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Abstract

We show how to compute the structure constants for cohomological
multiplication of Schubert classes by exploiting the action of the Weyl
group and that of BGG-operators, on the cohomology ring of a flag variety.
We illustrate this method with simple proofs of the Chevalley and Pieri
formulas.

1 Introduction

One of the main problems of Schubert calculus on flag varieties (or generalized
flag varieties G/B) is to give expressions for the structure constants for the co-
homological multiplication of Schubert classes. The main problem is to describe
these structure constants as the cardinalities of some sets, but also “closed” for-
mulas for the structure constants are of some interest. This is a classical topic
starting with the work of Schubert, Giambelli, Pieri, Lesieur, Hodge-Pedoe,
Littlewood-Richardson !, Borel, Chevalley, Monk, and Horrocks, and continuing
in recent years with the work of Bernstein-Gelfand-Gelfand, Demazure, Koch,
Lascoux-Schiitzenberger, Kleiman-Laksov, Stoll, Carrell, Kostant-Kumar, Hiller-
Boe, Stembridge, Akyildiz, Sertoz, Fulton, Pragacz-Ratajski, Bergeron-Sottile,
Knutson, Vakil, Buch-Kresch-Tamvakis, Duan, and Gatto — to mention a few.
We do not attempt to survey this activity here, but in the bibliographical ref-
erences the reader may find a vast discussion of the structure constants.

The purpose of this note is to give a closed formula (Theorem 1) for these
constants. This formula evolved from a sequence of papers [24], [25], and [26]
(see also [23] and [9]). The first main tool that we use is the action of the Weyl
group on H*(G/B, Q) expressed in terms of Schubert classes. The second main
tool is the theory of BGG-operators acting as skew derivations on H*(G/B, Q).
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IThe famous combinatorial Littlewood-Richardson rule governing the multiplication of
Schubert classes on Grassmannians, was found, in fact, in a parallel context of representation
theory. The same remark applies to the contribution of Stembridge.



These fundamental tools were developed mainly by Bernstein-Gelfand-Gelfand
[1] and Demazure [6], [7] in the 70’s, as a continuation of the work of Borel [2].

We illustrate our method with short proof the Chevalley formula (Theorem
2), and transparent, purely algebro-combinatorial proof of the classical Pieri
formula (Theorem 3). (These proofs were mentioned in [11], p.122 and [26],
p.50, respectively.)

Background. The content of this note was obtained in the 90’s and has not
been written up until now.? Following an encouragement of Michel Brion, we
have decided to publish it now because of an increasing interest in the structure
constants. The story told here is closely related to the lecture notes by Brion
[3], Buch [4], Duan [8], and Tamvakis [27] in the present volume. This is, in
fact, the main reason for the appearance of this note here.

2 Characteristic map and BGG-operators

A general reference for group-theoretic notions used in this note is [17].

Let G be a semisimple algebraic group and B C G a Borel subgroup.

Let X be a variety on which B acts freely (from the right). Suppose that
the quotient X/B exists so that p: X — X/B is a principal B-bundle. On the
other hand, let 4 : B — GL(V) be a linear representation. We denote by L,
the vector bundle X x? V that is the quotient of X x V by the equivalence
relation

(z,0) ~ (b, p(b)"v),

where z € X, b € B, and v € V. Equivalently, if U is an open subset of X/B,
then I'(U, L,) is the set of morphisms ¢ : p~*(U) — V such that p(zb) =
u(h) " (a).

In particular, with any character x of B (that is, a homomorphism of B into
the multiplicative group) there is associated a line bundle £,; this induces a
homomorphism of groups X *(B) — Pic(X/B), where X*(B) denotes the group
of characters of B.

Composing this homomorphism with the homomorphism of the first Chern
class from Pic(X/B) to H?(X/B,Z), one gets a homomorphism from X *(B) to
H?(X/B,Z), which extends to a homomorphism of graded rings

¢:S*(X*(B)) - H*(X/B,Z)

from the symmetric algebra of the Z-module X*(B) to the cohomology ring of
X/Bj; this homomorphism is called the characteristic map of the fiber bundle
p: X — X/B. In this note, S = ®S* will denote the symmetric algebra
S*(X*(B)) = @S*(X*(B)).

2The material of this note was presented at various Impanga seminars, and, e.g., at the
Littelmann-Mathieu seminar in Strasbourg (December, 1994), at the Summer School “Schu-
bert Varieties” in Thurnau (June, 1995), and at the topology seminar at CAS in Beijing (June,
2002).



Choose a maximal torus T C B with the Weyl group W = Ng(T)/T of
(G,T). Then W acts on the group of characters X*(T') of T', and since X*(B) =
X*(T), this induces an action of W on S.

The root system of (G,T) is denoted by R; the set RT of positive roots
consists in the opposites of roots of (B,T). Let A C R* be the associated
basis of R. The Weyl group W is generated by simple reflections, i.e. by the
reflections associated with the elements of A. For any root a € R, we denote by
S« the reflection associated with a. The reflection s, can be realized as a linear
endomorphism of the Euclidean space X*(T') ® R, equipped with a W-invariant
inner product (, ). We have s4(A) =X — (a¥,N)a, where a¥ = 2a/(a, @).

By a reduced decomposition of an element w € W we understand a presen-
tation w = sq, - -84, wWhere all o, € A, and [ is the smallest number occurring
in such a presentation, called the length of w and denoted [(w).

By wy we denote the longest element of W, the unique element of W with
length equal to the cardinality of RT.

We shall need the following “BGG-operators” A,, w € W, acting on the
ring S (cf. [1], [6], and [7]).

Definition 1 Given a root o and f € S, we set

f_soz(f)‘

(07

Aa(f) =

The operator A, is a well defined (group) endomorphism on S lowering the
degree by 1. Note that A,(f) = (", f) for f € S!; this will be used in the
proof of Theorem 2.

We now record (cf. [1], Theorem 3.4 and [6], Théoreme 1):
Lemma 1 If ay,...,ax and Bq,-.., B, are simple roots such that
Say " Sa, = 88, " 55,
are two reduced decompositions, then
Aoq "'Aozk :A,Bl Aﬁk
Thus for w € W, given its reduced decomposition w = sq, * - * Sq,, the operator
Ay = Ay, - Ag,
is well-defined (i.e. doesn’t depend on a reduced decomposition of w).

The following result says how the BGG-operators act on products (cf., e.g.,
[6], Eq. (6), p.289):

Lemma 2 We have for f,g € S and a simple root «,

Aa(fg) = Aa(f)g_'_sa(f)Aa(g)' (1)



Geometric interpretations of BGG-operators are related to correspondences
in flag bundles (cf., e.g., [11], Chap.2 and 6), and Gysin maps for Bott-Samelson
schemes. These schemes are described in the notes by Brion [3] and Duan [8]
in the present volume. This last aspect of BGG-operators is discussed in [11],
Appendix C.

The reader may also consult [15] for a detailed treatment of the so-called
Schubert calculus of the coinvariant algebra, that is based on BGG-operators.

3 Structure constants for Schubert classes

In the geometry of flag manifolds G/ B a large role is played by the Schubert cells
BwB/B and their closures called Schubert varieties. We set X" := BwowB/B.
The cohomology class [X*] of X lies in H?(¥)(G/B,Z). The Schubert cells
form a cellular decomposition of G/ B, so the classes [X¥] form an additive basis
for the cohomology.

Our goal, in this section, is to give a closed formula for the constants ci,, ,
appearing in the decomposition of the product

[XUTUX] =) el [XY] (2)

of Schubert classes.

We shall need a couple of tools that we describe now.

The characteristic map ¢ : S — H*(G/B,Z) of the fibration G — G/B is
usually called the Borel characteristic map. Its kernel is generated by positive
degree W-invariants, and ¢ ® Q is surjective (cf. [2]), so that the cohomology
ring H*(G/B, Q) is identified with the quotient of S ® Q modulo the ideal
generated by positive degree W-invariants. By combining this last property
with Lemma 2, we infer that the BGG-operators induce — via the characteristic
map — operators A,, on H*(G/B, Q) lowering the degree by 2I(w).

In particular, for a,b € H*(G/B, Q) and a simple root «, we have

Ap(aUb) = Ay(a) Ub+ sq(a) U Ay(D) . (3)

Iterations of this equation will play an important role in the present section and
the next one.

Note also that the action of W on S induces — via the characteristic map —
an action of W on H*(G/B, Q). (This action will be described below in terms
of Schubert classes — cf. Lemma 4.)

We record the following equation relating three “heroes” of the present note:
the characteristic map, BGG-operators, and Schubert classes (cf. [7], Section 4
and [1], Section 4): for f € S*, in H*(G/B,Z) we have

o(f)= Y Aw(HIX"]. (4)

l(w)=k



This equation is closely related to the question of finding polynomial represen-
tatives of Schubert classes — a problem that we do not address in the present
note (cf. [11] for a discussion of this issue).

The next result says how the operators A, act on Schubert classes (cf. [1],
Theorem 3.14 (i)):

Lemma 3 For [(vw™?!) =1(v) — l(w), we have
A (X)) =[x ], (5)
and in the opposite case, A, ([X?]) =0.

We have also the following formula for the action of a simple reflection on a
Schubert class (cf. [1], Theorem 3.12 (iv) and [7], Proposition 3):

Lemma 4 For a simple root o and w € W,
sa([XY]) =[X"]  if Uwsa) =1(w) +1; (6)

sa([XY]) = =[X"] =D (Y, )X if U(wse) =1(w) =1, (7)

where the sum is over all positive roots B # o such that l(wsqsg) = l(w).

We now proceed towards computing the structure constants cj,,. By com-
bining Equations (2) and (5), we can express the coefficient ¢, as follows:

Cow = Au([XU]UX]). (8)
Suppose that I(w) = k and I(v) = 1. Take a reduced decomposition of u:

U= Sa; " Sapy -
Iterating (3) we obtain
Clow = Ay Aap (XTU X)) = D Ar([X*]) U AL(XY)),
where the sum is over all subsequences I = (i; < --- <) C {1,2,...,k + 1},

Ar = Aq,, o+ Aa,, , and Al is obtained by replacing in A,, -+ A each A,,
by s, for i € I. By Lemma 3 we infer the following result.

Q1

Theorem 1 With the above notation,

chow = D Aa((X"]), 9)

where the sum runs over all I such that sa, - Sa,

i, U8 a reduced decomposition
of w.



Applying successively to the summands in (9) the formulas (5), (6), and (7),
we get an expression for the constants ci,,.

Recall the following formula for multiplication by the classes of Schubert
divisors in H*(G/B,Z):

Theorem 2 (Chevalley, [5]) For w € W, and a simple root «,
[X“TU X% = (Y, wa)[X %], (10)

where 8 runs over positive roots such that l(wsg) = l(w)+1 and wy denotes the
fundamental weight associated with .

Proof. We prove Equation (10) using Theorem 1. By the definition of a funda-
mental weight, we have for v € A, (wa,7") = 0oy, the Kronecker delta. This
implies that A, (wa) = day , and using Equation (4) we get c(w,) = [X*«]. Fix
w € W and pick f € S® Q such that (c® Q)(f) = [X¥]. Then in H*(G/B, Q),

[X*JU[XY] = (2 Q)(wa- ), (11)

and by Theorem 1 we obtain that the coefficient of the Schubert class [X¥] in
the expansion of (11) can be evaluated as the sum (9) with [X] replaced by
We-

Take a reduced decomposition 4 = sq, * - Sq, - By the “Exchange Condition”
(cf. [18], pp.14-15), a reduced decomposition for w can be gotten from the one
for w by omitting one simple reflection if 4 = wsg for some (positive) root f.
Conversely, if w = 54, " 5a,_,8a,,1 " Say,, then

w—luzsah...sap.--sah :Sﬂ
for f = sa,, **5a,..(0p). The root B is positive by, e.g., [15], Proposition 3.6
because Sq, *** Sq, is reduced.
Since the omitted simple reflection is unique, the looked at sum (9) has
exactly one summand

Sag " Sozp—lezp Sapyr " Sap (wa) = Aap Sappr " San, (wa) :

The latter expression equals (8Y,ws) because Aq,(g9) = (ay,9) for g € S*,
the inner product (, ) is W-invariant, and sa, - - 8a,,, (@, ) = Y. This proves
the theorem.

For an algebraic proof in the SL,-case® along these lines, see [20]. A geo-
metric proof in the SL,-case is given in the notes by Brion [3].

The same method works for all spaces G/ P, where P is a parabolic subgroup
of G. Let 6 be a subset of A and let Wy be the subgroup of W generated by
{5a}acy. We set Py := BWyB. Denote by W? the set

W ={weW: l(wsy) =l(w) +1 Vo€ b}

3This case was obtained by Monk [21] using different methods.



This last set is the set of minimal length left coset representatives of Wy in W.
The projection G/B — G/ Py induces an injection

H*(G/Py,Z) — H*(G/B,Z)

which additively identifies H*(G/ Py, Z) with @, cys Z[X™]. Multiplicatively,
H*(G/Py, Q) is identified with the ring of invariants H*(G/B, Q)"¢. We refer
for details to [1], Sect. 5.

The restriction ¢ : SY¢ — H®*(G/Py,Z) of the Borel characteristic map
satisfies, for any Wy-invariant f from S¥, the following equation in H*(G /Py, Z):

o(f) = Y Au(HIXY]. (12)

wew?

(w)=k
For maximal parabolic subgroups P of the symplectic and orthogonal groups,
this method led to combinatorial expressions for the structure constants in the

products of arbitrary Schubert classes by some “special Schubert classes” in
H*(G/P,Z) (cf. [24], [25], [26], [9], and [23).

Remark 1 Equation (3) is often called the “Leibniz-type formula”. Kostant
and Kumar [19] discovered independently, in the context of the “nil Hecke ring”,
that the structure constants can be computed via the iteration of the Leibniz-type
formula.

4 A combinatorial proof of the Pieri formula

In this section, we give a proof of the classical Pieri formula for the Grassman-
nian Gr(n, m) of n-dimensional subspaces in C™ via the above method. In fact,
there are two Pieri formulas: for multiplication by the Chern classes[14] of the
tautological subbundle on Gr(n,m), and for multiplication by the Chern classes
of the tautological quotient bundle on Gr(n,m). The latter version appears
more often mainly because the Chern classes of the tautological quotient bun-
dle enjoy a simple interpretation in terms of the classical “Schubert conditions”:
the kth Chern class is represented by the locus of all n-planes in C™ which have
positive dimensional intersection with a fixed (m — n — k + 1)-plane in C™.
By passing to the dual Grassmannian, we see that both formulas are, in fact,
equivalent. We shall treat in detail the latter case. We also make a link with
the ring of symmetric functions, known since Giambelli (cf. [12] and [13]).

For the remainder of this note, we set ¢ := m — n.

In the following, I, J will denote strict partitions contained in the partition
(m,m —1,...,q+ 1) with exactly n parts *. (We identify partitions with their
Young diagrams, as is customary.) Note that such partitions contain the “upper-
left triangle”

0=(n,n—1,...,1).

4In other words, I = (i1,...,in) where m >i1 > - - > ip > 1.



On the other hand, A, p will denote “ordinary” partitions contained in (¢"). In
fact, there is a bijection between these two sets: with I, we associate \ defined
by \p =i, —n+p—-1 forp=1,...,n.

Also, we associate with I the following permutation wj in the symmetric
group Sy,:

wr = (Sg—xg+3 " Sq+15¢+2) (Sg—not2 *** SgSg+1)(Sg—ri+1+* Sg—15¢) . (13)

It is easy to see, that the right-hand side of (13) gives a reduced decomposition
of wy.

Take for example m = 7, n = 3, and I = (6,4,3). Then A\ = (3,2,2) and
Wy = S5S6S455S25354 which is the permutation [1,3,6,7,2,4,5] (we display a
permutation as the sequence of its consecutive values).

In general, for I = (m >4y > -+ > i, > 1), we have in Sy,

where ji,...,j,; are uniquely determined by 1.

Let B C SL,,(C) be the Borel group of lower triangular matrices. Using
the notation of the previous section, we set P = Py, where 6 is obtained by
omitting the simple root €,, — €,41 in the basis €] —e3,60 —€3,...,6m-1 —€m
of the root system of type (A;—1):

{ei—¢j|i#j} C®2Re;.

We have an identification SL,,(C)/P = Gr(n,m). We set X! := BwowP/P,
where wg = [m,m — 1,...,1], and X* := X! for ) associated with I as above.
Note that [X*] € H?*(Gr(n,m),Z), where |\| denotes the sum of the parts of
A

Denote by (k+) the strict partition (k+n,n—1,...,1), so that its associated
A is a one-row partition (k).

We want to compute the coefficients c¢; in the expansion:

[XUXED] =3 er[x].

Set x; := —&m41—; for i = 1,...,m, so that c(x1),...,c(z,) are the Chern
roots of the tautological quotient bundle on on Gr(n,m). The Borel charac-
teristic map allows us to treat H®(Gr(n,m),Z) as a quotient of the ring S’ of
polynomials symmetric in x1, ..., 2, and in 441, ..., Zn. (Recall that for type
(A,,—1), the characteristic map is surjective without tensoring by Q.) The op-
erators s, and A, indexed by the simple roots corresponding to P are induced
by the following operators s; and A;, i =1,...,¢q—1,q+1,...,m—1, on S".
The operator s; interchanges z; with z;;1, leaving other variables invariant, and
A; is the ith simple (Newton’s) divided difference 0;: for f € S,



The operator A,, on S', in this case (w € S,,), will be denoted by 9,, as is
customary.

Let e = eg(z1,...,24) be the kth elementary symmetric polynomial in
Z1,...,Ty. We now record:

Lemma 5 Foranyk =1,...,q, the following equation holds in H*(Gr(n,m),Z):
cer) = [XW].
Proof. By virtue of Equation (12), it suffices to show that
Ow(er) =0 unless w =wgyy, and Oy, (er) =1.

Note that w4y = sg—+1 -+ 84—184- The displayed assertion follows by induc-
tion on the number of variables, by invoking the following properties of 0;:

Oiler(z1,...,25)) #0 onlyif j=1,

Oiler(z1,...,2;)) =er_1(x1,..., 1)

The lemma is proved.
This lemma says that X (%) represents the kth Chern class of the tautological
rank ¢ quotient bundle on Gr(n,m).

Number the successive columns of J from left to right with m,m —1,...,1,
the successive rows from top to bottom with 1,...,n, and use the matrix coor-
dinates for boxes in J.

Let J* be the effect of subtracting the triangle ¢ from J. In the following,

D will denote a subset of J*.

Definition 2 Read J* row by row from left to right and from top to bottom.
Every box from D (resp. from J*\ D) in column i gives us s; (resp. 0;). Then
OF is the composition of the resulting s;’s and 0;’s (the composition written
from right to left), and rp is the word obtained by erasing all the 9;’s from OF.

In particular, r;« is the reduced decomposition (13) of w;, and 89 = Ouw, -

Take for example m = 8, n =3, and J = (8,6,5). In the following picture,
“e” depicts a box in D and “o” stands for a box in J* \ D. Moreover, the
row-numbers and column-numbers are displayed.

8 76 54 3 21
XXX o 0 0@
2 X X ® 0 00
3 X ® 0 0 @

Then we have

85) = 54850657030405565152535455 and  rp = S458557565152535455 .



If rp is a reduced decomposition of wy, then D is a disjoint union of the

following “p-ribbons”. For fixed p = 1,...,n, the p-ribbon consists of all boxes
of D giving rise to those s; (in rp) which “transport” the item “m + 1 — i,”
from its position in [1,2,...,m] to its position in the sequence wr.

In the above example, for I = (7,5,2), the 1-ribbon consists of the dots in
the first row, the 2-ribbon is {(3,4), (3,5), (2,6)}, and the 3-ribbon is {(3,7)}.

It can happen that some p-ribbon is empty. Suppose that p is such that the
p-ribbon is not empty (this is equivalent to the fact that the box (p,n +p—1)
belongs to the p-ribbon). Then the column-numbers of boxes in the p-ribbon
are m+1—1i,,...,n+p—2,n+p—1, and their row-numbers weakly increase
while reading D from left to right and from top to bottom.

By Theorem 1 and Lemma 5, we have

cy =Y 07 (ex), (14)

where the sum is over all subsets D C J* such that rp is a reduced decomposi-
tion of wy.
We need the following lemma.

Lemma 6 If there are boxes (i,j) and (i—1,j—1) in J*\ D, then 02 (e;) = 0.

Proof. We set E := [[;—,(1 + z;) and we shall prove that P(E) = 0. To
compute with compositions of the s;’s and 9;’s in 82, it is handy to introduce
the following more general functions. For a = (a1, as,...,a,) € {0,1}™, we set
Ey =11, (1 +az;), sothat E=E; 10,0 with ¢ 1I’s. We have:

$i(Fa) = Ear  where a’' = (a1,...,0;_1,@i11,05, 0542, -,0m) ; (15)
8i(Ea) =d-Ey if a1 = a; + d, (16)
where a' = (a1,...,0,0,...,a,) is a with a;,a;41 replaced by zeros. Using

(15) and (16), we see that the operator 8; in 8%, corresponding to the box
(i,7) “kills” the function E, that has been obtained by applying the previous
operators s, and 9, (in 07) to E. This proves the lemma.

It follows from this lemma that there is at most one D C J* such that rp
is a reduced decomposition of wy and 0P (ey) # 0, namely D = I*. (Indeed,
the p-ribbon must exactly coincide with the pth row of I*.) In other words, the
sum in (14) has at most one summand.

Second, applying Lemma 6 again, we see that D = I* gives a non-zero
contribution to the sum in (14) iff J \ I is a horizontal strip with pairwise
separated rows®. In this case, using (15) and (16), we obtain 9} (ey) = 1.

We rewrite the outcome of the above considerations in terms of Schubert
classes [X*] € H*(Gr(n,m),Z) in part (i) of the following theorem. Part (ii)
follows from part (i) by passing to the dual Grassmannian.

5Recall that a horizontal strip is a skew diagram with at most one box in each column,
and a vertical strip is a skew diagram with at most one box in each row.

10



Theorem 3 (Pieri, [22]) (i) For any partition A C (¢") and k=1,...,q,

U™ =3 1xe, (17)
i
where |p| = |A| + & and p\ A is a horizontal strip.
(ii) For any partition A C (¢") and p=1,...,n,

XU XD =3 X, (18)

where 1 appears p times, |u| = |A| +p and p\ X is a vertical strip.
For example, we have in H*(Gr(3,8),Z):
[X(4’2)] U [X(3)] — [X(5’4)] + [X(5’3’1)] + [X(5’2’2)] + [X(4’4’1)] + [X(4’3’2)] ]

Remark 2 There are several (really) different proofs of the Pieri formula. We
do not attempt to make a survey here. The proof that appears most often in
monographs is based on studying the triple intersection of general translates of
Schubert varieties. This proof appeared originally in Hodge’s paper [16]. Cf.
also [10], §9.4 , and the notes of Brion [3], where this proof is discussed in the
contezt of Richardson varieties.

Remark 3 The Schubert classes [X®)] and [X(D] are often called “spe-
cial”. These classes and the “special Schubert classes” in [24], [25], [26], and
[9] have the following property: the corresponding w € W has a unique reduced
decomposition. This seems to be a proper group-theoretic characterization of a
“special Schubert class”, and was also remarked by Kirillov and Maeno.

Acknowledgements. I wish to thank Michel Brion for his encouragement to
write up this material, and for some valuable comments.
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