(µ j − µi)

Doing the same again with z1 we get

Res
z1=∞

Res
z2=∞

ω =

4∑
i=1

∑
j,i

−
(µi − µ j)(µi + µ j)2µiµ j∏

k,i, j(µk − µ j)
∏

j,i(µ j − µi)
=

=

4∑
i=1

∑
j,i

(µi + µ j)2µiµ j∏
k,i, j(µk − µ j)

∏
k,i, j(µk − µi)

=

∫
Gr(2,4)

c1(τ)2c2(τ).

On the other hand, using the above algorithm by expanding the rational form ω we get

Res
z1=∞

Res
z2=∞

ω = 2.

We give an other example, the so called Giembelli-Thom-Porteous formula in section
4.2.

3.4. Localization on partial flag manifolds. The following Proposition is a far-reaching
generalization of the idea presented in the previous section, and it provides a meromor-
phic differential form whose residue at infinity gives back the localization formula for a
large class of forms.

Let
Flagd(n) = {V1 ⊂ . . . ⊂ Vd ⊂ C

n : dim(Vi) = i}
denote the full flags of d-dimensional subspaces of Cn. The maximal torus T ⊂ GL(n)
acts on Flagd(n), and the fixed points are parametrized by coordinate flags corresponding
to certain permutations σ ∈ (Flagd(n))T . The Chern classes of the tautological rank-d
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bundle over Flagd(n) are elementary symmetric polynomials in the weight of T on Cn,
and the intersection numbers of τ can be computed as iterated residues according to

Proposition 2 ([3]). Let Q(z) = Q(z1, . . . , zd) be a polynomial onCd of degree dim(Flagd(n)).
Then

(4)
∑

σ∈(Flagd(n))T

Q(λσ·1 · · · λσ·d)∏
1≤m≤d

∏n
i=m+1(λσ·i − λσ·m)

= Res
z=∞

∏
1≤m<l≤d(zm − zl) Q(z) dz∏d

l=1
∏n

i=1(λi − zl)

where the permutation σ = (σ(1), . . . , σ(n)) ∈ Flagd(n))T = S n/S n−d represents the
torus fixed flag Ceσ(1) ⊂ . . . ⊂ Ceσ(1) ⊕ . . . ⊕ Ceσ(d) ⊂ C

n.

4. Singularities of maps

The first problem we address goes back to the 1950’s and the work of René Thom.
For more details of the history and background of the problem see [1, 3].

The usual set-up for studying singularities of map germs is the following.
Set up: We fix integers k ≤ n ≤ m.
• Let A be a nilpotent algebra, dim A/C = k. We will take Ak = zC[z]/zk+1.
• Define Jk(n,m) =

{
p = (p1, . . . , pm) ∈ Poly(Cn,Cm) : deg pi ≤ k, pi(0) = 0

}
. This

is the vector space of k-jets of map germs f : (Cn, 0)→ (Cm, 0).
• Let ΣA = {p ∈ Jk(n,m) : C[x1, . . . , xn]/〈p1, . . . , pm〉 = A} be the set of map-germs

with local algebra isomorphic to A.
• The germs Jreg

k (n, n) with non-degenerate linear part form a group, and Jreg
k (n, n)×

Jreg
k (m,m) naturally acts on Jk(n,m) with

(A, B)p = BpA−1

These are the polynomial reparametrizations of map germs.
The central problem of global singularity theory is the computing the (co)hohomology

classes of singularity loci of holomorphic maps between complex manifolds. Given a
holomorphic map f : Nn → Mm define

Z( f ) =
{
p ∈ N| f̂p ∈ ΣA

}
,

where f̂p is the germ of f at p ∈ N.
It was already known by Thom, which is now called the Thom principle, that for

generic map f , Z( f ) represents a cohomology cycle and there is a well-defined polyno-
mial

MDn→m
A ∈ C[x1, . . . , xn, y1, . . . , ym]S n×S m

such that
[Z( f )] = MDA(T N, f ∗(T M)) ∈ H∗(N,C).

Here MDA stands for multidegree, for explanation see the next section.
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Furthermore, in [18] Haefliger and Kosinski proves that if

c(q) = c0 + c1q + c2q2 + . . . =
c( f ∗(T M))

c(T N)
=

∏k
m=1(1 + θmq)∏n
i=1(1 + λiq)

is the Chern classes of the difference bundle then

MDA(T N, f ∗(T M)) = Tpk→n
A (c1, c2, . . .)

That is, MDA is a polynomial in these difference Chern classes, and TpA is called the
Thom polynomial of the algebra A.

4.1. Multidegrees. The polynomial MDA stands for multidegree, which is also called
equivariant Hilbert polynomial or equivariant Poincaré dual in the literature. This is de-
fined for any G-invariant subvarieties of a complex G-vector spaces (i.e. G-representations,
where G is a Lie algebra) as follows.
Set up:

(1) V = CN complex vector space, with a G-action.
(2) Σ ⊂ V is a G-invariant closed subvariety.
(3) H∗G(V) = H∗G(pt) is the G-equivariant cohomology ring of V . Recall that H∗GL(d)(pt) =

C[x1, . . . , xd]S d .
We give two definitions of a polynomial

mdeg[Σ,V] ∈ Hcodim(Σ∈V)
G (pt),

called the multidegree of Σ: one topological and one algebraic definition.
Vergne’s integral definition-topology

If Σ ⊂ V is a subvariety then EG ×G Σ ⊂ EG ×G V represents a homology cycle, and the
multidegree is the ordinary Poincaré dual of the Borel construction EG ×G Σ:

mdeg[Σ,V] = PD(EG ×G Σ ⊂ EG ×G V).

By definition mdeg[Σ,V] ∈ H∗(EG ×G V) = H∗G(pt) is a polynomial.

Theorem 3 ([38]). There is an equivariant Thom class:

ThomG(V) ∈ Hdim V
G (V)

such that for any Σ ⊂ V G-invariant subvariety

mdeg[Σ,V] =

∫
Σ

ThomG(V).

We give an other, more algebraic definition of the multidegree, which also provides
an algorith to compute these polynomials.

Sturmfels’ axiomatic definition

Theorem 4 ([27]). Let Σ ⊂ V be a G-invariant subset of the G-representation V. Then
mdeg[Σ,V] is characterized by the following axioms:
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additivity: If Σ � ∪Σi is the set of maximal irreducible components of Σ, then

mdeg[Σ,V] =

c∑
i=1

mult(Σi) ·mdeg[Σi,W].

degeneration: The multidegree is constant under flat deformation of Σ.
normalization: For T-invariant linear subspaces of V, mdeg[Σ,V] is defined to

be equal to the product of weights in the normal direction.

The recipe to compute the multidegree (although this recipe often ends up with diffi-
cult commutative algebra computations) is to choose a proper flat deformation of Σ into
the union of coordinate spaces, that is, to deform its ideal into a monomial ideal. For ex-
ample, choosing a monomial order on the coordinate ring, the initial ideal is monomial,
and then normalization and additive properties of the multidegree give you the result.

Example 5. (C∗)3 acts on C4 with weights η1, . . . , η4. Let η1 + η2 = η3 + η4, and

Σ = Spec(C[y1, y2, y3, y4]/(y1y2 − y3y4)).

Define the flat deformation

Σt = Spec(C[y1, y2, y3, y4]/(y1y2 − ty3y4)),

For t = 0, Σ0 = {y1y2 = 0}, so normalization and additivity says

mdeg[Σ,C4] = η1 + η2 = η3 + η4.

Now we can state Thom’s principle more precisely:

Theorem 5 (Thom). Let ΣA ⊂ Jk(n,m) denote the set of germs with local algebra
isomorphic to A. This is a GLn × GLm-invariant subvariety of Jk(n,m), and

MDn→m
A = mdegGLn×GLm[ΣA, Jk(n,m)].

4.2. Degeneraci loci of sections via localization. Here is an other illustrating exam-
ple for transformation of localization formulas into iterated residues. Given a a rank-n
vector bundle on a manifold M, and n generic sections σ1, . . . , σn, it is an old question
in topology to determine the cohomology class dual to the locus where the sections are
linearly dependent. This class is the Thom polynomial TpA with A = tC[t]/t2, and we
have

ΣA = Σ1 = {A ∈ Hom(n,m); dim ker A = 1} = {A ∈ Hom(n,m)∃![v] ∈ Pn−1 : Av = 0}.

The goal is to compute mdeg[Σ1,Hom(n,m)].
We have the fibration π : Σ1 → Pn−1 sending a linear map to its kernel. This is

equivariant with respect to the GLn ×GLm action, and GLm acts fiberwise whereas GLn

acts on Pn−1. According to Vergne’s definition, we want to integrate the equivariant
Thom class over Σ1. The idea is to integrate first over the base Pn−1 and then along the
fibers, and to apply ABBV localization on Pn−1.
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We have n fixed points on Pn−1 corresponding to the coordinate axes. Let λ1, . . . , λn

denote the weights of T n ⊂ GLn on Cn. The weights of TpiP
n−1 are {λs − λi; s , i}, and

the fiber at pi is the set of matrices A with all entries in the ith column vanishing. The
normalization axiom says that the multidegree of the fiber at pi is

∏m
j=1(θ j − λi), so:

mdeg[Σ1,Hom(n, k)] =

∫
Σ1

Thom(C∗)n+m(Hom(Cn,Cm)) =

=

∫
Pn−1

∫
f iber

Thom(C∗)n+m =

n∑
i=1

∏m
j=1(θ j − λi)∏
s,i(λs − λi)

Consider the rational differential form

−

∏m
j=1(θ j − z)∏n
i=1(λi − z)

dz.

The residues of this form at finite poles: {z = λi; i = 1 . . . n} exactly recover the terms
of the above sum. Applying the residue theorem, and change of variables z = −1/q, we
get

mdeg[Σ1,Hom(Cn,Cm)] = resq=0

∏m
j=1(1 + qθ j)∏n
i=1(1 + qλi)

dq
qm−n+2 = cm−n+1,

where cm−n+1 is the m− n + 1th Chern class of the difference bundle f ∗(T M)− T N. This
gives us the Thom polynomial T pn→m

tC[t]/t2 = cm−n+1. Note that it depends only on m − n.

5. Computing multidegrees of singularities

Recall the following notations from the previous section.
• Jk(n,m) =

{
(p1, . . . , pm) ∈ Poly(Cn,Cm) : deg pi ≤ k, pi(0) = 0

}
is the set of k-

jets of map germs.
• Σk =

{
p ∈ Jk(n,m) : C[x1, . . . , xn]/〈p1, . . . , pm〉 � zC[z]/zk+1

}
the set of germs

with Ak-singularity.
• D = Jreg

k (n, n)×Jreg
k (m,m) naturally acts on Jk(n,m) with (A, B)p = BpA−1. Note

that GLn × GLm ⊂ D

The goal now is to compute

Tpn→m
k = mdegGLn×GLm[Σk, Jk(n,m)],

the Thom polynomial of Morin singularities.
The following theorem has first appeared in the work of Porteous and Gaffney, see

[16].

Theorem 6 (The test curve model of Morin singularities).

Σk(n,m) �
{
Ψ ∈ Jk(n,m)|∃γ ∈ Jreg

k (1, n) such that Ψ ◦ γ = 0 in Jk(1,m)
}
.

Here � denotes birational equality, that is there Zariski closure are equal.
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(C, 0)
γ

- (Cn, 0)
Ψ- (Cm, 0)(5)

Note that if ϕ ∈ Jreg
k (1, 1) = Gk, then

Ψ ◦ γ = 0 ⇒ Ψ ◦ (γ ◦ ϕ) = 0

(C, 0)
ϕ

- (C, 0)
γ

- (Cn, 0)
Ψ- (Cm, 0)(6)

It can be shown that for Ψ ∈ Jk(n,m) whose linear part has corank 1

Ψ ◦ γ1 = Ψ ◦ γ2 = 0⇔ ∃α ∈ Jreg
k (1, 1) s.t γ1 = γ2 ◦ α.

Therefore:

Proposition 3. The Zariski open subset Σ0
k = {Ψ ∈ Σk : dim ker Ψ = 1} � Σk fibers with

linear fibres over Jreg
k (1, n)/Gk.

What are these fibers, and why are they linear? If γ = v1t +v2t2 + . . .+vdtd ∈ Jreg
k (1, n)

with vi ∈ Cn and v1 , 0 and Ψ(v) = Av + Bv2 + . . . with A ∈ Hom(Cn,Ck), B ∈
Hom(Sym2(Cn),Ck), etc, then Ψ ◦ γ = 0 is equivalent with the following k equations:

A(v1) = 0,(7)
A(v2) + B(v1, v1) = 0,

A(v3) + 2B(v1, v2) + C(v1, v1, v1) = 0,
...

For fixed γ = (γ1, . . . , γk) these are linear equations determining the fiber. According
to Proposition 3

Σk(n,m) �
⋃{

Solγ | γ ∈ Jreg
k (1, n)

}
,

where
Solγ = Ann(γ) ⊗ Cm ⊂ Jk(n,m)

is the annihilator tensored by Ck.
To linearize the action of Gk let’s make the following identifications
• Identify Jk(1, n) with Hom(Ck,Cn) by putting the coordinates γ = (v1, . . . , vk)

into the columns of a matrix;
• Identify Jk(n, 1) with Sym≤kCn = ⊕k

i=1SymiCn, and then Jk(n,m) = Sym≤kCn ⊗

Cm.
Then Gk acts on Jk(1, n) by multiplication on the right by the following matrix group:

(8)




α1 α2 α3 . . . αk

0 α2
1 2α1α2 . . . 2α1αk−1 + . . .

0 0 α3
1 . . . 3α2

1αk−2 + . . .
0 0 0 . . . ·

· · · . . . αk
1

 : α1 ∈ C
∗, αi ∈ C


;
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where the polynomial in the (i, j) entry is

pi, j(ᾱ) =
∑

a1+a2+...+ai= j

αa1αa2 . . . αai .

This group is the central object of our study in this paper. It is a non-reductive linear
subgroup of GLk, and therefore Mumford’s geometric invariant theory does not help
us in handling the quotient Jreg

k (1, n)/Gk. The following construction, which was the
starting point of a general construction in [6] first appeared in [3].

Define the map

(9) ρ : Hom(Ck,Cn)→ Hom(Ck,Sym≤kCn)

ρ(v1, . . . , vk) = (v1, v2 + v2
1, . . . ,

∑
a1+a2+...+ai=k

va1va2 . . . vai),

where in the jth coordinate we sum over all ordered partitions of j into positive integers.
Note that these correspond to the monomials in jth column of the matrix Gk. For more
details see [6].

Theorem 7 ([3]). Let Hom0(Ck,Cn) = {(v1, . . . , vk ∈ Hom(Ck,Cn) : v1 , 0} = Jreg
k (1, n).

Then ρ (defined in (9)) descends to an injective map on the orbits

ρGrass : Hom0(Ck,Cn)/Gk ↪→ Grass(k,Sym≤kCn).

and therefore descends also to

ρFlag : Hom0(Ck,Cn)/Gk ↪→ Flagk(Sym≤kCn)

Composing with the Plucker embedding we get

ρProj = Pluck ◦ ρGrass : Hom0(Ck,Cn)/Gk ↪→ P(∧k(Sym≤kCn))

Note that ρ is GLn-equivariant with respect to the multiplication on the left on Hom0(Ck,Cn)/Gk

and the induced action on Grass(n,Sym≤kCn) coming from the standard action on Cn.
This embedding allows us to give a geometric description of some generators in the

invariant ring
C[Jreg

k (1, n)]Uk ⊂ C[ f ′, . . . , f (k)],
where Uk ⊂ Gk is the maximal unipotent subgroup. Namely, the coordinate ring of the
image is a subring of the invariant ring:

C[im(ρ)] ⊂ C[Jreg
k (1, n)]Uk

C[Jreg
k (1, n)]Uk has been long studied in relation with the Green-Griffiths conjecture.

In his seminal paper [10], Demailly suggested a strategy to the Green-Griffiths conjec-
ture through the investigation of the invariant jet differentials. These are sections of a
bundle, whose fibers are canonically isomorphic to the invariant ring C[Jreg

k (1, n)]Uk . It
is a major unsolved problem to prove the finite generation of this ring, and to find the
generators. The main obstacle is that Gk is a non-reductive group, and therefore classical
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Geometric Invariant Theory ([28]) does not apply. For an introduction on non-reductive
group actions see [13].

Following Demailly’s notation, let ( f ′, f ′′, . . . , f (k)) ∈ Jreg
k (1, n) denote the k-jet of a

germ f and f ( j)
i denote the ith coordinate of the jth derivative, 1 ≤ i ≤ n, 1 ≤ j ≤ k. This

is a simple rescaling, namely vi = f (i)/i!.

Theorem 8 ([5]). Let

I = (∆i1,...,ik( f ) : (i1, . . . , ik) ∈
(
dim(Sym≤k(n))

k

)
) C C[ f ′, . . . , f (k)]

be the ideal generated by the k × k minors of ρ( f ′ . . . , f (k)) ∈ Hom(Ck,Sym≤kCn). Then

I ⊂ C[Jreg
k (1, n)]Uk

Example 6. n = 2, k = 4. In this case

Jreg
4 (1, 2) = {( f ′1 , f ′2 , f ′′1 , f ′′2 , f ′′′1 , f ′′′2 , f ′′′′1 , f ′′′′2 ) ∈ (C2)4; ( f ′1 , f ′2) , (0, 0)},

and fixing a basis {e1, e2} of C2 and

{e1, e2, e2
1, e1e2, e2

2, e
3
1, . . . , e1e4

2, e
4
2}

of Sym≤4C2 the map ρ : J4(1, 2)→ Hom(C4,Sym≤4C2) sends

( f ′1 , f ′2 , f ′′1 , f ′′2 , f ′′′1 , f ′′′2 , f ′′′′1 , f ′′′′2

to a 4 × 15 matrix, whose first 5 columns (corresponding to Sym≤2C2) are
f ′1 f ′2 0 0 0

1
2! f ′′1

1
2! f ′′2 ( f ′1)2 f ′1 f ′2 ( f ′2)2

1
3! f ′′′1

1
3! f ′′′2 f ′1 f ′′1 ( f ′1 f ′′2 + f ′′1 f ′2) f ′2 f ′′2

1
4! f ′′′′1

1
4! f ′′′′2

2
3! f ′1 f ′′′1 + 1

2!2! ( f ′′1 )2 2
3! ( f ′1 f ′′′2 + f ′′′1 f ′2) + 1

2! f ′′1 f ′′2
2
3! f ′2 f ′′′2 + 1

2!2! ( f ′′2 )2

 ,
and next four columns (corresponding to Sym3C2) are

0 0 0 0
0 0 0 0

( f ′1)3 ( f ′1)2 f ′2 f ′1( f ′2)2 ( f ′2)3

3
2! (( f ′1)2 f ′′1 ) 3

2! (( f ′1)2 f ′′2 + 2 f ′1 f ′2 f ′′1 ) 3
2! (( f ′2)2 f ′′1 + 2 f ′2 f ′1 f ′′2 ) 3

2! (( f ′2)2 f ′′2 )

 ,
and the remaining five columns (corresponding to Sym3C3) are

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

( f ′1)4 ( f ′1)3 f ′2 ( f ′1)2( f ′2)2 f ′1( f ′2)3 ( f ′2)4

 .
Then the weight 1 + 2 + 3 + 4 = 10 piece C[J4(1, 2)]U4

10 of the invariant algebra
C[J4(1, 2)]U4 is generated by the 4 × 4 minors of this 4 × 15 matrix.
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5.1. The computation: double localization+vanishing theorem. According to Propo-
sition 3 and Theorem 7 we have the following picture, also called the snowman-model
after the figure in Section §6 in [3]:

Σk(n,m) ⊂ Jk(n,m)

Jreg
k (1, n)/Gk

?

⊂ Flagk(Sym≤kCn)

Jreg
k (1, n)/Bk = Flagk(C

n)
?

(10)

Here Bk ⊂ GLk is the upper Borel subgroup. Now we apply ABBV localization to com-
pute mdeg[Σk(n,m), Jk(n,m)]. According to Vergne, we have to compute

∫
Σk(n,m)

Thom(Jk(n,m),
and we do this in two steps: first we localize on Flagk(C

n) and use Proposition 2 to turn
the localization formula into an iterated residue. Then we integrate along the fibers. The
fibers are canonically isomorphic to Bk/Gk and in the second step we apply ABBV lo-
calization on the image ρ( f iber) ⊂ Grass(k,Sym≤kCn). Surprisingly—for some unclear
geometric reason—in this second localization all fixed points but a distinguished one
contributes 0 to the sum, and a lenghty computation leads us in [3] to

Theorem 9 ([3]).

(11) Tpm−n
k = Resz=∞

∏
i< j(zi − z j)Qk(z1 . . . zk)∏

i+ j≤l≤k(zi + z j − zl)
·

k∏
l=1

c
(

1
zl

)
zm−n

l dzl,

where
• We integrate on the cycle |z1| > |z2| > . . . |zk|, which determines the Laurent

expansion.
• c(q) = 1 + c1q + c2q2 + . . .
• Qk(z1, . . . , zk) is the multidegree of a Borel-orbit in (Ck)∗ ⊗ Sym2(Ck), for details

see [3], and
Q1 = Q2 = Q3 = 1,Q4 = 2z1 + z2 − z4

The polynomial Qk is known up to k ≤ 6, but with enough computer capacity—
in principle—it can be computed for any k. But no general formula is known at the
moment.

We give a concise–and not complete–summary of the history of Thom polynomial
computations. For a more detailed overview see [3, 20].
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• Multidegrees of singularities have been studied for nearly 60 years now. We call
these Thom polynomials in the honour of René Thom and his pioneering work in
the 1950’s. He proved the existence of these polynomials ([37]). He studied real
manifolds and singularities of differentiable maps between them. Later Damon
in [9] studied complex contact singularities.
• The case k = 1 is the classical formula of Porteous: Tpn→m

1 = cm−n+1. The
k = 2 case was computed by Ronga in [32]. An explicit formula for Tpn→k

3 was
proposed in [2] and P. Pragacz has given a proof [29]. He also studied Thom
polynomials in [30, 22], the latter written with A. Lascoux. Finally, using his
method of restriction equations, Rimányi [31] was able to treat the n = k case,
and computed Tpn→n

k for k ≤ 8 (cf. [16] for the case d = 4).
• More recently, Kazarian ([21]) has worked out a framework for computing Thom

polynomials of contact singularities in general. He suggests studying certain
non-commutative associative algebras to get a polynomial QA and an iterated
residue formula similar to (11) for any local algebra A. Unfortunately, the ex-
plicit computation of QA is difficult, his description does not give more informa-
tion for Morin singularities, where Qk is unknown for k > 6. The structure of
Thom polynomials of contact singularities was also studied in [14, 15].

Finally, let us mention a conjecture of R. Rimányi about the positivity of these Thom
polynomials.

Conjecture 1 (Rimányi, 1998).

Tpm−n
k ∈ N[c1, . . . , ck(m−n+1)],

i.e. the coefficients of the Thom polynomials are nonnegative. This would follow from
the more general conjecture, that∏

i< j(zi − z j)Qk(z1 . . . zk)∏
i+ j≤l≤k(zi + z j − zl)

> 0,

the coefficients of the Thom series are nonnegative.

6. The Green-Griffiths conjecture

First we list some results related to hyperbolic varieties and the Green-Griffiths con-
jecture. This is a selection of classical results and it is far from being complete.

6.1. Hyperbolic varieties. Let X be a complex manifold, n = dimC(X). X is said to be
hyperbolic

• in the sense of Brody, if there are no non-constant entire holomorphic curves
f : C→ X.
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• in the sense of Kobayashi, if the Kobayashi-Royden pseudo-metric on TX is
nondegenerate. This pseudo-metric is defined as follows. The infinitesimal
Kobayashi-Royden metric is

kX(ξ) = inf{λ > 0 : ∃ f : ∆→ X, f (0) = x, λ f ′(0) = ξ} for x ∈ X, ξ ∈ TX,x.

The Kobayashi pseudo-distance d(x, y) is the geodesic pseudo-distance obtained
by integrating the Kobayashi-Royden infinitesimal metric. X is hyperbolic in the
sense of Kobayashi if d(x, y) > 0 for x , y.

The following theorem of Kobayashi tells that positivity of the cotangent bundle im-
plies hyperbolicity.

Theorem 10 (Kobayashi, ’75). X-smooth projective variety with ample cotangent bun-
dle. Then X is hyperbolic.

Conversely,

Conjecture 2. If a compact manifold X is hyperbolic, then it should be of general type,
i.e. KX = ∧nT ∗X should be big. (That is, X has maximal Kodaira dimension, i.e.
dim⊕∞i=0H0(X,Ki) = dim X.)

Conjecture 3 (Green-Griffiths, ’79). Let X be a projective variety of general type.
Then there exists an algebraic variety Y  X such that for all non-constant holomorphic
f : C→ X one has f (C) ⊂ Y.

Diophantine properties

Theorem 11 (Faltings, ’83). A curve of genus greater than 1 has only finitely many
rational points.

Theorem 12 (Moriwaki, ’95). Let K be a number field (finitely generated over Q), and
X a smooth projective variety. If T ∗X is ample and globally generated then X(K) is
finite.

Conjecture 4 (S. Lang). (1) If a projective variety X is hyperbolic, then it is mordel-
lic, i.e. X(K) is finite for any K finitely generated over Q.

(2) Let Exc(X) = ∪{ f (C) : f : C→ X}. Then X \ Exc(X) is mordellic.

Highlights in the history of the Green-Griffiths conjecture
Here is a short (incomplete) list of results related to the Green-Griffiths conjecture,

which first appeared in [17].
• In [24] McQuillen gave a positive answer to the conjecture for general surfaces

if the second Segre class c2
1 − c2 > 0 is positive.

• In the seminal paper [10] Demailly—using ideas of Green, Griffiths and Bloch—
works out a strategy for projective hypersurfaces.
• In [33, 34] Siu gives positive answer for hypersurfaces of high degree, without

effective lower bound for the degree.
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• In [12] Diverio, Merker and Rousseau give effective lower bound, proving that
for a generic projective hypersurface of dimension n and degree > 2n5

the Green-
Griffiths conjecture holds.
• Recently, Merker ([26]) has proved the existence of global jet differentials of

high order for projective hyperpersurfaces in the optimal degree. Demailly in
[11] has proved the existence of global jet differentials (of possibly high order)
for compact manifolds in general.

6.2. A promising strategy. (Green, Griffiths, Demailly, Siu, Diverio, Merker,
Rousseau)

The main idea of this strategy is to find differential equations which must be satisfied
by (the jet of) any entire holomorphic curve in X, and then to find enough independent
equations such that their solution set is a proper subvariety of X. For more details on the
history of this approach see [12, 10].

Let
f : C→ X, t → f (t) = ( f1(t), f2(t), . . . , fn(t))

be a curve written in some local holomorphic coordinates (z1, . . . , zn) on X. Let JkX be
the k-jet bundle over X of holomorphic curves, whose fiber at x ∈ X is

(JkX)x = { f̂[k] : f : (C, 0)→ (X, x)} → X

sending f[k] to f (0). This fibre is canonically isomorphic to Jk(1, n).
The group of reparametrizations Gk = Jreg

k (1, 1) acts fiberwise on JkX. The fibres of
JkX can be identified with Jk(1, n), and the action is linearised as in (8) before. Note that
Gk = C∗ n Ud is a C∗-extension of its maximal unipotent subgroup, and for λ ∈ C∗

(λ · f )(t) = f (λ · t), so λ · ( f ′, f ′′, . . . , f (k)) = (λ f ′, λ2 f ′′, . . . , λk f (k)).

Algebraic differential operators correspond to polynomial functions on JkX, and we call
these polynomial functions jet differentials, they have the form

Q( f ′, f ′′, . . . , f (k)) =
∑
αi∈Nn

aα1,α2,...αk( f (t))( f ′(t)α1 f ′′(t)α2 · · · f (k)(t)αk),

where aα1,α2,...αk(z) are holomorphic coefficients on X and t → z = f (t) is a curve.
Q is homogeneous of weighted degree m under the C∗ action if and only if

Q(λ f ′, λ2 f ′′, . . . , λk f (k)) = λmQ( f ′, f ′′, . . . , f (k)).

Definition 3. • (Green-Griffiths ‘78) Let EGG
k,m denote the sheaf of algebraic dif-

ferential operators of order k and weighted degree m.
• (Demailly, ’95) The bundle of invariant jet differentials of order k and weighted

degree m is the subbundle Ek,m ⊂ EGG
k,m, whose elements are invariant under

arbitrary changes of parametrization, i.e. for φ ∈ Gk

Q(( f ◦ φ)′, ( f ◦ φ)′′, . . . , ( f ◦ φ)(k)) = φ′(0)mQ( f ′, f ′′, . . . , f (k)).
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We want to apply the general pinciple that for a G-space X the ring of invariant func-
tions on X can be identified with polynomial functions on the quotient X/G. Roughly
speaking we want

⊕m(Ek,m)x = ⊕m(EGG
k,m)Ux = O((JkX)x)Gk = O(Jk(1, n)/Gk)

Applying Theorem 7 fibrewise we get

Proposition 4. (1) The quotient JkX/Gk has the structure of a locally trivial bundle
over X, and there is a holomorphic embedding

φP : JkX/Gk ↪→ P(∧k(T ∗X ⊕ Sym2(T ∗X) ⊕ . . . ⊕ Symk(T ∗X)).

The fibrewise closure of the image Xk = imφP is a relative compactification of
Jk(T ∗X)/Gk over X.

(2) We have
(πk)∗OXk(m) = O(Ek,m(k+1

2 ))

where πk : P(∧k(T ∗X ⊕ Sym2(T ∗X) ⊕ . . . ⊕ Symk(T ∗X)))→ X is the projection.

The strategy to solve the Green-Griffiths conjecture is based on the following

Theorem 13 (Fundamental vanishing theorem ,Green-Griffiths ’78, Demailly ’95,
Siu ’96). Let P ∈ H0(X, Ek,m⊗O(−A)) be a global algebraic differential operator whose
coefficients vanish on some ample divisor A. Then for any f : C → X, P( f[k](C)) ≡ 0.
(Note that f[k](C) ⊂ JkX.)

Corollary 1. (1) Let σ be a nonzero element of

H0(Xk,OXk(m) ⊗ π∗O(−A)) ' H0(X, Ek,m(k+1
2 ) ⊗ O(−A)).

Then f[k](C) ⊂ Zσ, where Zσ ⊂ Xd is the zero divisor of σ.
(2) If {σ j} is a basis of global sections then the image f (C) lies in Y = πk(

⋂
ZP j),

hence the Green-Griffiths conjecture holds if there are enough independent dif-
ferential equations so that Y = πk(

⋂
(ZP j))  X.

It is crucial to control in a more precise way the order of vanishing of these differential
operators along the ample divisor. Thus, we need here a slightly different theorem.

Theorem 14 ([12]). Assume that n = k, and there exist a δ = δ(n) > 0 and D = D(n, δ)
such that

H0(Xn,OXn(m) ⊗ π∗K−δmX ) ' H0(X, En,m(n+1
2 )T

∗
X ⊗ K−δmX ) , 0

whenever deg(X) > D(n, δ) provided that m > mD,δ,n is large enough. Then the Green-
Griffiths conjecture holds for

deg(X) ≥ max(D(n, δ),
n2 + 2n

δ
+ n + 2).

The goal is therefore to find a global section of OXn(m) ⊗ π∗K−δmX keeping D(n, δ)
small. Following [12], we use the algebraic Morse inequalities of Demailly/Trapani.
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Theorem 15. [36] Let L→ X be a holomorphic line bundle given as

L = F ⊗G−1 with F,G nef bundles.

Then for any nonnegative integer q we have
q∑

j=0

(−1)q− jh j(X, L⊗m ⊗ E) ≤ r
mn

n!

q∑
j=0

(−1)q− j

(
n
j

)
Fn− j ·G j + o(mn).

Applying this with q = 1 we get

(12) Fn − nFn−1G > 0⇒ H0(L⊗m) , 0 for m � 0.

In [4] we prove that F and G are nef bundles in the following equality.

OXn(1) ⊗ π∗K
−δ(n+1

2 )
X︸                  ︷︷                  ︸

L

= (OXn(1) ⊗ π∗OX(2n2))︸                     ︷︷                     ︸
F

⊗ (π∗OX(2n2) ⊗ π∗K
δ(n+1

2 )
X )−1︸                           ︷︷                           ︸

G

.

Introduce the following notations:

h = c1(OX(1)); c1(KX) = −c1(X) = (d − n − 2)h; OXn(1) = det τ

where τ → Xn is the tautological n-bundle. Now dim(Xn) = n2, and according to (12)
we want to prove the positivity of the following intersection number on Xn.∫
Xn

(c1(det τ) + 2n2π∗h)n2
− n2(c1(det τ) + 2n2π∗h)n2−1(2n2π∗h + δ

(
n + 1

2

)
(d − n − 2)h).

We apply localization using the double fibration model (10) on the fibers of Xn. We
need a stronger version of the vanishing property of the iterated residue to guarantee
that only one fixed point’s contribution is non-zero. After going through these technical
difficulties in [4] we arrive at
Residue formula for the Demailly intersection number

I =

∫
X

Resz=∞

∏
i< j(zi − z j)Qd(z1 . . . zn)R(z, h, d, δ)∏

1≤i+ j≤l≤n(zi + z j − zl)(z1 . . . zn)n ·

·

n∏
l=1

(
1 +

dh
zl

) n∏
l=1

(
1 −

h
zl

+
h2

z2
l

− . . .

)n+2

where

R(z, h, d, δ) = (−z1 − . . . − zn + 2n2h)n2
−

− n2(−z1 − . . . − zn + 2n2h)n2−1(2n2h + δ

(
n + 1

2

)
(d − n − 2)h).

Analysis of the formula
• The iterated residue is the coefficient of 1

z1...zn
, and has the form hn p(d, n, δ).

• Integration on X is the substitution hn = d, so the result is dp(d, n, δ).
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• p(n, d, δ) = an(n, δ)dn + . . . + a0(n, δ) is a degree-n polynomial in d = deg(X),
with polynomial coefficients in n, δ.
• The leading coefficient is

an(n, δ) =

(
1 − n2

(
n + 1

2

)
δ

)
Θ(n),

where

Θ(n) = constant term of

Q(z)
∏
i< j

(zi − z j)(z1 + . . . + zn)n2

∏
i+ j≤l≤n

(zi + z j − zl)(z1 . . . zn)n

Note that

Θ(n) =

∫
Xn

c1(τ)n2
> 0

is positive, as τ is an ample bundle. Therefore

Corollary 2. For δ < 2
n3(n+1) the leading coefficient of the Demailly intersection number

is positive.

The backgroud and experimental evidences of the following conjecture is explained
in [4]. It says that quotients of "neighbouring" coefficients of the Thom polynomial is
polynomial.

Conjecture 5. Define

Tpk(z1, . . . , zk) =

∏
m<l(zm − zl) Qk(z1 . . . zk)∏

m+r≤l≤k(zm + zr − zl)

Then
coeffzi1

1 ...z
ik
k
T pk

coeffzi1
1 ···z

il+1
l ···zim−1

m ···z
ik
k
T pk

< k2

Some further computations in [4] leads us to

Theorem 16 ([4]). Conjecture 5 and Conjecture 1 for Thom polynomials of An singu-
larities implies the Green-Griffiths conjecture for d = deg(X) > n6.

7. Appendix

The given iterated residue formula is suitable to compute other intersection numbers
as well. The Euler characteristic of the Demailly bundle is defined as

χ(X, Ek,mT ∗X) =

n∑
i=0

(−1)i dim Hi(X, Ek,mT ∗X).
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It is well-known (see [19]) that

χ(X, Ek,m) =

∫
X
[Ch(Ek,m) · Td(TX)]n

where Ch(OXn(1)) is the Chern character and Td(TX) = 1 + 1
2c1 + 1

12 (c2
1 + c2) + . . . is the

Todd-class.

Theorem 17 (Iterated residue formula for the Euler-characteristics).

χ(X, π∗OXn(m)) =∫
X

Resz=∞

∏
i< j(zi − z j)Qn(z1 . . . zn)Ch(OXn(m))Td(TX)∏

1≤i+ j≤l≤n(zi + z j − zl)(z1 . . . zn)n ·

·

n∏
l=1

(
1 +

dh
zl

) n∏
l=1

(
1 −

h
zl

+
h2

z2
l

− . . .

)n+2

where

Ch(OXn(1)) = em(z1+...+zn), Td(TX) = 1 +
1
2

c1 +
1

12
(c2

1 + c2) + . . .

8. Curviliear Hilbert schemes

The goal of this section is to give a general framework for our localization argu-
ments. If Gk = Jreg

k (1, 1) denotes the group of k-jets of reparametrization germs of
C and Jreg

k (1, n) the k-jets of germs of curves f : (C, 0) → (Cn, 0), then the quotient
Jreg

k (1, n)/Jreg
k (1, 1) plays an important role in our applications, namely:

(1) Σk fibers over Jreg
k (1, n)/Jreg

k (1, 1) with linear fibers. The Thom polynomials of
Morin singularities are certain equivariant intersection numbers on Σk.

(2) Jreg
k (1, n)/Jreg

k (1, 1) is isomorphic to the fibers of the Demailly jet bundle Ek over
a smooth manifold of dimension n. The positivity of the Demailly intersection
number implies the Green-Griffiths conjecture.

In both applications we compute certain (equivariant) intersection numbers on the
quotient Jreg

k (1, n)/Jreg
k (1, 1), using equivariant localization on φGrass(Jreg

k (1, n)/Jreg
k (1, 1)).

LetH0(k, n)) be the punctual Hilbert scheme of k points on Cn, that is, the set of zero
dimensional subschemes of Cn of length k supported at the origin. There is an important
subset ofH0(k, n)), namely the punctual curvilinear Hilbert scheme, defined as follows

Definition 4. The punctual curvilinear Hilbert scheme is the closure of the set of ideals

C(k, n) = {I ⊂ C[x1, . . . , xn] : C[x1, . . . , xn]/I ' tC[t]/tk+1},

that is
CH(k, n) = C(k, n).
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If m = (x1, . . . , xn) ⊂ OCn,0 denotes the maximal ideal at the origin, then

Sym≤kCn := m/mk+1 = ⊕k
i=1SymiCn

is the set of function-germs of degree ≤ n, and the punctual Hilbert scheme naturally
sits in the Grassmannian

H0(k, n) ⊂ Grass(k,Sym≤kCn).

Looking at our embedding φGrass it is not hard to check (see [6]) that

Proposition 5. We have

CH(k, n) = φGrass(Jreg
k (1, n)/Jreg

k (1, 1)).

This roughly means that CH(k, n) can be described as certain compactification of a
non-reductive quotient.

When n = 2 we furthermore know that the punctual curvilinear component CH(k, n)
is dense inH0(k, n), and therefore

Corollary 3. We have

H0(k, 2) = φGrass(Jreg
k (1, 2)/Jreg

k (1, 1)).

We have developed localization methods to compute intersection numbers on the
punctual curvilinear Hilbert scheme CH(k, n) for k ≤ n A more detailed study of non-
reductive quotients allows us to improve this technique, the details with more applica-
tions will be published later.
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