24.01.2019

List of misprints and revisions to the published papers (under construction)

[6] RUSSIAN

the reference [11] should read: Kleppe H., Laksov D., The algebraic structure and deformation of Pfaffian schemes, J. Algebra 64 (1980), 167-189.

ENGLISH

- p. 578 insert between "(3) we have" and "COROLLARY 1": $\pi_*(s(H;R)s(K;Q)) = \pi_*(\pi_{3*}(s(H;R)s(K';P)s(k;\mathcal{O}(1))) \\ = \pi_{1*}(\pi_{2*}(s(H;R)s(K';P)s(k;\mathcal{O}(1)))) = \pi_{1*}(s(HK;R')s(k;\mathcal{O}(1)))) \\ = s(HK'k;E) = s(HK;E).$
- p. 579_6 and 580^5 "lies in" \rightarrow "divides"
- p. 580^3 "lies in" \rightarrow "is divided by"

[8]

p. 958 the vertical line inside the 4x4 determinant should be removed

[12]

p. 211 concerning Remarque (2): see S. V. Sam, Schubert complexes and degeneracy loci, J. Algebra 337 (2011), 103–125

[13]

RUSSIAN see Funct. Analiz 1987 vol. 21(4) p. 96 ENGLISH

- p. 249_4 " $(-1)^j$ " \rightarrow " $(-1)^i$ "
- p. 249_2 should be " $(-1)^{k+1}$ "
- p. 249₁ should be " $(-1)^{k+1}$ "
- p. 250^9 " $(-1)^k c_k(A)$ " \rightarrow " $c_k(a)$ "
- in the references: Macdonald, Porteous

[14] see [37, p. 172]

[15]

- p. 561¹³ "outer strip" → "border strip"
- p. 5658 "horozontal" \rightarrow "horizontal"
- p. 565^{15} "N" \rightarrow "R"
- p. 566 in the determinant (3.3) the (p,p) entry should read " $S_{1^{\beta_{p}}\&\alpha_{p}}$ "
- p. 566^4 Example $2.4 \rightarrow$ Example 3.4

```
p. 566_{14} in the first determinant of Example 3.4: "S_{14}" \rightarrow "S_{114}"
 p. 568^{10} "\beta_i" \rightarrow "\beta_1"
 p. 568^{12} "(-1)^{|I|}" \rightarrow "(-1)^r"
 p. 573^{10} "S\Theta" \rightarrow "\Theta"
 [16]
p. 4110 should read: "\sum_{\mu \in \mathfrak{S}(n)}"
 see [37, pp. 172-173] and [21, pp. 185-186]
 [19]
 see [41, p. 260]
 [21]
 see [37, p. 173]
 [22]
 p. 90<sub>11,12</sub> should read: "... et Marie-Paule Malliavin, Lecture Notes in
Mathematics 1478, Springer, Berlin, 1991."
[23]
see [37, p. 171]
[24]
see [37, p. 171]
[25]
p. 8_{10}, p. 17_{11} "van der Jeugt" \rightarrow "Van der Jeugt"
[26]
see [37, p. 174]
[28]
see [37, p. 174]
[30]
see [37, p. 171]
[35]
p. 147^{13} "v_{m-v}" \rightarrow "v_{m-n}"
p. 149_5 "(-1)^{i}" \rightarrow "(-1)^{i-1}"
p. 150^3 "(-1)^l e_k" \rightarrow "e_k"
p. 150^4 "e_k" \rightarrow "(-1)^l e_k"
```

```
p. 158<sub>14</sub> "\partial_{12}" \rightarrow "s_{12}" "\partial_{14}" \rightarrow "s_{14}"
 p. 158<sub>12</sub> delete "os<sub>3</sub>"
 p. 161 in the picture: "-,3" \rightarrow "-,2" "-,8" \rightarrow "-,3"
 p. 1683 "D_{\mu} \setminus D" \rightarrow "D_{\mu}^{t} \setminus D^{t}"
 p. 179 the picture is displayed upside down
 p. 180^7 "a row" \rightarrow "the row"
 p. 182 in the 2nd diagram of the last row, interchange the 2nd and 3rd
 items in the 2nd row
 [36]
 see addenda in [37, p. 171]
 [37]
 see [41, p. 260]
 [38]
 see [41, p. 260]
 [39]
 see [42]
 [40]
see [43, p. 439]
[41]
p.250<sup>11</sup> "in K(X). will see" \rightarrow "in K(X). \square
    We will see"
p.254<sup>16</sup> "classes. that" \rightarrow "classes. \square
    Note that"
p.2571 "the same. F \subset E" \rightarrow "the same. \square
    Let F \subset E"
p.254^{18} "it" \rightarrow "it's"
p.639<sup>5</sup> "Chopone" → "Chopina"
[45]
p.64<sub>1</sub> delete "\chi(Z) =" from (5)
[47]
p.693^9 "A + B" \rightarrow "A - B"
p.693_4 "i^{t-r}" \rightarrow "i^{t-r+1}"
```

```
[51]
 p.1329<sup>9</sup> "k \le l" \to "k \ge l"
 p.1336<sup>17</sup> delete □
 [57]
 p.1501_8 "X_2" \rightarrow "X_2"
 p.1506^{11} "\mathcal{T}_6" \rightarrow "\mathcal{T}_7"
 p.1507<sup>3</sup> "Du" \rightarrow "du"
 p.1507<sup>3,4</sup> "Oxford Math. Monographs" \rightarrow "Oxford Univ. Press"
 [58]
p.1277_{13} "Berlin" \rightarrow "New York"
[59]
p.177_{21} "Du" \rightarrow "du"
p.177<sup>21</sup> "Oxford Math. Monographs" \rightarrow "Oxford Univ. Press"
[60]
p.105_1 "x \in \mathbb{P}^n" \rightarrow "l \in \mathbb{P}^n"
p.106<sup>14</sup> "for a point" \rightarrow "for some point"
p.108^8 "q_i" \rightarrow "q_{i+1}"
p.112<sub>16</sub> "a scheme with" \rightarrow "a scheme as in Theorem 13 with"
p.1137 "among all principally polarized abelian varieties." \rightarrow "among all
principally polarized abelian varieties with Picard number 1."
p.113^{13}_{15} "P. Murthy" \rightarrow "M. P. Murthy"
p.114<sup>15</sup> "identification \nu \to \Delta" \to "identification \Delta \cong M, \nu \to \Delta"
[62]
p.73<sub>13</sub> "any algebraic" \rightarrow "any nonnegative algebraic"
p.77_{14}^{8} "\xi\" \to "\xi\"
p.78^{1-3} The expression for A_7 is incorrect. The correct one is given in [65]
on p. 129.
[66]
p.445<sup>13</sup> "\mathcal{P}-polynomials" \rightarrow "\mathcal{P}-ideals"
p.450<sup>19</sup> " of p-jets from M to N" \rightarrow " of p-jets of maps from M to N"
p.464_5 "\cdots y^t \cdots" \rightarrow "\cdots y^d \cdots"
p.476_2 "Du" \rightarrow "du"
[67]
p.428^{16} "|" \rightarrow ":"
```

p.428¹⁴ "sheaf" \rightarrow "coherent sheaf" p.441¹⁴ "be" \rightarrow "is" p.449²² "Du" \rightarrow "du" p.449^{22,23} "Oxford Math. Monographs" \rightarrow "Oxford Univ. Press" [68] see Proc. AMS 144 (2016), p. 3197

Proposition 4 is incorrect and should be removed.

Then the main theorem reads:

"Suppose that $\lambda = (\lambda_1, \dots, \lambda_q)$ and $\mu = (\mu_1, \dots, \mu_r)$ are sequences of non-negative integers such that $R_{\lambda}(Q;t)$ is divisible by $v_{\lambda}(t)$ and $R_{\mu}(S;t)$ is divisible by $v_{\mu}(t)$. Then for the polynomials $P_{\lambda}(Q;t)$ and $P_{\mu}(S;t)$ we have

$$\pi_* \Big(\prod_{i \le q < j} (x_i - tx_j) P_{\lambda}(Q; t) P_{\mu}(S; t) \Big) = \frac{v_{\lambda \mu}(t)}{v_{\lambda}(t) v_{\mu}(t)} P_{\lambda \mu}(E; t).$$