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Gysin map.
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Introduction

Let f : X — Y be a proper map of varieties.

f gives rise to a map f. : A(X) — A(Y) of the Chow groups
induced by push-forward of cycles. It is called push-forward or
Gysin map.

There are many formulas for Gysin maps. Those for
degeneracy loci often involve determinants and Pfaffians.

We shall use them simultaneously by means of Hall-Littlewood
classes associated with a vector bundle E — X of rank n with
Chern roots xq, ... X,.
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).

Given a partition A = (A\; > ... > A, > 0), we set

s\(E) = ‘s/\i*iJrj(E)‘lgi,jgn :
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).

Given a partition A = (A\; > ... > A, > 0), we set

s\(E) = ‘s/\f*"JFj(E)‘lgi,an :

For g < n, let m: GI(E) — X be the Grassmann bundle
parametrizing rank g quotients of E. It is endowed with the
universal exact sequence of vector bundles

0—S—1"E— Q@ —0,

where rank(Q) = q. Let r=n—gq.
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).

Given a partition A = (A\; > ... > A, > 0), we set

s\(E) = ‘s/\f*"JFj(E)‘lgi,an :

For g < n, let m: GI(E) — X be the Grassmann bundle
parametrizing rank g quotients of E. It is endowed with the
universal exact sequence of vector bundles

0—S—1"E— Q@ —0,
where rank(Q) = q. Let r=n—gq.
Then for any partitions A = (A1, ..., Ag), pt = (p1, -, ptr),
T (SA(Q) : Su(s)) = 5/\1—r7---7/\q—r,u1,---7ur(E) .



Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s

and with even k,

Px = PrxaPrsn = PusProsan 0+ Py P -
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s

and with even k,

Px = PrxaPrsn = PusProsan 0+ Py P -

Here, P; = Zs“, the sum over all hook partitions p of i,
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s

and with even k,

Px = PrxooPra e = PaasProa o+ Py Paooa

Here, P; = Zs“, the sum over all hook partitions p of i,

and for positive i > j we set
P,J—PP+2Z PiiaPi—g + (1Y Py .
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Want:
. (Car(Q @ S)PA(Q)PL(S)) =7
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Want:
. (Car(Q @ S)PA(Q)PL(S)) =7

If I(\) =gq, u=0, we get P\(E).
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Want:
. (Car(Q @ S)PA(Q)PL(S)) =7

If I(\) =gq, u=0, we get P\(E).

If (\)=qg—1, p =0, we get P,(E) for n — g even.
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Want:
. (Car(Q @ S)PA(Q)PL(S)) =7

If I(\) =gq, u=0, we get P\(E).
If (\)=qg—1, p =0, we get P,(E) for n — g even.

If (\)=qg—1, un=0, we get 0 for n — g odd.
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Want:
. (Car(Q @ S)PA(Q)PL(S)) =7

If I(\) =gq, u=0, we get P\(E).

If (\)=qg—1, p =0, we get P,(E) for n — g even.
If (\)=qg—1, un=0, we get 0 for n — g odd.

If n=15,q=7,1(\) =3, /(1) =4, then

T.(c56(Q ® S) - Po31(Q) - Pr542(S)) = (—6)Porsazar (E) -
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Let 7 : FI(E) — X be the complete flag bundle parametrizing
flags of quotients of E of ranks n—1,n—2,... 1.
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Let 7 : FI(E) — X be the complete flag bundle parametrizing
flags of quotients of E of ranks n—1,n—2,... 1.

Let t be a variable. The main formula will be located in
A(X)[t] or H(X)][t].
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Let 7 : FI(E) — X be the complete flag bundle parametrizing
flags of quotients of E of ranks n—1,n—2,... 1.

Let t be a variable. The main formula will be located in
A(X)[t] or H(X)][t].

Let A= (A1,...,\,) € 7%, be sequence of nonnegative
integers. Define

RA(E;t) = (e)u (- [ (i — )

i<j

where (7g). acts on each coefficient of the polynomial in t
separately.
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Let 7 : FI(E) — X be the complete flag bundle parametrizing
flags of quotients of E of ranks n—1,n—2,... 1.

Let t be a variable. The main formula will be located in
A(X)[t] or H(X)][t].

Let A= (A1,...,\,) € 7%, be sequence of nonnegative
integers. Define

RA(E;t) = (e)u (- [ (i — )

i<j

where (7g). acts on each coefficient of the polynomial in t
separately.

This is not an important polynomial but it will give rise to an
important Hall-Littlewood class.
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Froposition
IfXxe€Zly and € Z5,9 then

T (RA(Q D)R.(S; 1) T] (i — 19)) = Ruu(E: 1),

i<q<j

where A\t = (A1, ..., Ag, fi1, - - -, itr) IS the juxtaposition of A
and p.
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Froposition
IfXxe€Zly and € Z5,9 then

T (RA(Q D)R.(S; 1) T] (i — 19)) = Ruu(E: 1),

i<q<j

where A\t = (A1, ..., Ag, fi1, - - -, itr) IS the juxtaposition of A
and p.

This is seen from a commutative diagram

FI(Q) X Ga(E) FI(S) — FI(E)

TQXTsl LTE

G9(E) X

which gives
m(TQ X Ts)s = (7€), -
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Suppose that x ..., x4 are the Chern roots of Q and
Xg+41, - - - » Xn are the ones of S.
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Suppose that x ..., x4 are the Chern roots of Q and

A
Xgi1,-- -, Xn are the ones of S. Let x* = x - - - x3* and

B M e
XM= Xgiq e Xh
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Suppose that x ..., x4 are the Chern roots of Q and
Xqi1,-- ;X are the ones of S. Let x» = x{ - x)° and

xt = x!'

oo xH
q+1 an.

It follows from the above equality:

. (RM(@: )Ru(Sit) [T (xi — 1))

i<q<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xqi1,-- ;X are the ones of S. Let x» = x{ - x)° and
It follows from the above equality:
T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j
= 7. ((70)« (¢ T (6 = 1)) - () T G — ) T G — )
i<j<q q<i<j i<q<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xgi1,-- -, Xn are the ones of S. Let x* = x; - - -x,;\" and
xH = xq+1 e xhr
It follows from the above equality:
T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j
A
= 7. ((70)« (¢ T (6 = 1)) - () T G — ) T G — )
i<j<q q<i<j i<q<j
= m(TQ X T5)x <X’\ H — txj) x* H Xj — tx;j) H (xi — txJ))
i<j<q q<i<j i<q<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xgi1,-- -, Xn are the ones of S. Let x* = x; - - -x,;\" and

xH = xq+1 e xhr

It follows from the above equality:

T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j

= 7 ((ra)e (< T (6 - ) - (rs)(x T (= 09)) T (x — )

i<j<q q<i<j i<q<j

= m(TQ X T5)x <X’\ H — txj) x* H Xj — tx;j) H (xi — txJ))

i<j<q q<i<j i<q<j
= (1g),(x* x* H —tx;)) = R\u(E; t).

i<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xgi1,-- -, Xn are the ones of S. Let x* = x; - - -x,;\" and

xH = xq+1 e xhr

It follows from the above equality:

T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j

= 7 ((ra)e (< T (6 - ) - (rs)(x T (= 09)) T (x — )

i<j<q q<i<j i<q<j

= m(TQ X T5)x <X’\ H — txj) x* H Xj — tx;j) H (xi — txJ))

i<j<q q<i<j i<q<j
= (1g),(x* x* H —tx;)) = R\u(E; t).

i<j

[Ticjcq(i—06) I geici(xi— ) [Licqe;(xi—tx) = [ Lic;(xi—tx) -



Vm(t) = == (1+t)(1+t+t2) - (T+t4---+t™1).
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Vm(t) = == (1+t)(1+t+t2) - (T+t4---+t™1).

Let \ € Zgo. Consider the maximal subsets /,...,1; in
{1,..., n}, where the sequence X is constant.

Piotr Pragacz Push-forward of Hall-Littlewood classes



Vm(t) = T - (1+t)(1+t+t2) - (T+t4---+t™1).

Let \ € Zgo. Consider the maximal subsets /,...,1; in
{1,..., n}, where the sequence X is constant.

Let my, ..., my be the cardinalities of I,...,I;. So we have
m ~+---+mg=n.
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Vm(t) = == (1+t)(1+t+t2) - (T+t4---+t™1).

Let \ € Zgo. Consider the maximal subsets /,...,1; in
{1,..., n}, where the sequence X is constant.

Let my, ..., my be the cardinalities of I,...,I;. So we have
m ~+---+mg=n.

Let S, be the symmetric group of permutations of {1,..., n}.
We define the stabilizer of A:

Sr)l\z{WESnZ)\W(;):A,’,].SI'SH}.
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We have S} = [, S,
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We have S} = [, S,

d

Also we set vy = v,(t) := []_; vim, ().
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We have S} = [, S,

Also we set vy = v\(t) := H,q:l Vi, ().

Example. A = (9,9,9,8,0,0,8,8,8,8,9), n= 11
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We have S} = [, S,

Also we set vy = v\(t) := H,q:l Vi, ().

Example. A = (9,9,9,8,0,0,8,8,8,8,9), n= 11
h={1,2,3,11}, b = {4,7,8,9,10}, I = {5,6}
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We have S} = [, S,

Also we set vy = v\(t) := H,q:l Vi, ().

Example. A = (9,9,9,8,0,0,8,8,8,8,9), n= 11
h={1,2,3,11}, b = {4,7,8,9,10}, I = {5,6}

m1:4, m2:5, m3:2
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We have S} = [, S,

Also we set vy = v\(t) := H,q:l Vi, ().

Example. A = (9,9,9,8,0,0,8,8,8,8,9), n= 11
h={1,2,3,11}, b = {4,7,8,9,10}, ; = {5,6}
m1:4, m2:5, m3:2

VN = VaV5Vo , 51)‘1 = 54 X 55 X 52.
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We have S} = [, S,

Also we set vy = v\(t) := H,q:l Vi, ().

Example. A =(9,9,9,8,0,0,8,8,8,8,9), n=11
L ={1,2,3,11}, L ={4,7,8,9,10}, 5 = {5,6}
m =4, m =5 m3=2

VN = VaVsVso , 51)‘1 =5, x 55 x S,.

Example. Let v = (11 > ... > v, > 0) be a strict partition
with k < n.
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We have S} = [, S,

Also we set vy = v\(t) := H,q:l Vi, ().

Example. A =(9,9,9,8,0,0,8,8,8,8,9), n=11
L ={1,2,3,11}, L ={4,7,8,9,10}, 5 = {5,6}
m =4, m =5 m3=2

VN = VaVsVso , 51)‘1 =5, x 55 x S,.

Example. Let v = (11 > ... > v, > 0) be a strict partition
with k < n.

Let A = 0"k be the sequence v with n — k zeros added at
the end.
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We have S} = [, S,

Also we set vy = v\(t) := H,q:l Vi, ().

Example. A =(9,9,9,8,0,0,8,8,8,8,9), n=11
L ={1,2,3,11}, L ={4,7,8,9,10}, 5 = {5,6}
m =4, m =5 m3=2

VN = VaVsVso , 51)‘1 =5, x 55 x S,.

Example. Let v = (11 > ... > v, > 0) be a strict partition
with k < n.

Let A = 0"k be the sequence v with n — k zeros added at
the end.

Thend = k+1, (my,...,mg) = (15, n— k), v(t) = vo«(2),
S)‘ (51) X Sn—k-



We shall now need some results from Macdonald's book. Let
Y1,---,Yn and t be independent indeterminates.
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We shall now need some results from Macdonald's book. Let
Y1,---,Yn and t be independent indeterminates.

Lemma
(Mcd p.207) We have
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We shall now need some results from Macdonald's book. Let
Y1,---,Yn and t be independent indeterminates.

Lemma
(Mcd p.207) We have

For A € Z, we set y* =y - .. y™ and define
>0 1 n
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We shall now need some results from Macdonald's book. Let
Y1,---,Yn and t be independent indeterminates.

Lemma
(Mcd p.207) We have

For A € Z%, we set yA = yf‘l -~y and define

Ra(y1, -, ymt) = Z W<y’\Hy—),

i — tyj
WeS, icj Vi Vi

i.e. an expression modeled on the class R\(E; t).
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Proposition
The polynomial vy(t) divides Ry(y1, ..., yn; t), and we have

Ra(y1, -, ymt) = Z W(y H y,—tyj>‘

WES,/S) I<J,\iFAj
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Proposition
The polynomial vy(t) divides Ry(y1, ..., yn; t), and we have

Ra(y1, -, ymt) = Z W(y H y,—tyj>‘

WES,/S) I<J,\iFAj

Proof. Any w € S, which permutes only the digits from /; will
fix the monomial y*, and by Lemma used for S,,;, we can
extract a factor v, (t) from Rj.
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Proposition
The polynomial vy(t) divides Ry(y1, ..., yn; t), and we have

Ra(y1, -, ymt) = Z W(y H y,—tyj>‘

WES,/S) I<J,\iFAj

Proof. Any w € S, which permutes only the digits from /; will
fix the monomial y*, and by Lemma used for S,,;, we can
extract a factor v, (t) from Rj.

Repeating this procedure for b,...,ls and S,,,, ..., Sp,, we
extract succesively factors v, (t), ..., Vim,(t) from Ry, i.e. a
factor v,(t), and get the assertion. QED
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Let A € Z%,. Extending Mcd, we set

1

Vi t)

Py\(E;t) := Ry\(E; t)

and call it Hall-Littlewood class.
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Let A € Z%,. Extending Mcd, we set

1

Py\(E;t) := (D)

R/\(E; t)

and call it Hall-Littlewood class.

It follows from Proposition that P\(E; t) is a polynomial in the
Chern classes of E and t.

Piotr Pragacz Push-forward of Hall-Littlewood classes



Let A € Z%,. Extending Mcd, we set

1

Vi t)

Py\(E;t) := Ry\(E; t)

and call it Hall-Littlewood class.

It follows from Proposition that P\(E; t) is a polynomial in the
Chern classes of E and t.

As a consequence of the two Propositions and the definition of
P,(E;t), we get

Theorem
Let N € 7%, and pu € 22,7, We then have

7T*< H (Xi - th)P)\(Q; t)Pu(S; t)) = VAM—(t)'DAu(E; t).

i<q<j Va(t)vi(t)
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We look at the specialization t = 0.
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We look at the specialization t = 0.

We invoke the Jacobi-Trudi formula for sy(E) with the help of
the Gysin map associated to 7¢ : FI(E) — X:

S\(E) = (Te): ("),

n
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We look at the specialization t = 0.

We invoke the Jacobi-Trudi formula for sy(E) with the help of
the Gysin map associated to 7¢ : FI(E) — X:

S\(E) = (Te): ("),

n

We see that P\(E; t) = s)\(E) for t = 0. Under this
specialization, Theorem becomes

(0 %q) A (Q)5u(S)) = T (Sn,47..0g+(Q)54(S))

(Jézefiak-Lascoux-P)
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If a sequence A\ = (A1,...,\,) is not a partition, then s\(E) is
either 0 or £s,(E) for some partition .
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If a sequence A\ = (A1,...,\,) is not a partition, then s\(E) is
either 0 or £s,(E) for some partition .

One can rearrange A\ by a sequence of operations

(...;ij,...)—=(..,j—1i+1,...) applied to pairs of
successive integers.
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If a sequence A\ = (A1,...,\,) is not a partition, then s\(E) is
either 0 or £s,(E) for some partition .

One can rearrange A\ by a sequence of operations
(...;ij,...)—=(..,j—1i+1,...) applied to pairs of
successive integers.

Either one arrives at a sequence of the form (...,i,i+1,...),
in which case s,(E) = 0, or one arrives in d steps at a
partition 4, and then s,(E) = (—1)9s,(E).
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Pair of strict partitions v, o:

Piotr Pragacz Push-forward of Hall-Littlewood classes



Pair of strict partitions v, o:

v=(1>...>1>0), k<g, \:=v09k
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

oc=(o1>...>0,>0), h<n—gq, p:=o00"9"
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

oc=(o1>...>0,>0), h<n—gq, p:=o00"9"

VA—Hq kl t’
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

o=(01>...>0,>0), h<n—gq, p:=0c0"m9"h
VA—Hq kl t’

_ TYn—9-h 1-t
v, =[5 -t
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

o=(01>...>0,>0), h<n—gq, p:=0c0"m9"h
k i
vy = [0k
_ Tr—9—h1-¢
ve =112 =%

n—k—h 1—¢/ 2 1-¢)\°
Vap = [T 1t | ¢
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

oc=(o1>...>0,>0), h<n—gq, p:=o00"9"
q—k 1 t’
vy = H
_ T—9-h 1=t
v, =[5 1-t
n—k—h 1—¢/ 2 1-¢\°
Vap = [T -t <Hi:1 1—t>

Here e is the number of common parts of v and o.

Piotr Pragacz Push-forward of Hall-Littlewood classes



We have

Vap (1—t)--(1—t"—k=h)
v:\ljM - (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e
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We have

Vau

_ (1=t)-(1—t"—kh)
VaVy (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.
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We have

Vap (1—t)--(1—t"—k=h)
v:\ljM - (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.

So by Theorem we have

n—k—
qg—k

7T*( H (xi—tx;)PA(Q; t)Pu(S; t)) _ [

i<q<j

h] (t)(1+1)°Pyu(E; t).
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We have

Vap (1—t)--(1—t"—k=h)
v:\ljM - (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.

So by Theorem we have

n—k—
qg—k

7T*( H (xi—tx;)PA(Q; t)Pu(S; t)) _ [

i<q<j

h] (t)(1+1)°Pyu(E; t).

- some zeros at the end of )\ possible
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We have

v 1—¢t).(1— n—k—h
Au (1—t)-(1—t ) )(1+t)e

Vave  (I—t)(1—ta R)(A—t)-(1—trah

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.

So by Theorem we have

n—k—
qg—k

7T*( H (xi—tx;)PA(Q; t)Pu(S; t)) _ [

i<q<j

h] (t)(1+1)°Pyu(E; t).

- some zeros at the end of )\ possible

We look at the specialization t = —1. Most interesting is the
specialization of Gaussian polynomials.
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Lemma
At t = —1, the Gaussian polynomial

[a + b} ()

a

specializes to zero if ab is odd and to the binomial coefficient

(“oe)

otherwise.
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Lemma
At t = —1, the Gaussian polynomial

[a + b} ()

a

specializes to zero if ab is odd and to the binomial coefficient

(“oe)

otherwise.

(with Witold Kraskiewicz)
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)"'(l—ta)(1—t)--~(1—tb)'
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)""(l—ta)(1—t)--~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)'“(l—ta)(1—t)-~~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,

the order of the rational function [*%"] (t) at t = —1 is equal

to
[(a+b)/2] —[a/2] — [b/2].
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)'“(l—ta)(1—t)-~~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,

the order of the rational function [*%"] (t) at t = —1 is equal
to
[(a+b)/2] —|a/2] = [b/2].

This order is equal to 1 when a and b are odd, and 0 otherwise.
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)'“(l—ta)(1—t)-~~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,

the order of the rational function [*%"] (t) at t = —1 is equal
to
[(a+b)/2] —|a/2] = [b/2].

This order is equal to 1 when a and b are odd, and 0 otherwise.

In the former case, we get the claimed vanishing, and
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in the latter one, the product of the factors with even
exponents is equal to

]

The value of this function at t = —1 is equal to [LT;%J?J] (1)
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in the latter one, the product of the factors with even
exponents is equal to

2

|:La+b/ J:| (t2)
La/2]

The value of this function at t = —1 is equal to [LT;%J?J] (1)

which is the binomial coefficient

(“oe)
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in the latter one, the product of the factors with even
exponents is equal to

]

The value of this function at t = —1 is equal to [LT;;;/J?J] (1)
which is the binomial coefficient

(“oe)

This is the requested value since the remaining factors with
odd exponents give 2 in the numerator and the same number
in the denominator. QED

Piotr Pragacz Push-forward of Hall-Littlewood classes



Schur in his 1911 paper on projective representations of the

symmetric group showed that for a strict partition A with
I(\) = k,
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Schur in his 1911 paper on projective representations of the

symmetric group showed that for a strict partition A with
I(\) = k,

Py(y1,.--,¥n) = Z ( ) H y,—l—yj>

weSn/(S1)kxSp_k i<j, /<k
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Schur in his 1911 paper on projective representations of the
symmetric group showed that for a strict partition A with

I(\) = k,

., Yit+y
Pa(vis -y yn) = Z W(Yf\l"‘yr?\ %)
WESa/ (S X Sy i<jick V1Y

where on LHS we use Schur's P-functions from Introduction in
the variables y;, ..., y,.
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Schur in his 1911 paper on projective representations of the
symmetric group showed that for a strict partition A with

I(\) = k,

Py(y1,.--,¥n) = Z ( ) H y,—l—yj>

WESn/(Sl)kXSn_k i<j, I<k

where on LHS we use Schur's P-functions from Introduction in
the variables y;, ..., y,.

In other words, for such a A\, we have Py(E; t);—_1 = P\(E).
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Schur in his 1911 paper on projective representations of the

symmetric group showed that for a strict partition A with
I(\) = k,

Py(y1,.--,¥n) = Z ( ) H y,—l—yj>

WGSn/(Sl)kXSn_k i<j, ’<k

where on LHS we use Schur's P-functions from Introduction in
the variables y;, ..., y,.

In other words, for such a A\, we have Py(E; t);—_1 = P\(E).

For A € ZZ,, let also write Py := Py(E; t);~_ for short.
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Schur in his 1911 paper on projective representations of the

symmetric group showed that for a strict partition A with
I(\) = k,

Py(y1,.--,¥n) = Z ( ) H y,—l—yj>

WGSn/(Sl)kXSn_k i<j, ’<k

where on LHS we use Schur's P-functions from Introduction in
the variables y;, ..., y,.

In other words, for such a A\, we have Py(E; t);—_1 = P\(E).
For A € ZZ,, let also write Py := Py(E; t);~_ for short.

Note that for i+ > 0, we have P_;; = —P._;; . (follows
from Mcd pp. 213-214). Thus
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Schur in his 1911 paper on projective representations of the
symmetric group showed that for a strict partition A with
I(\) = k,

Py(y1,.--,¥n) = Z ( ) H y,—l—yj>

WGSn/(Sl)kXSn_k i<j, ’<k

where on LHS we use Schur's P-functions from Introduction in
the variables y;, ..., y,.

In other words, for such a A\, we have Py(E; t);—_1 = P\(E).
For A € ZZ,, let also write Py := Py(E; t);~_ for short.

Note that for i+ > 0, we have P_;; = —P._;; . (follows
from Mcd pp. 213-214). Thus

k)h —k)h
Pyoqfko.onquh - ( 1)(q ) P oOQn—k—h — (—1)(q ) Pl/cr .



If e >0, then P,, = 0; so we can assume e = 0.
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If e >0, then P,, = 0; so we can assume e = 0.

Specializing t = —1 we get from the main Theorem by virtue
of Lemma

Theorem
For strict partitions v, o with I(v) = k < q and
I(oc)=h<n-—gq,

7. (cer(Q © S)PAQ)PH(S)) = dvs - Pur(E),
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If e >0, then P,, = 0; so we can assume e = 0.

Specializing t = —1 we get from the main Theorem by virtue
of Lemma

Theorem
For strict partitions v, o with I(v) = k < q and
I(oc)=h<n-—gq,

T (qu(Q ® S)PV(Q)PU(S)) =d,, - P,(E),

where d, , = 0 if (g — k)(r — h) is odd, and
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If e >0, then P,, = 0; so we can assume e = 0.

Specializing t = —1 we get from the main Theorem by virtue
of Lemma

Theorem
For strict partitions v, o with I(v) = k < q and
I(oc)=h<n-—gq,

7. (cer(Q © S)PAQ)PH(S)) = dvs - Pur(E),

where d, , = 0 if (g — k)(r — h) is odd, and

q—k)h [(n—k—h)/2]
g = (1)1 ( (g K)/2] )

otherwise.
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History of H-L polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):
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History of H-L polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,
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History of H-L polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
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History of H-L polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
Hall algebra : )\, i, v three partitions. Let M be of type \.

A : _ _
G, = card{N C M : type(N) = v, type(M/N) = pu}
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History of H-L polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
Hall algebra : )\, i, v three partitions. Let M be of type \.

A : _ _
G, = card{N C M : type(N) = v, type(M/N) = pu}

Let H be a free Z-module with basis {u,},
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History of H-L polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
Hall algebra : )\, i, v three partitions. Let M be of type \.

A : _ _
G, = card{N C M : type(N) = v, type(M/N) = pu}

Let H be a free Z-module with basis {u,},

- A
U, - U, = g G U -
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Theorem
H is a commutative ring, and is generated as a Z-algebra by
{uan} (algebraically independent).
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Theorem
H is a commutative ring, and is generated as a Z-algebra by
{uan} (algebraically independent).

Theorem
The Q-linear map ¢ : H® Q — A ® Q (symmetric functions)
such that

Y(uy) = p~ =DNPy (yy,yn,. .5 p7Y)

is a ring isomorphism.
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Theorem
H is a commutative ring, and is generated as a Z-algebra by
{uan} (algebraically independent).

Theorem
The Q-linear map ¢ : H® Q — A ® Q (symmetric functions)
such that

Y(uy) = p~ =DNPy (yy,yn,. .5 p7Y)

is a ring isomorphism.

J.A. Green, D.E. Littlewood: Representation theory of GL,
over finite fields.
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THE END
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Conference IMPANGA 20 on Schubert Varieties.
Time: 11-17 July 2021, Venue: Bedlewo Poland.

We are planning a BLENDED EVENT. It will be possible to
participate both in presence and online.

https://www.impan.pl/en/activities/banach-
center/conferences/20-impanga

If you are interested in this event, please register following the
instructions on the webpage.
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