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Thom polynomial

Let 3 be an algebraic right-left invariant set in J*(CI*, Ch).

Then there exists a universal polynomial 7> over Z
in m + n variables which depends only on X, m and n

s.t. for any manifolds M"™, N™ and general map f: M — N
the class dual to »(f) = fk_l(Z) is equal to

T2(c1(M), ... em(M), f*ei(N), ..., ffen(N)).

where f;, : M — J¥(M, N) is the k-jet extension of f.

(Often 7> depends on ¢;(TM — f*TN),i=1,2,...)
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Classifying spaces of singularities

Fix £ € N.
Aut,:= group of k-jets of automorphisms of (C",0).

J = J(m,n):= space of k-jets of (C™,0) — (C",0).

G := Aut,,, x Aut,,.
Consider the classifying principal G-bundle EG — BG, i.e.

a contractible space EGG with a free action of the group G.

~ ~

J =TJm,n)=FEGxgJ.
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Let X C J be a singularity class, i.e. an analytic closed
GG-invariant subset.
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T is identified with a polynomial in ¢y, ..., ¢y, and

dy,...,c, which are the Chern classes of universal bundles

R,, and R,, on BGL,, and BGL,:

> > / /
T =T7(c1,. ., Cm, 1y, Cp).
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Let X C J be a singularity class, i.e. an analytic closed
GG-invariant subset.

~~

Y= EGxaYCJ.
Let 7= € H2codim(E)( 7 7) be the dual class of [X]. Since
H*(J,Z)~ H*(BG,Z) ~ H*(BGL,, x BGL,,Z)

T is identified with a polynomial in ¢y, ..., ¢y, and

dy,...,c, which are the Chern classes of universal bundles

R,, and R,, on BGL,, and BGL,:
T =T%(c1,...,cm, cy, ..., cL).

(R, “parametrizes” T'M for dim M = m, similarly for R,,.)
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Singularities
R. Rimanyi, Inv. Math. (2001)
Fix p € N. By a singularity we mean an equivalence class

of stable germs (C*®,0) — (C**P?,0), under the equivalence

generated by the right-left equivalence and suspension.

{singularities} <+— {finite dim'l. C — algebras }
Ai = Cll]]/@@*), i=0
Ly < Clzyll/(zy.2"+1°), bza>2
[ <« Cllz,yll/(zy,2%y"), b=a>2
Ay, p=0: |
(z,u1,y ..y uim1) = (2 + ZZ-_ll ujxj, ULy e ey Ui—1)
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For a singularity n, by 7" we mean the Thom polynomial Of
the closure of the right-left orbit of a representative of n.

What is 741 ?

The Riemann-Hurwitz formula implies: 74 = c, — 1 for
m=n = 1.

For p =0, T4 = ¢ + 6c2co + 2¢3 + 9cicg + by
(Gaffney, 1983)

7" evaluates for a general f the dual class of

n(f) ={x € M : the singularity of f at x is n}.

codim(n) = codimn(f).
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Let n be a singularity with prototype
k: (C™ 0) — (C™TP,0).

Gy = mazimal compact subgroup of
Aut k = {(¢, ) € Diff(C™, 0)xDiff(C™*P,0) : Yokop 1 = K}

Well defined up to conjugacy; it can be chosen so that the
Images of its projections to the factors are linear. Its
representations on the source and target will be denoted by

)\1(77) and )\2(77).
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We get the vector bundles associated with the universal
principal G,-bundle EG, — BG), using the representations

A1(n) and Az(n):
E;? and E,.

The Chern class and Euler classs of n are defined by

o(n) = c(£n)
(n) : (B!

and e(n) :=e(Ej).
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A, Cllz]]/(z"); Gy =U(1) x U(p).

Let x and y1,..., yi be the Chern roots of the universal
bundles on BU(1) and BU(p). Then

p
:E
C<A7L)— 1_|_$ H1‘|‘y]

J=1

= H —z)(y; — 2z) -+ (y; — 7).
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Theorem of Rimanyi

Fix a singularity 7.  Assume that the number of singularities
of codimension < codimn is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
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Theorem of Rimanyi

Fix a singularity 7.  Assume that the number of singularities
of codimension < codimn is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(n), are not zero-divisors. Then

(i) if £€#£n and codim(§) < codim(n), then T7(c(&)) = 0;
(i) T(c(n)) = e(n).

This system of equations (taken for all such £'s) determines
the Thom polynomial 7" in a unique way.
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Notation: “shifted” parameter r := p + 1;
n(r) =n:(C*0) — (C*+10);
7" = Thom polynomial of n(r).
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We identify an alphabet A = {a1, ..., a,} with the sum
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> Si(A-B)z' =] [(1-b2)/ [ [ (1-az2).

beB acA
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aj —I_ v —I_ Aoy, -

Take another alphabet B.

> Si(A-B)z' =] [(1-b2)/ [ [ (1-az2).

beB acA

Given a partition I = (0 < iy < --- <1p), the Schur function
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Schur functions

Alphabet A: a finite set of indeterminates.

We identify an alphabet A = {a1, ..., a,} with the sum
aj —I_ v —I_ Aoy, -

Take another alphabet B.

> Si(A-B)z' =] [(1-b2)/ [ [ (1-az2).

beB acA

Given a partition I = (0 < iy < --- <1p), the Schur function
S](A—B) IS

S](A—B) = Siq_|_q_p(A—IB%)

1<p,q<h
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R(A,B) :=]],ca pepla—b).
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R(A,B) :=]],ca pepla—b).

Factorization: For partitions [ = (i1, ...,4%,,) and
J=(j1,-.-,7%), consider the partition

(jlw”ajk‘?il_|_n7---,im—|—n>.
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R(A,B) :=]],ca pepla—b).

Factorization: For partitions [ = (i1, ...,4%,,) and
J=(j1,-.-,7%), consider the partition

(jlw”ajk‘?il_|_n7---,im—|—n>.

We have

St by (A — Bo) = S1(A) R(A,B) S;(~B).
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R(A,B) :=]],ca pepla—b).

Factorization: For partitions / = (7,...,%,,) and
J=(j1,-.-,7%), consider the partition

<j17°°°7jk7i1_|_n7---,im—|—n).

We have
Sttty (A — Ba) = S1(A) R(A,B) S;(~B).

- important in study of polynomial characters of Lie
superalgebras; particular cases known to 19th century
algebraists: Pomey etc.
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2

. Gy — (C1C3
; 2(:1(:% — 0%03 + 2c9c3 — 2c1C4
; QC%C% + c‘;’ — 2(:?03 + 2c1c9c3 — 3(:% — 50%(:4 + 9cocy — bcyc5

2.2 3

L C]C5 — C5 — 0?63 + 3cicocs + 30% — 20%04 — 3cocy
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2

. Gy — (C1C3
; 2(:1(:% — 0%03 + 2c9c3 — 2c1C4
; QC%C% + c‘;’ — 2(:%03 + 2c1c9c3 — 3(:% — 50%(:4 + 9cocy — bcyc5

2.2 3

L C]C5 — C5 — 0?63 + 3cicocs + 30% — 20%04 — 3cocy

S99

1 4593 + 25129

: 16594 + 4533 + 1257123 + 55222 4+ 251122
: 2594 + 6533 + 35123 + S1122
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Theorem. (PP+AW, 2006) Let Y be a singularity class.
Then for any partition I the coefficient oy in the Schur
function expanston of the Thom polynomial

T =Y asS{(T*M — f*T*N),

1S nonnegative.
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Theorem. (PP+AW, 2006) Let Y be a singularity class.
Then for any partition I the coefficient oy in the Schur
function expanston of the Thom polynomial

T =Y asS{(T*M — f*T*N),

1S nonnegative.

— conjectured by Feher-Komuves (2004).

The theorem is not obvious. But its proof is obvious.
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In the approach to Thom polynomials via classifying spaces of
singularities,
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In the approach to Thom polynomials via classifying spaces of

singularities,
we replace R, and R,, on BGL(m) x BGL(n) by arbitrary
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In the approach to Thom polynomials via classifying spaces of

singularities,
we replace R, and R,, on BGL(m) x BGL(n) by arbitrary
vector bundles £ and F' on an arbitrary common base.

Given a singularity class X2, we associate “functorially”

k
S(E,F) C (@ Sym@'(E*)) QF.
i=1
such that the dual of [X(FE, )] is

Z&[S}(E* — F*),
I

with the same coefficients, as previously.
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We can specialize £ and F' and use:
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nonnegative combination of Schur polynomials - uses the
Giambelli formula.
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We can specialize £ and F' and use:

1. (cone of dim = rk) - (zero section) > 0 for gg v.b. - Easy.

2. Any polynomial numerically nonnegative for gg v.b. is a
nonnegative combination of Schur polynomials - uses the
Giambelli formula.

(..., Usui-Tango, Fulton-Lazarsfeld)
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Theorem. Letn be of Thom-Boardman type X% . Then

all summands in the Schur function expansion of T, are
indexed by partitions containing the rectangle
(r+i—1,...,r+i—1) (i times).
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Theorem. Letn be of Thom-Boardman type X% . Then
all summands in the Schur function expansion of T, are
indexed by partitions containing the rectangle
(r+i—1,...,r+i—1) (i times).

Let D be the locus, where

dim (Ker(df : TM — f*TN)) > 1.

The polynomial 7, is supported on D and the theorem
follows from the structure of the ideal of all polynomials

supported on D for all general maps f : M — N; PP, 1988.
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Singularity ]272(7“), COdim(IQQ(T)) =3r+ 1.

Thom polvnomials andS<chur functions — . 20/31



Singularity ]272(7“), COdim(IQQ(T)) = 3r + 1. ,Tl = SQQ
(Porteous 1971). So assume that r > 2.

Equations characterizing the Thom polynomial: Ay, A1, As:

Tr(—Br—1) = Tr(x — 22| —B,—1) = Tr(v — 32| —B,_1) =0,
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Singularity ]272(7“), COdim(IQQ(T)) = 3r + 1. ,Tl = SQQ
(Porteous 1971). So assume that r > 2.

Equations characterizing the Thom polynomial: Ay, A1, As:

Tr(—Br—1) = Tr(x — 22| —B,—1) = Tr(v — 32| —B,_1) =0,

Tr(Xo— 221 [+ 229 -Byr_1) =

— 371332(331—2332)(%2—2:61) R(XQ"‘ XT1+I9 ,Bf,a_l)
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Introduce the alphabet:

D:=2z1 |+ |229 |+ |21 + 22
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Introduce the alphabet:

]]]2,2 :

D .= 2:131

2:172

r1 + I9

ﬁ(XQ — D — BT—Q) =0
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Introduce the alphabet:

D:=2z1 |+ |229 |+ |21 + 22

]]]2,2 :
ﬁ(XQ - D - BT—Q) =0

(The variables here correspond now to the Chern roots of the
cotangent bundles).
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Goal: give a presentation of 7, as a Z-linear combination of
Schur functions
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Goal: give a presentation of 7, as a Z-linear combination of
Schur functions with explicit algebraic expressions of the
coefficients.
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Goal: give a presentation of 7, as a Z-linear combination of

Schur functions with explicit algebraic expressions of the
coefficients.

Lemma. A partition appearing in the Schur function

expansion of T, contains (r + 1,7 + 1) and has at most
three parts.
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Linear endomorphism ®: .S;, i, i — Si 4160416541

Thom polvnomials andS<chur functions — . 23/31



Linear endomorphism ®: .S;, i, i — Si 4160416541

Tr — sum of terms * Ozijsij " in T,
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Linear endomorphism ®: .S;, i, i — Si 4160416541

Tr — sum of terms * Ozijsij " in T,

Lemma. 7, =7, + ®(T,_1).
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Proposition. 7 ,.(Xg) = (z122)"! S,_1(D).
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S,_1(D)=s,_1(Sym?(E)), the Segre class, rank(E) = 2.
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S,_1(D)=s,_1(Sym?(E)), the Segre class, rank(E) = 2.
Complete quadrics: Schubert, Giambelli (19th century);

reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux,
Thorup (in the 80's)
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S,_1(D)=s,_1(Sym?(E)), the Segre class, rank(E) = 2.

Complete quadrics: Schubert, Giambelli (19th century);
reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux,
Thorup (in the 80's)

Chern numbers of symmetric degeneracy loci; PP, 1988
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Proposition. 7 ,.(Xg) = (z122)"! S,_1(D).
S,_1(D)=s,_1(Sym?(E)), the Segre class, rank(E) = 2.

Complete quadrics: Schubert, Giambelli (19th century);
reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux,

Thorup (in the 80's)
Chern numbers of symmetric degeneracy loci; PP, 1988

+<q:1>} Spq(E).

The Segre class s,_1(Sym?(E)) is:

S () ()

p<q, p+q=r—1
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Morin singularities A;(r). We define:

SR

JC(ri—1)

2

_|_

3

_|_..

.—I_ Z )Sr_ji—la"'7r_.j17r+|‘]|(_) !
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Morin singularities A;(r). We define:

Z SJ 23 )Sr—jz-_l,...,r—jl,rﬂﬂ(_) 3

JC(ri—1)

Theorem. (PP) Suppose that X7 (f) =0 for j > 2. (This

says that on X(f), the kernel of df : TM — f*T'N is a
line bundle.) Then, for any r > 1,

T4 = Y
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Theorem. (PP) Suppose that X7 (f) =0 for j > 2. (This
says that on X(f), the kernel of df : TM — f*T'N is a
line bundle.) Then, for any r > 1,

T4 = Y

The Schur expansion of the Thom polynomial of As(r) is
known (AL+PP).
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Morin singularities A;(r). We define:

Z SJ 23 )Sr—ji_l,...,r—jl,rﬂﬂ(_) 3

JC(ri—1)

Theorem. (PP) Suppose that X7 (f) =0 for j > 2. (This

says that on X(f), the kernel of df : TM — f*T'N is a
line bundle.) Then, for any r > 1,

T4 = Y

The Schur expansion of the Thom polynomial of As(r) is

known (AL+PP). This is the most difficult case whose Schur
expansion is known.
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7,

(3)

r

+ H,
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7:“A3 — F?“(3> _l_Hr

Iy = Zjlgjggr Sirgo (2] + [B)Sr—jar—jur-+1 4o

Thom polvnomials andS<chur functions — . 26/31



7:“A3 — F?“(3> _l_Hr

by o= Zj1§j2§?“ Sjl,jz( 2|+[9 )ST—jQ,T—jl,T+j1+j2
Hi =0
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7:“A3 — F?“(3> _l_Hr

Iy = Zjlgjggr Sirgo (2] + [B)Sr—jar—jur-+1 4o

Hi =0
Hy = 5533
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7:“A3 — F?“(3> _l_Hr

Fr — Zjléjgg’l“ Sj17j2(

Hi =0
Hy = 5533
Hg = 55744 + 24545

)S?“—jz,"“—jl,?”rjﬁrjz
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Hi =0
Hy = 5533
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7:“A3 — F?“(3> _l_Hr

= Zj1§j2gr S g
Hi =0

Hy = 5533

Hg = 55744 + 24545

)S?“—jz,"“—jl,?”rjﬁrjz

Hy7 = 55588 + 245489 + 245399 + 8953 8 10 + 11352910 +
300528 11 + 11357 10,10 + 41351911 + 96551 8.12 + 5265710.11 +

137859 12 + 302455 13
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7:“A3 — F?“(3> _l_Hr

Fyi= 3 0 cooer Siga (2] + 3 ) Sr—jo r—jr 41+
H{=0

Ho = 5533

H3 = 55144 + 24545

Hy7 = 55588 + 245489 + 245399 + 8953 8 10 + 11352910 +
300528 11 + 11357 10,10 + 41351911 + 96551 8.12 + 5265710.11 +
137859 12 + 302455 13

The Schur expansions of the Thom polynomial 7,44 are not
known (apart from r = 1,2,3,4 — Ozer Ozturk).
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Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic
space V=W W*
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form.
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Classically, in real symplectic geometry, the Maslov class is
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form.
Classically, in real symplectic geometry, the Maslov class is
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space V =W & W™* equipped with the standard symplectic

form.
Classically, in real symplectic geometry, the Maslov class is

represented by the cycle
Yy={xe L : dim(T,LNW™) > 0}.

This cycle is the locus of singularities of L — V.

lts cohomology class is integral, and mod 2 equals w1 (T*L).

The generalizations of the Maslov class are Thom polynomials
associated with the higher order types of singularities.

These types are defined by imposing conditions on the higher
order jets of L.
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Thom polvnomials andS<chur functions — . 27/31



Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic
space V =W & W™* equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Y ={recl : dim(TLNW*) >0},

This cycle is the locus of singularities of L — V.

lts cohomology class is integral, and mod 2 equals w1 (T*L).

The generalizations of the Maslov class are Thom polynomials
associated with the higher order types of singularities.

These types are defined by imposing conditions on the higher
order jets of L.

Real case: Arnold and Fuks, Vassiliev, Audin, ...

Complex case: Kazarian.
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Every germ of a Lagrangian submanifold of V
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where Aut(V') is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).
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W via a certain germ symplectomorphism. Let

L(V) = Aut(V)/P,

where Aut(V') is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).
Of course, LG(V) is contained in L(V).

One has also the “Gauss fibration” L(V) — LG(V') (which is
not a vector bundle for k > 3)

Consider the subgroup of Aut(V') consisting of holomorphic
symplectomorphisms preserving the fibration V' — W.
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Every germ of a Lagrangian submanifold of V' is the image of
W via a certain germ symplectomorphism. Let

L(V) = Aut(V)/P,

where Aut(V') is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V) is contained in L(V).

One has also the “Gauss fibration” L(V) — LG(V') (which is
not a vector bundle for k > 3)

Consider the subgroup of Aut(V') consisting of holomorphic
symplectomorphisms preserving the fibration V' — W. This
group defines the Lagrangian equivalence of jets of
Lagrangian submanifolds.
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A Lagrange singularity class is a closed algebraic set which
Is a sum of Lagrangian equivalence classes.
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A Lagrange singularity class is a closed algebraic set which
Is a sum of Lagrangian equivalence classes.

Theorem. (MM+PP+AW, 2007) For any Lagrange
singularity class ¥, the Thom polynomial T* is a
nonnegative combination of QQ-functions.
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A Lagrange singularity class is a closed algebraic set which
Is a sum of Lagrangian equivalence classes.

Theorem. (MM+PP+AW, 2007) For any Lagrange
singularity class ¥, the Thom polynomial T* is a
nonnegative combination of QQ-functions.

Geometric insight: The fundamental classes of the Schubert
varieties in the Lagrangian Grassmannian LG(V') are given

by the appropriate @—functions of the tautological bundle on
that Grassmannian (PP, 1986).
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A Lagrange singularity class is a closed algebraic set which
Is a sum of Lagrangian equivalence classes.

Theorem. (MM+PP+AW, 2007) For any Lagrange
singularity class ¥, the Thom polynomial T* is a
nonnegative combination of QQ-functions.

Geometric insight: The fundamental classes of the Schubert
varieties in the Lagrangian Grassmannian LG(V') are given

by the appropriate @—functions of the tautological bundle on
that Grassmannian (PP, 1986).

For the Legendre singularity classes, MK+MM-+PP+AW
generalized the last result to a one-parameter basis with
positivity property.
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Our methods use: nonnegativity of cone classes in gg vector
bundles and the Bertini-Kleiman “general translate theorem”.
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Our methods use: nonnegativity of cone classes in gg vector
bundles and the Bertini-Kleiman “general translate theorem”.

For some positivity properties of homogeneous spaces, a
recent result of Anderson on transversality inspired by
equivariant cohomology is useful: here some larger
transformation group to move cycles is used .
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Feher-Rimanyi using a localization formula a la Atiyah-Bott,
and computations of Segre classes by Laksov, Lascoux, PP,
Thorup.
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Our methods use: nonnegativity of cone classes in gg vector
bundles and the Bertini-Kleiman “general translate theorem”.

For some positivity properties of homogeneous spaces, a
recent result of Anderson on transversality inspired by
equivariant cohomology is useful: here some larger
transformation group to move cycles is used .

We also prove positivity; this ameliorates our former result for
the Lagrange singularities.

Some previously known cases has been recently reproved by
Feher-Rimanyi using a localization formula a la Atiyah-Bott,
and computations of Segre classes by Laksov, Lascoux, PP,
Thorup.

A localization formula was used earlier for Morin singularities
by Berczi-Szenes. Their formulas involve residues; we do not
see how to get Schur expansions from them.
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THE END
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