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TOMÁS L. GÓMEZ
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In these notes we will always work with schemes over the field of complex numbers
C. Let X be a scheme. A vector bundle of rank r on X is a scheme with a
surjective morphism p : V → X and an equivalence class of linear atlases. A
linear atlas is an open cover {Ui} of X (in the Zariski topology) and isomorphisms
ψi : p−1(Ui) → Ui × Cr, such that p = pX ◦ ψi, and ψj ◦ ψ

−1
i is linear on the fibers.

Two atlases are equivalent if their union is an atlas. These two properties are usually
expressed by saying that a vector bundle is locally trivial (in the Zariski topology),
and the fibers have a linear structure.

An isomorphism of vector bundles on X is an isomorphism ϕ : V → V′ of schemes
which is compatible with the linear structure. That is, p = p′ ◦ ϕ and the covering
{Ui}

⋃
{U ′

i} together with the isomorphisms ψi, ψ
′
i ◦ ϕ is a linear structure on V as

before.
The set of isomorphism classes of vector bundles of rank r on X is canonically

bijective to the Cech cohomology set Ȟ1(X,GLr). Indeed, since the transition

functions ψj ◦ ψ
−1
i are linear on the fibers, they are given by morphisms αij :

Ui ∩ Uj → GLr which satisfy the cocycle condition.
Given a vector bundle V → X we define the locally free sheaf E of its sections,

which to each open subset U ⊂ X, assigns E(U) = Γ(U, p−1(U)). This provides
an equivalence of categories between the categories of vector bundles and that of
locally free sheaves ([Ha, Ex. II.5.18]). Therefore, if no confusion seems likely to
arise, we will use the words “vector bundle” and “locally free sheaf” interchangeably.
Note that a vector bundle of rank 1 is the same thing as a line bundle. We will
be interested in constructing moduli spaces of vector bundles, which can then be
considered as generalizations of the Jacobian. Sometimes it will be necessary to
consider also torsion free sheaves. For instance, in order to compactify the moduli
space of vector bundles.

Let X be a smooth projective variety of dimension n with an ample line bundle
OX(1) corresponding to a divisor H. Let E be a torsion free sheaf on X. Its Chern
classes are denoted ci(E) ∈ H2i(X; C). We define the degree of E

degE = c1(E)Hn−1

and its Hilbert polynomial

PE(m) = χ(E(m)),

where E(m) = E ⊗OX(m) and OX(m) = OX(1)⊗m.
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2 T. GÓMEZ

If E is locally free, we define the determinant line bundle as detE =
∧r E. If

E is torsion free, since X is smooth, we can still define its determinant as follows.
The maximal open subset U ⊂ X where E is locally free is big (with this we will
mean that its complement has codimension at least two), because it is torsion free.
Therefore, there is a line bundle detE|U on U , and since U is big and X is smooth,
this extends to a unique line bundle on X, which we call the determinant detE of
E. It can be proved that degE = deg detE.

We will use the following notation. Whenever “(semi)stable” and “(≤)” appears
in a sentence, two sentences should be read. One with “semistable” and “≤”, and
another with “stable” and “<”. Given two polynomials p and q, we write p < q if
p(m) < q(m) when m� 0.

A torsion free sheaf E is (semi)stable if for all proper subsheaves F ⊂ E,

PF
rkF

(≤)
PE
rkE

.

A sheaf is called unstable if it is not semistable. Sometimes this is refered to as
Gieseker (or Maruyama) stability.

A torsion free sheaf E is slope-(semi)stable if for all proper subsheaves F ⊂ E
with rkF < rkE,

degF

rkF
(≤)

degE

rkE
.

The number degE/ rkE is called the slope of E. A sheaf is called slope-unstable if
it is not slope-semistable. Sometimes this is refered to as Mumford (or Takemoto)
stability.

Using Riemann-Roch theorem, we find

PE(m) = rkE
mn

n!
+ (degE − rkE

degK

2
)
mn−1

(n− 1)!
+ · · ·

where K is the canonical divisor. From this it follows that

slope-stable =⇒ stable =⇒ semistable =⇒ slope-semistable

Note that, if n = 1, Gieseker and Mumford (semi)stability coincide, because the
Hilbert polynomial has degree 1.

Let E be a torsion free sheaf on X. There is a unique filtration, called the
Harder-Narasimhan filtration,

0 = E0 ( E1 ( E2 ( · · · ( El = E

such that Ei = Ei/Ei−1 is semistable and

PEi

rkEi
>

PEi+1

rkEi+1

for all i. In particular, any torsion free sheaf can be described as successive exten-
sions of semistable sheaves.

There is also a Harder-Narasimhan filtration for slope stability: this is the unique
filtration such that Ei = Ei/Ei−1 is slope-semistable and

degEi

rkEi
>

degEi+1

rkEi+1

for all i. We denote

µmax(E) = µ(E1) , µmin(E) = µ(El).

Of course, in general these two filtrations will be different.
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Now let E be a semistable sheaf. There is a filtration, called the Jordan-Hölder
filtration,

0 = E0 ( E1 ( E2 ( · · · ( El = E

such that Ei = Ei/Ei−1 is stable and

PEi

rkEi
=

PEi+1

rkEi+1

for all i. This filtration is not unique, but the associated graded sheaf

gr JH(E) =

l⊕

i=1

Ei

is unique up to isomorphism. It is easy to check that gr JH(E) is semistable. Two
semistable torsion free sheaves are called S-equivalent if gr JH(E) and gr JH(E′) are
isomorphic.

There is also a Jordan-Hölder filtration for slope stability, just replacing Hilbert
polynomials with degrees.

A family of coherent sheaves parameterized by a scheme T (also called T -family)
is a coherent sheaf ET on X × T , flat over T . For each closed point t ∈ T , we get a
sheaf Et := f∗ET on X × t ∼= X, where f : X × t→ X × T is the natural inclusion.
We say that ET is a family of torsion-free sheaves if Et is torsion-free sheaf for
all closed points t ∈ T . We have analogous definitions for any open condition, and
hence we can talk of families of (semi)stable sheaves, of families of sheaves with fixed
Chern classes ci(E), etc... Two families are isomorphic if ET and E′

T are isomorphic
as sheaves.

To define the notion of moduli space, we will first look at the Jacobian J of
a projective scheme X. There is a bijection between isomorphism classes of line
bundles L with 0 = c1(L) ∈ H2(X; C) and closed points of J .

Furthermore, if we are given a family of line bundles LT , with vanishing first
Chern class, parameterized by a scheme T , we obtain a morphism f : T → J such
that for all t ∈ T , the point f(t) ∈ J is the point corresponding to the isomorphism
class of Lt. And, conversely, if we are given a morphism f : T → J , we obtain a
family of line bundles parameterized by T by pulling-back a Poincare line bundle:
LT = (idX ×f)∗P.

Note that both constructions are not quite inverse to each other. On the one hand,
if M is a line bundle on T , the families LT and LT ⊗ p

∗
TM give the same morphism

from T to the Jacobian, and on the other hand, there is no unique Poincare line
bundle: given a linen bundle M on J , P ⊗ p∗JM is also a Poincare line bundle, and
the family induced by f will change to LT ⊗ p∗T f

∗M . This is why we declare two
families of line bundles equivalent if they differ by the pullback of a line bundle on
the parameter space T .

Using this equivalence, both constructions become inverse of each other. That
it, there is a bijection between equivalence classes of families and morphisms to the
Jacobian.

One could ask: is there a “better” version of the Jacobian?, i.e. some object J
which provides a bijection between morphisms to it and families of line bundles up
to isomorphism (not up to equivalence). The answer is yes, but this object J is not
a scheme!. It is an algebraic stack (in the sense of Artin): the Jacobian stack. A
stack is a generalization of the notion of scheme, but we will not consider it here.
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We would like to have a scheme with the same properties as the Jacobian, but
for torsion-free sheaves instead of line bundles. To be able to do this, we have to
consider only the semistable ones. Then there will be a moduli scheme M(r, ci) such
that a family of semistable torsion-free sheaves parameterized by T , with rank r and
Chern classes ci, will induce a morphism from the parameter space T to M(r, ci). In
particular, to each semistable torsion free sheaf we associate a closed point. If two
stable torsion free sheaves on X are not isomorphic, they will correspond to different
points of M(r, ci), but it can happen that two strictly semistable torsion free sheaves
on X which are not isomorphic correspond to the same point of M(r, ci). In fact, E
and E′ correspond to the same point if and only if they are S-equivalent.

Another difference with the properties of the Jacobian is that in general there will
be no “universal torsion free sheaf” on X ×M(r, ci), i.e. there will be no analogue
of the Poincare bundle. In other words, given a morphism f : T → M(r, ci), there
might be no family parameterized by T which induces f . If there is a universal
torsion-free sheaf, we say that M(r, ci) is a fine moduli space, and if it does not
exist, we say that it is a coarse moduli space.

To explain this more precisely, it is useful to use the language of representable
functors. Given a scheme M over C, we define a (contravariant) functor M :=
Mor(−,M) from the category of C-schemes (Sch /C) to the category of sets (Sets)
by sending an C-scheme B to the set of morphisms Mor(B,M). On morphisms it
is defined with composition, i.e., to a morphism f : B → B ′ we associate the map
Mor(B′,M) → Mor(B,M) which sends ϕ′ to ϕ ◦ f .

Definition 0.1 (Represents). A functor F : (Sch /C) → (Sets) is represented by a
scheme M if there is an isomorphism of functors F ∼= M .

Of course, not all functors from (Sch /C) to (Sets) are representable, but if a
functor F is, then the scheme M is unique up to canonical isomorphism. Given
a morphism f : M → M ′, we obtain an natural transformation M → M ′, and,
by Yoneda’s lemma, every natural transformation between representable functors is
induced by a morphism of schemes. In other words, the category of schemes is a full
subcategory of the category of functors (Sch /C)′, whose objects are contravariant
functors from (Sch /C) to (Sets) and whose morphisms are natural transformation.
Therefore, we will denote by the same letter a morphism of schemes and the asso-
ciated natural transformation.

For instance, let FJ : (Sch /C) → (Sets) be the functor which sends a scheme
T to the set of equivalence classes of T -families of line bundles on X, with c1 = 0.
This functor is represented by the Jacobian, i.e., there is an isomorphism of functors
FJ ∼= J . This is the translation, to the language of representable functors, of the
fact that there is a natural bijection between the set of equivalence classes of these
families and the set of morphisms from T to J .

Definition 0.2 (Corepresents). A functor F : (Sch /C) → (Sets) is corepresented
by a scheme M if there is a natural transformation of functors φ : F → M such
that given another scheme M ′ and natural transformation φ′ : F → M ′, there is a
unique morphism η : M →M ′ with φ′ = η ◦ φ.

F

φ
��

φ′

!!B
B

B

B

B

B

B

B

M
∃! η

//___ M ′
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If M corepresents F , then M is unique up to canonical isomorphism. To explain
why this is called “corepresentation”, let (Sch /C)′ be the above defined functor cat-
egory. Then it can be seen that M represents F if and only if there is a natural bijec-
tion Mor(Y,M) = Mor(Sch /C)′(Y , F ) for all schemes Y . On the other hand,M corep-
resents F if and only if there is a natural bijection Mor(M,Y ) = Mor(Sch /C)′(F, Y )
for all schemes Y . If M represents F , then it corepresents it, but the converse is
not true.

Let X be a fixed C-scheme. Define a functor F ss
r,ci from the category of schemes

over C to the category of sets, sending a scheme T to the set F ss
r,ci(T ) of isomorphism

classes of families of torsion-free sheaves on X parameterized by T , with rank r and
Chern classes ci. On morphisms it is defined by pullback, i.e., to a morphism
f : T → T ′ we associate the map F (T ′) → F (T ) which sends the family E ′

T to
(idX ×f)∗E′

T . Analogously, we define the functor F s
r,ci of families of stable torsion

free sheaves.
It can be shown that, for any polarized smooth projective variety X, there is a

scheme M(r, ci) corepresenting the above defined functor F ss
r,ci ([Gi, Ma, Sesh, Si]).

In section 1 we will sketch a proof of this result.
Note that the transformation of functors φ gives, for any T -family of semistable

torsion free sheaves, a morphism f : T → M(r, ci). As we mentioned before, there
is a canonical bijection between closed points of M(r, ci) and S-equivalence classes
of semistable torsion free sheaves.

Let F̂ ssr,ci be the functor of equivalence classes of families of semistable sheaves,
where, as before, we declare two families equivalent if they differ by the pullback of
a line bundle on the parameter space. There are some cases in which this functor is
representable (for instance, if the rank r and degree c1 are coprime). In these cases,
there is a universal family parameterized by the moduli space, and this universal
family is unique up to the pullback of a line bundle on the moduli space.

Definition 0.3 (Moduli space). We say that M is a moduli space for a set of
objects, if it corepresents the functor of families of those objects.

Definition 0.4 (Coarse moduli). A scheme M is called a coarse moduli scheme for
F if it corepresents F and furthermore the map

φ(Spec C) : F (Spec C) → Hom(SpecC,M)

is bijective.

Note that if a functor F is corepresented by a scheme M , then it is a coarse moduli

scheme for the functor F̃ of S-equivalence classes of F , i.e., the functor defined as

F̃ (T ) =

{
F (T ) , if T 6= SpecC

S-equivalence classes of objects of F (Spec C) , if T = SpecC

1. Moduli space of torsion free sheaves

In this section we will sketch the proof of the existence of the moduli space of
semistable torsion free sheaves. We will start by giving a brief idea of the construc-
tion. It can be shown that there is a scheme Y classifying semistable based sheaves,
that is, pairs (f,E), where E is a semistable sheaf and f : V → H 0(E(m)) is an
isomorphism between a fixed vector space V and H 0(E(m)). The group SL(V ) acts
on Y by “base change”: an element g ∈ SL(V ) sends the pair (f,E) to (f ◦ g,E).
Two pairs (f,E) and (f ′, E′) are in the same orbit if and only if E is isomorphic to
E′, therefore, the quotient of Y by the action of SL(V ) will be a moduli space of
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semistable sheaves. But, does this quotient exist in the category of schemes?, i.e., is
there a scheme whose points are in bijection with the SL(V )-orbits in Y ?. In general
the answer is no, but Geometric Invariant Theory (GIT) gives us something which
is quite close to this, and is called the GIT quotient, and this will be the moduli
space.

Note that we are using the group SL(V ), and not GL(V ). This is because if
two isomorphisms f and f ′ only differ by multiplication with a scalar, then they
correspond to the same point in Y . In other words, Y classifies pairs (f,E) up to
scalar.

Let G be an algebraic group. Recall that a right action on a scheme R is a
morphism σ : R × G → R, which we will usually denote σ(z, g) = z · g, such that
z · (gh) = (z · g) · h and z · e = z, where e is the identity element of G. A left action
is analogously defined, with the associative condition (hg) · z = h · (g · z).

The orbit of a point z ∈ R is the image z · G. A morphism p : R → M between
two schemes endowed with G-actions is called G-equivariant if it commutes with
the actions, that is f(z) · g = f(z · g). If the action on M is trivial (i.e. y · g = y for
all g ∈ G and y ∈M), then we also say that f is G-invariant.

If G acts on a projective variety R, a linearization of the action on a line bundle
OR(1) consists of giving, for each g ∈ G, an isomorphism of line bundles g̃ : OR(1) →
ϕ∗gOR(1), (ϕg = σ(·, g)) which also satisfies the previous associative property. Giving
a linearization is thus the same thing as giving an action on the total space V of the
line bundle, which is linear along the fibers, and such that the projection V → R
is equivariant. If OR(1) is very ample, then a linearization is the same thing as a
representation of G on the vector space H0(OR(1)) such that the natural embedding
R→ P(H0(OR(1))∨) is equivariant.

Definition 1.1 (Categorical quotient). Let R be a scheme endowed with a G-action.
A categorical quotient is a scheme M with a G-invariant morphism p : R→M such
that for every other scheme M ′, and G-invariant morphism p′, there is a unique
morphism ϕ with p′ = ϕ ◦ p

R

p

��

p′

!!C
C

C

C

C

C

C

C

M
∃!ϕ

//___ M ′

Definition 1.2 (Good quotient). Let R be a scheme endowed with a G-action. A
good quotient is a scheme M with a G-invariant morphism p : R→M such that

(1) p is surjective and affine
(2) p∗(O

G
R) = OM , where OG

R is the sheaf of G-invariant functions on R.
(3) If Z is a closed G-invariant subset of R, then p(Z) is closed in M . Further-

more, if Z1 and Z2 are two closed G-invariant subsets of R with Z1∩Z2 = ∅,
then f(Z1) ∩ f(Z2) = ∅.

Definition 1.3 (Geometric quotient). A geometric quotient p : R → M is a good
quotient such that p(x1) = p(x2) if and only if the orbit of x1 is equal to the orbit
of x2.

Clearly, a geometric quotient is a good quotient, and a good quotient is a cate-
gorical quotient.

Geometric Invariant Theory (GIT) is a technique to construct good quotients (cf.
[Mu1]). Assume R is projective, and the action of G on R has a linearization on
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an ample line bundle OR(1). A closed point z ∈ R is called GIT-semistable if, for
some m > 0, there is a G-invariant section s of OR(m) such that s(z) 6= 0. If,
moreover, the orbit of z is closed in the open set of all GIT-semistable points, it is
called GIT-polystable, and, if furthermore, this closed orbit has the same dimension
as G ( i.e., if z has finite stabilizer), then z is called a GIT-stable point. We say
that a closed point of R is GIT-unstable if it is not GIT-semistable.

We will use the following characterization in [Mu1] of GIT-(semi)stability. Let
λ : C∗ → G be a one-parameter subgroup (by this we mean a nontrivial group
homomorphism, even if λ is not injective), and let z ∈ R. Then limt→0 z · λ(t) = z0
exists, and z0 is fixed by λ. Let t 7→ ta be the character by which λ acts on the fiber
of OR(1). Defining µ(z, λ) = a, Mumford proves that z is GIT-(semi)stable if and
only if, for all one-parameter subgroups, it is µ(z, λ)(≤)0.

Proposition 1.4. Let Rss (respectively, Rs) be the subset of GIT-semistable points
(respectively, GIT-stable). Both Rss and Rs are open subsets. There is a good
quotient Rss → R//G, the image Rs//G of Rs is open, R//G is projective, and the
restriction Rs → Rs//G is a geometric quotient.

There is one important case in which a scheme is only quasi-projective but GIT
can be applied to get a projective quotient: Assume that R′ is a G-acted scheme
with a linearization on a line bundleOR′(1), which is the restriction of a linearization
on an ample line bundle OR(1) on a projective variety R, and R′ = Rss, the open
subset of GIT-semistable points of R. Then we define R′//G = R//G.

Now we are going to describe Grothendieck’s Quot-scheme. This scheme param-
eterizes quotients of a fixed coherent sheaf V on X. That is, pairs (q, E), where
q : V � E is a surjective homomorphism and E is a coherent sheaf on X. An
isomorphism of quotients is an isomorphism α : E → E ′ such that the following
diagram is commutative

V
q

// // E

∼= α
��

V
q′

// // E′

A family of quotients parameterized by T is a pair (q : p∗XV � ET , ET ) where
ET is a coherent sheaf on X × T , flat over T . An isomorphism of families is an
isomorphism α : ET → E′

T such that α ◦ q = q′. Recall that X is a projective
scheme endowed with an ample line bundle OX(1). Therefore, if ET is flat over T
then the Hilbert polynomial PEt

is locally constant as a function of t ∈ T . If T is
reduced, the converse is also true.

Fix a polynomial P and a coherent sheaf V on X. Consider the contravariant
functor which sends a scheme T to the set of isomorphism classes of T -families of
sheaves with Hilbert polynomial P (and it is defined as pullback on morphisms).
Grothendieck proved that there is a projective scheme QuotX(V, P ), called the Quot
scheme, which represents this functor. In particular, there is a universal quotient,
i.e., a tautological family of quotients parameterized by QuotX(V, P ). We will be
interested in the case V = V ⊗C OX(−m), where V is a vector space and m is
sufficiently large.

Given a coherent sheaf E, there is an integer m(E) such that, if m ≥ m(E),
then E(m) is generated by global sections, h0(E(m)) = PE(m), and hi(E(m)) = 0
for i > 0 ([H-L, Def 1.7.1]). Assume that m ≥ m(E) and dimV = PE(m). An
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isomorphism f : V → H0(E(m)) induces a quotient

q : V ⊗C OX(−m)
∼=
−→ H0(E(m))⊗C OX(−m) −→ E

as above, and this is how a scheme parameterizing based sheaves (f,E) appears as
a subscheme of Grothendieck’s Quot scheme.

Note that if we have a set A of isomorphism classes of sheaves, there might not be
an integer m large enough for all sheaves. A set A of isomorphism classes of sheaves
on X is called bounded if there is a family ES of torsion free sheaves parameterized
by a scheme S of finite type, such that for all E ∈ A, there is at least one point s ∈ S
such that the corresponding sheaf Es is isomorphic to E. If a set A is bounded,
then we can find an integer m such that m ≥ m(E) for all E ∈ A, thanks to the
fact that S is of finite type.

Maruyama proved that the set A of semistable sheaves with fixed Hilbert poly-
nomial is bounded, and it follows that there is an integer m0, depending only on
the polynomial P and (X,OX (1)), such that m0 ≥ m(E) for all semistable sheaves
E. This technical result is crucial in order to construct the moduli space. In fact,
if dimX > 1, he was able to prove it only if the base field has characteristic 0, and
therefore he could only prove the existence of the moduli space in this case. Recently
Langer was able to prove boundedness for characteristic p > 0, and therefore he was
able to construct the corresponding moduli space [La].

Fix a Hilbert polynomial P , and let m ≥ m0. Let Y ⊂ QuotX(V ⊗COX(−m), P )
be the open subset of quotients such that E is torsion free and q induces an iso-
morphism V ∼= H0(E(m)). Let Y be the closure of the open set Y in QuotX(V ⊗C

OX(−m), P ). Note that there is a natural action of SL(V ) on QuotX(V⊗COX(−m)),
which sends the quotient q : V ⊗C OX(−m) → E to the composition q ◦ (g × id). It
leaves Y and Y invariant, and coincides with the previously defined action for based
sheaves (f,E).

To apply GIT, we also need an ample line bundle on Y and a linearization of the
SL(V )-action on it. This is done by giving an embedding of Y in P(V1), where V1

will be a vector space with a representation of SL(V ).
There are different ways of doing this, corresponding to different representations

V1. One of them corresponds to Grothendieck’s embedding of the Quot scheme.
This is the method used by Simpson [Si]. Let q : V ⊗C OX(−m) � E be a quo-
tient. Let l > m be an integer and W = H0(OX(l −m)). The quotient q induces
homomorphisms

q : V ⊗C OX(l −m) � E(l)
q′ : V ⊗W → H0(E(l))

q′′ :
∧
P (l)(V ⊗W ) →

∧
P (l)H0(E(l)) ∼= C

If l is large enough, these homomorphisms are surjective, and give Grothendieck’s
embedding of the Quot scheme.

QuotX(V ⊗C OX(−m), P ) −→ P
(∧

P (l)(V ∨ ⊗W∨)
)
,

The natural representation of SL(V ) in
∧
P (l)(V ∨⊗W∨) gives a linearization of the

SL(V ) action on the very ample line bundle OY (1) induced by this embedding on

Y .
A theorem of Simpson says that a point (q, E) ∈ Y is GIT-(semi)stable if and

only if the sheaf E is (semi)stable and the induced linear map f : V → H 0(E(m)) is

an isomorphism. In other words, Y = Y
ss

. Therefore, the GIT quotient Y //SL(V )
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is the moduli space M(P ) of semistable sheaves with Hilbert polynomial P . The
Chern classes ci ∈ H2i(X,C) in a family of sheaves are locally constant, therefore
the moduli space M(r, ci) of semistable sheaves with fixed rank and Chern classes
is a union of connected components of the scheme M(P ).

Another choice of representation V1 (and therefore, of line bundle on Y and lin-
earization of the action) is the one used by Gieseker and Maruyama. It is explained
in the lectures of Schmitt.

2. Moduli space of tensors

A tensor of type a is a pair (E,ϕ) where E is a torsion free sheaf and

ϕ : E

a︷ ︸︸ ︷
⊗ · · · ⊗E −→ OX

is a homomorphism. An isomorphism between the tensors (E,ϕ) and (E ′, ϕ′) is a
pair (f, α) where f is an isomorphism between E and E ′, α ∈ C∗, and the following
diagram commutes

E⊗a
ϕ

//

f⊗a

��

OX

α

��

E′⊗a
ϕ′

// OX

The definition of families of tensors and their isomorphisms are left to the reader
([G-S1]).

To define the notion of stability for tensors, it is not enough to look at subsheaves.
We have to consider filtrations E• ⊂ E. By this we always understand a Z-indexed
filtration

. . . ⊂ Ei−1 ⊂ Ei ⊂ Ei+1 ⊂ . . .

starting with 0 and ending with E (i.e., Ek = 0 and El = E for some k and l). We
say that the filtration is saturated if E i = Ei/Ei−1 is torsion free for all i. If we
delete, from 0 onward, all the non-strict inclusions, we obtain a filtration

0 ( Eλ1 ( Eλ2 ( · · · ( Eλt
( Eλt+1 = E λ1 < · · · < λt+1

Reciprocally, from a filtration Eλ• we recover the Z-indexed filtration E• by defining
Em = Eλi(m)

, where i(m) is the maximum index with λi(m) ≤ m.

Let Ia = {1, . . . , t+ 1}×a be the set of all multi-indexes I = (i1, . . . , ia) of cardi-
nality a. Define

(2.1) µtens(ϕ,Eλ•) = min
I∈Ia

{
λi1 + · · ·+ λia : φ|Eλi1

⊗···⊗Eλia

6= 0
}
,

or, in terms of the Z-indexed filtration,

(2.2) µtens(ϕ,E•) = min
I∈Ia

{
i1 + · · ·+ ia : φ|Ei1

⊗···⊗Eia
6= 0

}

Definition 2.1 (Balanced filtration). A saturated filtration E• ⊂ E of a torsion
free sheaf E is called a balanced filtration if

∑
i rkEi = 0 for Ei = Ei/Ei−1. In

terms of Eλ• , this is
∑t+1

i=1 λi rk(Eλi) = 0 for Eλi = Eλi
/Eλi−1

.

Definition 2.2 (Stability of tensors). Let δ be a polynomial of degree at most n− 1
(recall n = dimX) with positive leading coefficient. We say that a tensor (E,ϕ) is
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δ-(semi)stable if ϕ is not identically zero and for all balanced filtrations Eλ• of E,
it is

(2.3)
( t∑

i=1

(λi+1 − λi)
(
rPEλi

− rλi
P

))
+ µtens(φ,Eλ•) δ (≤) 0

We will always denote r = rkE and ri = rkEi. The notion of stability for tensors
looks complicated, but one finds that, in the applications, when the tensor has some
geometric meaning, it can be simplified. We will see some examples.

A framed bundle is a tensor of the form (E,ϕ : E → OX). If E is a vector bundle,
then taking the dual we have a section of E∨, so this is equivalent to the pairs
(E,ϕ : OX → E) considered by Bradlow, Garćıa-Prada and others. In this case, it
is enough to look at filtrations with one step, i.e. subsheaves E ′ ( E.

An orthogonal sheaf is a tensor of the form (E,ϕ : E ⊗ E → OX), where E is
torsion free and ϕ is symmetric and non-degenerate (in the sense that the induced
homomorphism detE → detE∨ is an isomorphism). A symplectic sheaf is analo-
gously defined, requiring the tensor ϕ to be skew-symmetric instead of symmetric.

Given a subsheaf E ′ ⊂ E, its orthogonal E ′⊥ is defined as the kernel of the
composition

E
ϕ̃
−→ E∨ −→ E′⊥ ,

where ϕ̃ is induced by ϕ.

Definition 2.3. An orthogonal (or symplectic) sheaf is (semi)stable if for all or-
thogonal filtrations, that is, filtrations with

E⊥
i = E−i−1

for all i, the following holds
∑

(rPEi
− riPE)(≤)0 .

It it shown in [G-S1] that an orthogonal (or symplectic) sheaf is (semi)stable if
and only if it is δ-(semi)stable as a tensor, when δ has degree n− 1.

A T -family of orthogonal sheaves is a T -family of tensors (ET , ϕT : ET ⊗ET −→
OX×T ) such that ϕT is symmetric and non-degenerate. Note that, since being
symmetric is a closed condition, it is not enough to check that ϕt is symmetric for
every point t ∈ T . On the other hand, being non-degenerate is an open condition,
so it is enough to check it for ϕt, for all points t ∈ T .

A Lie algebra sheaf is a pair (E,ϕ) where E is a torsion free sheaf and

ϕ : E ⊗E −→ E∨∨

is a homomorphism such that for each point x ∈ X, where E is locally free, the
induced homomorphism on the fiber ϕ(x) : E(x) ⊗ E(x) → E(x) is a Lie algebra
structure. An isomorphism to another Lie algebra sheaf (E ′, ϕ′) is an isomorphism
of sheaves f : E → E ′ with ϕ′ ◦ (f ⊗ f) = f ◦ ϕ.

At first sight, this does not seem to be included in the formalism of tensors, but,
using the canonical isomorphism

(2.4) (
r−1∧

E)∨ ⊗ detE
∼=
−→ E∨∨,

a Lie sheaf becomes a tensor of the form

(2.5) (F, ψ : F⊗r+1 −→ OX),
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with E = F ⊗ detF .

Definition 2.4. A Lie tensor is a tensors of type a = r + 1 which satisfies the
following properties

(1) ψ factors through F ⊗ F ⊗
∧r−1 F ,

(2) the homomorphism ψ̃ : F ⊗ F → F∨∨ ⊗ detF∨ associated by (2.4) is skew-
symmetric.

(3) the homomorphism ψ̃ satisfies the Jacobi identity.

There is a canonical bijection between the set of isomorphism classes of Lie sheaves
(E,ϕ : E⊗E → E∨∨) and Lie tensors (F,ψ : F⊗r+1 −→ OX) (with E = F ⊗detF ).

If the Lie algebra on the fiber E(x) for all x where E is locally free is always
isomorphic to a fixed semisimple Lie algebra g, then we say that it is a g-sheaf.
Then, the Killing form gives an orthogonal structure κ : E ⊗E → OX to E.

Definition 2.5. A g-sheaf is (semi)stable if for all orthogonal algebra filtrations,
that is, filtrations with

(1) E⊥
i = E−i−1 and (2) [Ei, Ei] ⊂ E ∨∨

i+j

for all i, j, the following holds
∑

(rPEi
− riPE)(≤)0 .

It is shown in [G-S2] that a g-sheaf is (semi)stable if and only if the associated
tensor is δ-(semi)stable, when δ has degree n− 1.

We will sketch how the moduli space of tensors is constructed. The idea is similar
to the construction of the moduli space of torsion free sheaves. First we construct
a scheme which classifies δ-semistable based tensors, that is, triples (f,E, ϕ) where
f : V → H0(E(m)) is an isomorphism, up to a constant, and (E,ϕ) is a δ-semistable
tensor. There is a natural embedding of this scheme in a product P(V1) × P(V2),
where V1 and V2 are representations of SL(V ). An ample line bundle with a lin-
earization of the SL(V ) action is given by OX(b1, b2). The choice of the integers
b1 and b2 will depend on the polynomial δ, and the moduli space of δ-semistable
tensors will be the GIT quotient..

To find V2, note that the isomorphism f : V → H0(E(m)) and ϕ induces a linear
map

Φ : V ⊗a −→ H0(E(m)⊗a) −→ H0(OX (am)) =: B .

Therefore, the semistable based tensor (f,E, ϕ) gives a point (q, [Φ])

H× P(V2) := QuotX(V ⊗C OX(−m), P )× P
(
(V ⊗a)∨ ⊗B

)

The points obtained in this way have the property that the homomorphism Φ com-
posed with evaluation factors as

V ⊗a ⊗OX(−am)

Φ
��

q⊗a

// // E⊗a

ϕ

rr

H0(OX(am))⊗OX(−am)

ev

��

OX
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Let Z ′ be the closed subscheme of H × P(V2) where there is a factorization as
above, and let Z ⊂ Z ′ be the closure of the open subset U ⊂ Z ′ of points (q :
V ⊗OX(−m) → E, [Φ]) such that the tensor is δ-semistable. Using Grothendieck’s
embedding H→ P(V1), explained in section 1, we obtain a closed embedding

Z −→ P(V1)× P(V2)

We endow Z with the polarization OZ(b1, b1), where

b2
b1

=
P (l)δ(m) − δ(l)P (m)

P (m)− aδ(m)

In other words, we use the Segre embedding

P(V1)× P(V2) −→ P(V ⊗b1
1 ⊗ V ⊗b2

2 )

and take the pullback of the ample line bundle OP(1).
It is proved in [G-S1] that a point in Z is GIT-(semi)stable if and only if the

induced linear map f : V → H0(E(m)) is an isomorphism and it corresponds to a
δ-(semi)stable based tensor. Therefore, the GIT quotient Z//SL(V ) is the moduli
space of δ-semistable tensors.

To show how this is used to obtain moduli spaces of related objects, we will sketch
the construction of the moduli space of orthogonal sheaves. First we construct the
projective scheme Z as before, for tensors of type a = 2, i.e., of the form (E,ϕ :
E ⊗ E → OX). The condition of being symmetric is closed, so it defined a closed
subscheme R ⊂ Zss, and the GIT quotient R//SL(V ) is projective. On the other
hand, the condition of being nondegenerate is open, so it defines an open subscheme
R1 ⊂ R. How can we prove that, after we remove the points corresponding to
degenerate bilinear forms, the quotient is still projective?. The idea is to show that,
if (E,ϕ) is degenerate, then it is δ-unstable (we remark that, to prove this, we need
the degree of δ to be n− 1). Therefore, R1 = R, because all tensors corresponding
to points in R are semistable.

In other words, the moduli space of orthogonal sheaves R1//SL(V ) is projective
because the inclusion R1 ↪→ R is proper (in fact, it is the identity). Every time we
impose a condition which is not closed, we have to prove a properness result of this
sort, in order to show that the moduli space is projective.

The tensors defined in this section can easily be generalized to tensors of type
(a, b, c), that is, pairs (E,ϕ) consisting of a torsion free sheaf and a homomorphism

(2.6) ϕ : (E⊗a)⊗b −→ (detE)⊗c .

This more general notion will be needed in section 5.

3. Principal bundles

Recall that, in the étale topology, an open covering of a scheme Y is a finite
collection of morphisms {fi : Ui → Y }i∈I such that each fi is étale, and Y is the
union of the images of the fi.

Note that an “open étale subset” of a scheme Y is not really a subset of Y , but an
étale morphism U → Y . If f : X → Y is a morphism, by a slight abuse of language
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we will denote by f−1(U) the pull-back

f−1(U) //

��

X

f

��

U // Y

Let G be an algebraic group. A principal G-bundle on X is a scheme P with a
right G-action and an invariant morphism P → X with a G-torsor structure. A
G-torsor structure is given by an atlas consisting on an étale open covering {Ui} of
X and G-equivariant isomorphisms ψi : p−1(Ui) → Ui × G, with p = pUi

◦ ψi (the
G-action on Ui × G is given by multiplication on the right). Two atlases give the
same G-torsor structure if their union is an atlas.

In short, a principal bundle is locally trivial in the étale topology, and the fibers
are G-torsors. We remark that, if we were working in arbitrary characteristic, an
algebraic group could be non-reduced, and we should have used used the flat topol-
ogy.

An isomorphism of principal bundles is a G-equivariant isomorphism ϕ : P → P ′.
Given a principal G-bundle as above, we obtain an element of the étale coho-

mology set Ȟ1
et(X,G), and this gives a bijection between isomorphism classes of

principal G-bundles and elements of this set. Indeed, since the isomorphisms ψi of
an atlas are required to be G-invariants, the composition ψj ◦ ψ

−1
i is of the form

(x, g) 7→ (x, αij(x)g), where αij : Ui ∩ Uj → G is a morphism, which satisfies the

cocycle condition and defines a class in Ȟ1
et(X,G).

Given a principal G-bundle P → X and a left action σ of G in a scheme F , we
denote

P (σ, F ) := P ×G F = (P × F )/G,

the associated fiber bundle. Sometimes this notation is shortened to P (F ) or P (σ).
In particular, for a representation ρ of G in a vector space V , P (V ) is a vector
bundle on X, and if χ is a character of G, P (χ) is a line bundle.

If ρ : G → H is a group homomorphism, let σ be the action of G on H defined
by left multiplication h 7→ ρ(g)h. Then, the associated fiber bundle is a principal
H-bundle, and it is denoted ρ∗P . We say that this principal H-bundle is obtained
by extension of structure group.

Let ρ : H → G be a homomorphism of groups, and let P be a principal G-bundle
on a scheme Y . A reduction of structure group of P to H is a pair (P H , ζ), where
PH is a principal H-bundle on Y and ζ is an isomorphism between ρ∗P

H and P .
Two reductions (PH , ζ ) and (QH , θ) are isomorphic if there is an isomorphism α
giving a commutative diagram

(3.1) PH

α∼=
��

QH

ρ∗P
H

ζ
//

ρ∗α

��

P

ρ∗Q
H θ

// P

The names “extension” and “reduction” come from the case in which ρ is injective,
but note that these notions are still defined if the homomorphism is not injective.

If ρ is injective, giving a reduction is equivalent to giving a section σ of the
associated fibration P (G/H), where G/H is the quotient of G by the right action
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of H. Indeed, such a section gives a reduction PH by pull-back

PH
i

//

��

P

��

X
σ

//// P (G/H)

and the isomorphism ζ is induced by i. Conversely, given a reduction (P H , ζ), the
isomorphism ζ induces an embedding i : PH → P , and the quotient by H of this
morphism gives a section σ as above.

For example, if G = O(r) and H = GLr, the quotient H/G is the set of non-
degenerate bilinear symmetric forms on the vector space Cr, hence a section of
P (H/G) is just a non-degenerate bilinear symmetric morphism E⊗E → OX , where
E is the vector bundle associated to the principal GLr-bundle.

To construct the moduli space, we will assume that G is a connected reductive
algebraic group. Let G′ = [G,G] be the commutator subgroup, and let g = z ⊕ g′

be the Lie algebra of G, where g′ is the semisimple part and z is the center.
Recall that, in the case of vector bundles, to obtain a projective moduli space when

dimX > 1, we had to consider also torsion free sheaves. Analogously, principal G-
bundles are not enough if we want a projective moduli space, and this is why we
also consider principal G-sheaves, which we will now define.

Definition 3.1. A principal G-sheaf P over X is a triple P = (P,E, ψ) consisting
of a torsion free sheaf E on X, a principal G-bundle P on the maximal open set UE
where E is locally free, and an isomorphism of vector bundles

ψ : P (g′)
∼=
−→ E|UE

.

This definition can be understood from two points of view. ¿From the first point
of view, we have a torsion free sheaf E on X, together with a reduction to G, on
the open set UE , of the principal GLr-bundle corresponding to the vector bundle
E|UE

. Indeed, the pair (P,ψ) is the same thing as a reduction to G of the principal
GLr-bundle on UE associated to the vector bundle E|UE

. It can be shown that, if
we are given a reduction to a principal G-bundle on a big open set U ′ ( UE, this
reduction can uniquely be extended to UE .

¿From the other point of view, we have a principal G-bundle on a big open set U ,
hence a vector bundle P (g′), together with a given extension of this vector bundle
on U to a torsion free sheaf on the whole of X.

The Lie algebra structure of g′ is semisimple, hence the Killing form is non-
degenerate. Correspondingly, the adjoint vector bundle P (g′) on U has a Lie algebra
structure P (g′)⊗P (g′) → P (g′) and an orthogonal structure, κ : P (g′)⊗P (g′) → OU .
These uniquely extend to give orthogonal and g′-sheaf structure to E:

κ : E ⊗E −→ OX [ , ] : E ⊗E −→ E∨∨

where we have to take E∨∨ in the target because an extension E⊗E → E does not
always exist. The orthogonal structure assigns an orthogonal F ⊥ = ker(E ↪→ E∨ →
F∨) to each subsheaf F ⊂ E.

Definition 3.2. A principal G-sheaf P = (P,E, ψ) is said to be (semi)stable if for
all orthogonal algebra filtrations E• ⊂ E, that is, filtrations with

(1) E⊥
i = E−i−1 and (2) [Ei, Ei] ⊂ E ∨∨

i+j
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for all i, j, the following holds
∑

(rPEi
− riPE)(≤)0

Replacing the Hilbert polynomials PE and PEi
by degrees, we obtain the notion

of slope (semi)-stability.
Clearly

slope-stable =⇒ stable =⇒ semistable =⇒ slope-semistable

Since G/G′ ∼= C∗q, given a principal G-sheaf, the principal bundle P (G/G′) ob-
tained by extension of structure group provides q line bundles on U , and since
codimX \ U ≥ 2, these line bundles extend uniquely to line bundles on X. Let
d1, . . . , dq ∈ H

2(X,C) be their Chern classes. The rank r of E is clearly the dimen-
sion of g′. Let ci be the Chern classes of E.

Definition 3.3 (Numerical invariants). We call the data τ = (d1, . . . , dq, ci) the
numerical invariants of the principal G-sheaf (P,E, ψ).

Definition 3.4 (Family of semistable principal G-sheaves). A family of (semi)stable
principal G-sheaves parameterized by a scheme S is a triple (PS , ES , ψS), with ES
a family of torsion free sheaves, PS a principal G-bundle on the open set UES

where
ES is locally free, and ψ : PS(g′) → ES|UES

an isomorphism of vector bundles, such

that for all closed points s ∈ S the corresponding principal G-sheaf is (semi)stable
with numerical invariants τ .

An isomorphism between two such families (PS , ES , ψS) and (P ′S , E
′
S , ψ

′
S) is a pair

(β : PS
∼=
−→ P ′S , γ : ES

∼=
−→ E′

S)

such that the following diagram is commutative

PS(g′)
ψ

//

β(g′)

��

ES|UES

γ|UES

��

P ′S(g′)
ψ′

// E′
S|UES

where β(g′) is the isomorphism of vector bundles induced by β. Given an S-family

PS = (PS , ES , ψS) and a morphism f : S ′ → S, the pullback is defined as f̃∗PS =

(f̃∗PS , f
∗
ES , f̃

∗ψS), where f = idX ×f : X × S → X × S ′ and f̃ = i∗(f) : Uf∗ES
→

UES
, denoting i : UES

→ X × S the inclusion of the open set where ES is locally
free.

We can then define the functor of families of semistable principal G-sheaves

F τG : (Sch /C) −→ (Sets)

sending a scheme S, locally of finite type, to the set of isomorphism classes of families
of semistable principal G-sheaves with numerical invariants τ . As usual, it is defined
on morphisms as pullback.

Theorem 3.5. There is a projective moduli space of semistable G-sheaves on X
with fixed numerical invariants.

This theorem is a generalization of the theorem of Ramanathan, asserting the
existence of a moduli space of semistable principal bundles on a curve.

Note that in the definition of principal G-sheaf we have used the adjoint rep-
resentation on the semisimple part g′ of the Lie algebra of G, to obtain a vector



16 T. GÓMEZ

bundle P (g′) on a big open set of X, which we extend to the whole of X by torsion
free sheaf. If we use a different representation ρ : G → GLr, we have the notion of
principal ρ-sheaf:

Definition 3.6. A principal ρ-sheaf P over X is a triple P = (P,E, ψ) consisting
of a torsion free sheaf E on X, a principal G-bundle P on the maximal open set UE
where E is locally free, and an isomorphism of vector bundles

ψ : P (ρ)
∼=
−→ E|UE

.

Now we will give some examples of principal ρ-sheaves which have already ap-
peared:

• If G = GLr and ρ is the canonical representation, then a principal ρ-sheaf is
a torsion free sheaf.

• If G = O(r) and ρ is the canonical representation, then a principal ρ-sheaf
is an orthogonal sheaf.

• If G = SO(r) and ρ is the canonical representation, then a principal ρ-sheaf
is a special orthogonal sheaf (cf. [G-S1]), that is, a triple (E,ϕ, ψ) where
ϕ : E ⊗ E → OX symmetric and nondegenerate, and ψ : detE → OX is an
isomorphism such that detϕ = ψ⊗2.

• If G = Sp(r) and ρ is the canonical representation, then a principal ρ-sheaf
is a symplectic sheaf.

• If G is semisimple and ρ is injective, then giving a principal ρ-sheaf is equiv-
alent to giving a honest singular principal bundle [Sch1, Sch2] with respect
to the dual representation ρ∨ (see section 5).

In all these cases (and also for principal G-sheaves, i.e., when ρ : G → GL(g′) is
the adjoint representation), the stability condition is equivalent to the following:

Definition 3.7 (Stability for principal ρ-sheaves). A principal ρ-sheaf P = (P,E, ψ)
is said to be (semi)stable if for all reductions on any big open set U ⊂ UE of P to
a parabolic subgroup Q ( G, and all dominant characters of Q, which are trivial on
the center of Q, the induced filtration of saturated torsion free sheaves

. . . ⊂ Ei−1 ⊂ Ei ⊂ Ei+1 ⊂ . . .

satisfies the following ∑
(rPEi

− riPE)(≤)0

4. Construction of the moduli space of principal sheaves

In this section we will give a sketch of the construction of the moduli space in
[G-S2]. The strategy is close to that of Ramanathan.

Let r = dim g′, and consider the adjoint representation ρ : G → GLr of G in g′.
The idea of Ramanathan is to start by constructing a scheme R0 which classifies
based vector bundles of rank r, and then to construct another scheme Q→ R0 such
that the fiber over each based vector bundle (f,E) parameterizes all reductions to
G of the principal GLr-bundle E. In other words, Q classifies tuples (f, P,E, ψ),
where f is an isomorphism of a fixed vector space V with H 0(E(m)), P is a principal
G-bundle and ψ is an isomorphism between the vector bundle P (ρ, g′) and E.

The problem is that ρ is not injective in general, so it is not easy to construct a
reduction of structure group from GLr to G in one step. Therefore, Ramanathan
factors the representation ρ into several group homomorphisms, and then constructs
reductions step by step.
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Recall that G′ = [G,G] is the commutator subgroup. Let Z (respectively, Z ′) be
the center of G (respectively, G′). Note that Z ′ = G′∩Z. The adjoint representation
factors as follows

G
ρ3

// // G/Z ′
ρ′2

// // G/Z �

� ρ2
// Aut(g′) �

� ρ1
// GLr

and the schemes parameterizing these reductions are

R3
f3
−→ R′2

f ′2−→ R2
f2−→ R1 −→ R0

In the case dimX = 1 this works well because a principal G-bundle is semistable
if and only if the associated vector bundle is semistable. This is no longer true if
X is not a curve, and this is why, for arbitrary dimension, we do not construct the
scheme R0, but instead start directly with a scheme R1, classifying semistable based
principal Aut(g′)-sheaves.

Here Aut(g′) denotes the subgroup of GLr of linear automorphisms which respect
the Lie algebra structure. Therefore, a based principal Aut(g′)-sheaf is the same
thing as a based g′-sheaf.

Using the isomorphism (2.4), we can describe a g′-sheaf as a Lie tensor (definition
2.4). such that the Lie algebra structure induced on the fibers of E, over points
x ∈ X where E is locally free, is isomorphic to g′.

Choose a polynomial δ of degree dimX − 1, with positive leading coefficient.
We fix the first Chern class to be zero. This is because we are interested in g′-
sheaves, and since g′ is semisimple, its Killing form is nondegenerate, hence induces
an orthogonal structure on the sheaf, and this forces the first Chern class to be zero.

We start with the scheme Z, defined in section 2, classifying based tensors of
type a = r + 1. This scheme has an open subset Z ss corresponding to δ-semistable
tensors. Conditions (1) to (3) in the definition of Lie tensor are closed, hence they
define a closed subscheme R ⊂ Zss. Using the isomorphism (2.4), we see that the
scheme R parameterizes Lie sheaves. Recall that a Lie sheaf structure induces a
Killing form κ : E ⊗E → OX .

Lemma 4.1. There is a subscheme R1 ⊂ R corresponding to those Lie tensors
which are g′-tensors.

The family of Lie sheaves parameterized by R gives a family of Killing forms
ER ⊗ ER → OX×R, and hence a homomorphism f : detER → detE∨

R. We have
fixed the determinant of the tensors to be trivial, hence detER is the pullback of
a line bundle on R, and therefore the homomorphism f is nonzero on an open set
of the form X ×W , where W is an open set of R. The open set W is in fact the
whole of R. This is because if z is a point in the complement, it corresponds to a
Lie sheaf whose Killing form is non-degenerate, and hence has a nontrivial kernel.
Using this, it is possible to construct a filtration which shows that this Lie sheaf is
δ-unstable when deg δ = dimX − 1, but this contradicts the fact that R ⊂ Y ss.

The Killing form of a Lie algebra is semisimple if and only if it is non-degenerate.
Therefore, for all points (x, t) in the open subset UER

⊂ X ×R where ER is locally
free, the Lie algebra is semisimple.

Semisimple Lie algebras are rigid, that is, if there is a family of Lie algebras, the
subset of the parameter space corresponding to Lie algebras isomorphic to a given
semisimple Lie algebra is open. Therefore, since UE is connected for all torsion free
sheaves E, all points (x, t) ∈ UER

⊂ X×R where t is in a fixed connected component
of R, give isomorphic Lie algebras. Let R1 be the union of those components whose
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Lie algebra is isomorphic to g′. The inclusion

i : R1 ↪→ R

is proper, and hence, since the GIT quotient R//SL(V ) is proper, also the GIT
quotient R1//SL(V ) is proper. Note that, to prove properness of i, two facts about
semisimple Lie algebras were used: rigidity, and nondegeneracy of their Killing
forms.

For simplicity of the exposition, to explain the successive reductions, first we will
assume that for all g′-sheaves (E,ϕ), the torsion free sheaf E is locally free. In other
words, UE = X (this holds, for instance, if dimX = 1). At the end we will mention
what has to be modified in order to consider the general case.

The group G/Z is the connected component of identity of Aut(g′). Therefore,
giving a reduction of structure group of a principal Aut(g′)-bundle P by ρ2 is the
same thing as giving a section of the finite étale morphism P (F ) → X, where F
is the finite group Aut(g′)/(G/Z). This implies that R2 → R1 is a finite étale
morphism, whose image is a union of connected components of R1.

There is an isomorphism of groups G/Z ′ ∼= G/G′ × G/Z, and ρ′2 is just the
projection to the second factor. Therefore, a reduction to G/Z ′ of a principal G/Z-

bundle PG/Z is just a pair (PG/G
′

, PG/Z), where PG/Z is the original G/Z-bundle

and PG/G
′

is a G/G′-bundle. But

G/G′ ∼= C∗

q︷ ︸︸ ︷
× · · · ×C∗ ,

hence this is just a collection of q line bundles, whose Chern classes are given by the
numerical invariants which have been fixed. This implies that there is an isomor-
phism

R′2
∼= J

q︷ ︸︸ ︷
× · · · × J ×R2 ,

where J is the Jacobian of X.
Finally, we have to consider reductions of a principal G/Z ′-bundle to G, where

Z ′ is a finite subgroup of the center of G. There is an exact sequence of pointed sets
(the distinguished point being the trivial bundle)

Ȟ1
et(X,Z

′) −→ Ȟ1
et(X,G) −→ Ȟ1

et(X,G/Z
′)

δ
−→ Ȟ2

et(X,Z
′) .

Note that Z ′ is abelian, therefore H i
et(X,Z

′) is an abelian group, and it is isomorphic
to the singular cohomology group H i(X;Z ′), hence finite. A principal G/Z ′-bundle
admits a reduction to G if and only if the image by δ of the corresponding point
is 0. This is an open and closed condition, therefore there is a subscheme R̂′2 of
R′2, consisting of a union of connected components, corresponding to those principal
G/Z-bundles admitting a reduction to G.

Let (PG, ζ) be a reduction to G of a principal G/Z ′-bundle. It can be shown
that the set of isomorphism classes of all reductions to G is in bijection with the
cohomology set Ȟ1

et(X,Z
′), with the unit element of this set corresponding to the

chosen reduction (PG, ζ). This cohomology set is an abelian group, because Z ′ is
abelian. Therefore, the set of reductions of a principal G/Z ′-bundle to G is an

Ȟ1
et(X,Z

′)-torsor, and this implies that R3 → R̂′2 is a principal Ȟ1
et(X,Z

′)-bundle.
Using that this cohomology set is a finite set (in fact isomorphic to the singular

cohomology group H1(X;Z ′)), and that R̂′2 is a union of connected components of
R′2, it follows that R3 → R′2 is finite étale.
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Ramanathan [Ra, Lemma 5.1]proves that, if H is a reductive algebraic group,
f : Y → S is an H-equivariant affine morphism, and p : S → S is a good quotient,
then Y has a good quotient q : Y → Y and the induced morphism f is affine.
Moreover, if f is finite, f is also finite. When f is finite and p is a geometric
quotient, also q is a geometric quotient.

The group SL(V ) acts on all the schemes Ri, and the morphisms f2 and f3

are equivariant and finite. Therefore, we can apply Ramanathan’s lemma to those
morphisms.

The morphism f ′2 : J×q × R2 → R2 is just projection to a factor, and the group
acts trivially on the fiber, therefore if p2 : R2 → M2 is a good quotient of R2,
J×q ×M2 will give a good quotient of R′

2. Furthermore, if p2 becomes a geometric
quotient when restricting to an open set, the same will be true after taking the
product with J×q.

Using GIT, we know that R1 has a good quotient M1, which is a geometric
quotient when restricting to the open set of stable points. Therefore, the same
holds for all these schemes, and the good quotient of R3 is the moduli space of
principal G-bundles.

The successive reductions in higher dimension are very similar to the reductions
in the case X is a curve, except for the technical difficulty that the principal bundles
in general are not defined in the whole of X, but only in a big open set. To overcome
this difficulty, we need “purity” results for open sets U ⊂ X when U is big. We will
discuss them one by one.

First we consider reductions of a principal Aut(g′)-bundle P to G/Z. These are
parameterized by sections of the associated fibration P (F ), where F = Aut(g ′)/(G/Z)
is a finite group. If P is a principal bundle on a big open set U , P (F ) is a Galois
cover of U , given by a representation of the algebraic fundamental group of π(U)
in F . Since U is a big open set, π(X) = π(U) (purity of fundamental group), and
hence the Galois cover P (F ) of U extends uniquely to a Galois cover of X. This
implies that, even if dimX > 1, the morphism R2 → R1 is still finite étale, as in
the curve case.

Giving a reduction of a principal G/Z-bundle on U to a principal G/Z ′-bundle is
equivalent to giving q line bundles on U . Since U is a big open set, the Jacobians
of U and X are isomorphic (purity of Jacobian), and hence we still have R ′

2 =
J(X)×q ×R2.

Finally, we have to consider reductions of principal G/Z ′-bundles to G. Using
the fact that U is a big open set, there are isomorphisms Ȟi

et(X,Z
′) ∼= Ȟi

et(U,Z
′)

for i = 1, 2. Therefore, the arguments used for the case U = X still hold in general,
and it follows that R3 → R′2 is étale finite.

5. Construction of the moduli space of principal ρ-sheaves

In [Sch1, Sch2], A. Schmitt fixes a semisimple group G and a faithful representa-
tion ρ, defines semisimple honest singular principal bundle with respect to this data
(see definition below), and constructs the corresponding projective moduli space.
Giving such an object is equivalent to giving a principal ρ∨-bundle, where ρ∨ is
the dual representation in V ∨. In this section we will give a sketch of Schmitt’s
construction.

Let G be a semisimple group, and ρ : G → GL(V ) a faithful representation. A
honest singular principal G-bundle is a pair (A, τ), where A is a torsion free sheaf
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on X and
τ : Sym∗(A⊗ V )G −→ OX

is a homomorphism of OX -algebras such that, if σ : X → Hom(V ⊗OU ,A|
∨
U )//G is

the induced morphism, then

σ(U) ⊂ Isom(V ⊗OU ,A|
∨
U )/G ⊂ Hom(V ⊗OU ,A|

∨
U )//G .

It can be shown that the points in the affine U -scheme Isom(V ⊗C OU ,A|
∨
U ) are in

the open set of GIT-polystable points of Hom(V ⊗C OU ,A|
∨
U ), under the natural

action of G, therefore the previous inclusion makes sense.
Note that the homomorphism τ is uniquely defined by its restriction to U ⊂

X, therefore, giving a honest singular principal G-bundle is equivalent to giving a
principal ρ∨-sheaf (P,E, ψ), where ρ∨ : G→ GL(V ∨) is the dual representation, P
is a principal GLn-bundle, E = A, and ψ is induced by σ|U .

In other words, in a principal ρ-sheaf, we extend to the whole of X, as a torsion
free sheaf E, the vector bundle associated to ρ, whereas, is a honest singular principal
G-bundle associated to ρ, we extend the dual of the vector bundle associated to ρ.

The idea of Schmitt’s construction is to transform τ into a tensor. Note that τ is
an infinite collection of OX -module homomorphisms

(5.1) τi : Symi(A⊗ V )G −→ OX ,

but, since Sym∗(A⊗ V )G is finitely generated as a OX -algebra, there is an integer
s such that

(1) the sheaf
s⊕

i=1

Symi(A⊗ V )G

contains a set of generators of the algebra, and
(2) the subalgebra

Sym(s!)(A⊗ V )G :=

∞⊕

m=0

Syms!m(A⊗ V )G

is generated by elements in Syms!(A⊗ V )G .

Using the homomorphisms τs, we construct a homomorphism of OX -modules

(5.2)
⊕

∑
idi=s!

( s⊗

i=1

Symdi

(
Symi(A⊗ V )G

))
� Syms!(A⊗ V )G

τs−→ OX

Note that the vector space

⊕
∑
idi=s!

( s⊗

i=1

Symdi

(
Symi(Cr ⊗ V )G

))

has a canonical representation of GLn, homogeneous of degree s!, and hence it is a
quotient of the representation

(C⊗a)⊕b ⊗ (

r∧
Cr)−⊗c

for appropriate values of a, b and c. Therefore, there is a surjection

(5.3) (A⊗a)⊕b ⊗ (detA)−⊗c �

⊕
∑
idi=s!

( s⊗

i=1

Symdi

(
Symi(A⊗ V )G

))
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and composing (5.2) with (5.3) we obtain a tensor of type (a, b, c), as in (2.6).
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