
Functional analysis

Lecture 14: Convolution and Fourier transform; Fourier inversion
formula and the uniqueness theorem for Fourier transform

9 An application: Fourier transform

The Fourier transform is one of the most important notions in mathematics. It has nu-
merous applications in wave analysis, electrical engineering, image processing etc. and
also provides an extremely useful tool in many mathematical problems coming from dif-
ferential equations and probability theory (where it appears as the characteristic function
of a random variable). In order to provide a motivation for the definition of the Fourier
transform, we need to understand that it is a continuous version of the Fourier series or,
in other words, it extends periodic phenomenons to a non-periodic setting when we let
the period tend to infinity.

To be more precise, suppose we are given a function f ∈ L1(R), not necessarily
periodic. In order to apply the theory of Fourier series, pick any large number T > 0,
consider the restriction of f to the interval [−T

2
, T
2
] and extend it periodically to the

whole of R. In this way we obtain a T -periodic function fT such that fT (x) = f(x)
for x ∈ [−T

2
, T
2
]. Instead of the ordinary trigonometric system (un)n∈Z we now consider

exponents of the form
un,T (x) = e2πi

n
T
x (n ∈ Z).

It is easy to verify that (un,T )n∈Z forms an orthonormal set in the space L2[−T
2
, T
2
] equipped

with the normalized Lebesgue measure 1
T

dx. This set is also complete which follows by
repeating the proof of Fejér’s theorem with obvious modifications, or by deriving it directly
from the 2π-periodic case after rescaling the domain [−π, π] to [−T

2
, T
2
]. Hence, the Fourier

coefficients of the T -periodic function fT are given by the formula

f̂T (n) = (fT , un,T ) =
1

T

∫ T/2

−T/2
f(t)e−2πi

n
T
t dt (n ∈ Z), (9.1)

and the corresponding Fourier series is

fT (x) ∼
∞∑

n=−∞

f̂T (n)e2πi
n
T
x.

Observe that fT in his expansion has exponents eiξx associated with every number of the
form ξ = 2πn/T (n ∈ Z), whereas in the classical 2π-periodic case we had only exponents
associated with integers. In other words, the larger the period T is, the more narrowly
distributed are the arguments of the exponential functions involved in the Fourier series.
So, if we want to draw a graph of fT in the frequency scale, we should plot the values of
f̂T (n) (or their magnitudes) at each argument of the form 2πn/T (n ∈ Z), which are 1

T

apart, whereas in the case of 2π-periodic functions we plot the values of Fourier coefficients
at integers which are just 1 apart. We thus suspect that in the limiting case, when T →∞,
we arrive at a continuous spectrum, that is, a certain function of a continuous real variable
which describes the asymptotic behavior of Fourier coefficients of fT ’s.

However, in order to define an appropriate limit version of Fourier coefficients, it would
not make much sense just to pass to the limit in formula (9.1) as T → ∞, because we
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simply have f̂T (n)→ 0 for every n ∈ Z. This is because the integrals in (9.1) are bounded

as T →∞ and hence, the coefficients f̂T (n) converge to zero like 1
T

. Therefore, we scale
up by T and consider new coefficients

cT,n =

∫ T/2

−T/2
f(t)e−2πi

n
T
t dt (n ∈ Z)

which on the frequence scale should be plotted at the points 2πn/T (n ∈ Z).
As an example, consider the function f = 1[−1,1]. Take any T > 1 and consider the

periodized function fT , i.e. fT (x) = 1 if x ∈ [nT −1, nT +1] for some n ∈ Z and f(x) = 0
otherwise. Calculate

cT,n =

∫ T/2

−T/2
f(t)e−2πi

n
T
t dt =

∫ 1

−1
e−2πi

n
T
t dt =

iT

2πn
e−2πi

n
T
t dt
∣∣∣1
−1

=
N

πn
sin

2πn

T
.

After plotting these values we obtain a discrete graph of the function 2 sinx
x

, for the argu-
ments x = 2πn/T (n ∈ Z). For T = 4π we get the following picture.

x = 0,±1
2
,±1,±3

2
, . . .

. . . . . .

Fig. 1. The plot of the Fourier coefficients of 1[−1,1] periodized over [−2π, 2π], i.e. T = 4π

Definition 9.1. Let f, g ∈ L1(R). We define the convolution f ∗ g by the formula

f ∗ g(x) =
1√
2π

∫
R
f(x− y)g(y) dy, (9.2)

and the Fourier transform f̂ of f by

f̂(x) =
1√
2π

∫
R
f(t)e−itx dt. (9.3)

The map L1(R) 3 f 7→ f̂ is called the Fourier transform.

The choice of the factor (2π)−1/2 is common and makes many formulas more elegant, as

well as the symmetry between f and f̂ in the L2-case, which we observe in the Plancherel
theorem. So, under this definition we can easily calculate e.g. the Fourier transform of
the function f = 1[−1,1]:

1̂[−1,1](x) =
1√
2π

∫ 1

−1
e−itx dt =

i√
2πx

e−itx
∣∣∣1
−1

=

√
2

π

sinx

x
.
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Notice that formula (9.2) makes sense, i.e. the map y 7→ f(x − y)g(y) is measurable
and integrable on R for a.e. x ∈ R. Hence, f ∗ g is defined by (9.2) a.e., moreover,
f ∗g ∈ L1(R). This follows by a simple application of Fubini’s theorem. Namely, replacing
(if necessary) f and g by Borel functions coinciding with them a.e. on R, we verify that
F (x, y) := f(x− y)g(y) is also Borel on R2. By Fubini’s theorem, we have∫

R2

|F (x, y)| dx dy =

∫
R

dy

∫
R
|F (x, y)| dx =

∫
R
|g(y)| dy

∫
R
|f(x− y)| dx = ‖f‖1‖g‖1.

Therefore, F ∈ L1(R2) which implies that the integral defining f ∗ g(x) exists for a.e.
x ∈ R and f ∗ g ∈ L1(R). Appealing once again to Fubini’s theorem, we obtain

‖f ∗ g‖1 ≤
∫
R

dy

∫
R
|F (x, y)| dx = ‖f‖1‖g‖1.

Lemma 9.2. Let f ∈ L1(R) and α, λ ∈ R. Then:

(a) for g(t) = eiαtf(t) we have ĝ(x) = f̂(x− α);

(b) for g(t) = f(t− α) we have ĝ(x) = f̂(x)e−iαx;

(c) if g ∈ L1(R), then f̂ ∗ g = f̂ · ĝ;

(d) for g(t) = f(−t) we have ĝ(x) = f̂(x);

(e) for g(t) = f
(
t
λ

)
(λ 6= 0) we have ĝ(x) = |λ|f̂(λx);

(f) for g(t) = −itf(t), if g ∈ L1(R), then f̂ is differentiable and (f̂)′ = ĝ;

(g) if f ∈ C1(R) and f ′ ∈ L1(R), then (̂f ′)(x) = ixf̂(x).

Proof. Assertions (a), (b), (d) and (e) follow automatically from formula (9.3). For prov-
ing (c) we use the Fubini theorem:

f̂ ∗ g(x) =
1

2π

∫
R
e−itx dt

∫
R
f(t− s)g(s) ds

=
1

2π

∫
R
g(s)e−isx ds

∫
R
f(t− s)e−ix(t−s) dt

=
1

2π

∫
R
g(s)e−isx ds

∫
R
f(t)e−ixt dt = f̂(x)ĝ(x).

Assertion (f) is left as an exercise (see Problem 6.17). For (g), integration by parts gives

(̂f ′)(x) =
1√
2π

∫
R
f ′(t)e−itx dt

= f(t)e−itx
∣∣∣+∞
−∞

+
ix√
2π

∫
R
f(t)e−itx dt = ixf̂(x).

Now, our goal is to find a way to ‘invert’ a Fourier transform, that is, to reconstruct the
original function f from its transform f̂ . Since f̂ , as we explained before, is a continuous
analogue of the sequence (f̂(n))n∈Z of Fourier coefficients, let us first see how to reconstruct
an integrable, 2π-periodic function from its Fourier series. So, let f ∈ L1(T) and consider
the corresponding Fourier series

f(x) ∼
∞∑

n=−∞

f̂(n)einx, where f̂(n) =
1

2π

∫ π

−π
f(t)e−int dt.
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We know that in general it is not possible to represent f(x) as the value of the Fourier
series at x, and this series can be divergent even for continuous functions. However,
assume additionally that

∞∑
n=−∞

|f̂(n)| <∞. (9.4)

Then the formula

g(x) =
∞∑

n=−∞

f̂(n)einx (9.5)

defines a continuous function g, because (9.4) assures that the series is uniformly conver-
gent by the Weierstrass M -test. Moreover, for each n ∈ Z we have

ĝ(n) =
1

2π

∫ π

−π
g(x)e−inx dx =

1

2π

∫ π

−π

{ ∞∑
k=−∞

f̂(k)eikx
}
e−inx dx

=
∞∑

k=−∞

f̂(k)
1

2π

∫ π

−π
ei(k−n)x dx = f̂(n).

(9.6)

Hence, f(x) = g(x) a.e. because the operator L1(T) 3 f 7→ (f̂(n))n∈Z is injective (recall
Theorem 8.11). In other words, under condition (9.4) the Fourier series of f converges to
f(x) a.e. on R.

The natural conjecture is thus that if both f and f̂ belong to L1(R) (the latter being
an analogue to assumption (9.4)), we have the formula

f(t) =
1√
2π

∫
R
f̂(x)eitx dx, (9.7)

which corresponds to (9.5). In fact, we shall prove it is true, but it is much more delicate
matter than in the case of Fourier series. Observe that we cannot simply repeat the
same argument as above, replacing everywhere the formula for Fourier coefficients by the
formula for Fourier transform. By doing so, in computation (9.6) we would arrive at
an integral

∫∞
−∞ e

i(x−y)t dt which does not make sense.
From now on, we consider the Lp spaces (basically for p = 1, 2) on R equipped with

the measure dµ = (2π)−1/2 dx, so that

‖f‖p =
{ 1√

2π

∫
R
|f(x)|p dx

}1/p

for f ∈ Lp(R).

Proposition 9.3. For every f ∈ L1(R), f̂ ∈ C0(R) and ‖f̂‖∞ ≤ ‖f‖1.

Proof. The above inequality is obvious from formula (9.3). To see that f̂ is continuous,
fix any sequence (xn)∞n=1 in R converging to some x ∈ R. Then

|f̂(xn)− f̂(x)| ≤ 1√
2π

∫
R
|f(t)||e−ixnt − e−ixt| dt

and since the function under the integral is majorized by 2|f(t)|, we obtain f̂(xn)→ f̂(x)
by Lebesgue’s theorem.
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Now, we prove that f̂ vanishes at infinity. For every x ∈ R we have

f̂(x) = − 1√
2π

∫
R
f(t)e−ix(t+

π
x
) dt = − 1√

2π

∫
R
f
(
s− π

x

)
e−ixs ds,

hence

2f̂(x) =
1√
2π

∫
R

(
f(t)− f

(
t− π

x

))
e−ixt dt.

Therefore, 2|f̂(x)| ≤ ‖f −fπ/x‖1, where fy denotes the shifted function, fy(x) = f(x− y).
It is easy to show that the map R 3 y 7→ fy ∈ L1(R) is uniformly continuous (classes),

hence we obtain |f̂(x)| → 0 as |x| → ∞.

As we explained before, trying to prove the announced assertion (9.7) by simply plug-

ging into it the formula (9.3) leads to a divergent integral. However, if instead of f̂ we had

f̂ multiplied by some integrable function of variable t, then using the Fubini theorem and
changing the order of integration would lead to a convergent integral. So, our strategy
is to convolve f with some nicely integrable functions in such a way that in the limit
(in some sense) we obtain f itself. An appropriate sequence of such functions is called
an approximate identity of L1(R) under the convolution operation, and there are many
possible choices of them. We choose the following: define

H(t) = e−|t| (t ∈ R)

and

hλ(x) =
1√
2π

∫
R
H(λt)eitx dt (λ > 0). (9.8)

We can observe that h1 is the Fourier transform of the function H(−t), but the point is
that all hλ’s are positive and their integrals are easy to calculate. Indeed, we have

hλ(x) =

√
2

π
· λ

λ2 + x2
(λ > 0), (9.9)

whence
1√
2π

∫
R
hλ(x) dx = 1 (λ > 0). (9.10)

Fig. 2. The graphs of hλ for λ = 1, 12 ,
1
3 ,

1
4
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The following result collects the most important features of the functions H and hλ.

Proposition 9.4. Let f ∈ L1(R), g ∈ L∞(R) and assume that g is continuous at some
point x ∈ R. Then:

(a) (f ∗ hλ)(x) =
1√
2π

∫
R
H(λt)f̂(t)eixt dt;

(b) limλ→0+(g ∗ hλ)(x) = g(x);

(c) limλ→0+ ‖f ∗ hλ − f‖1 = 0;

(d) limλ→0+ ‖f ∗ hλ − f‖p = 0 if 1 ≤ p <∞ and f ∈ Lp(R);

Proof. Assertion (a) follows immediately from (9.8) by applying Fubini’s theorem.
For (b), observe that using (9.10) we obtain

(g ∗ hλ)(x)− g(x) =
1√
2π

∫
R

(
g(x− y)− g(x)

)
hλ(y) dy

=
1√
2π

∫
R

(
g(x− y)− g(x)

)
λ−1h1(λ

−1y) dy

=
1√
2π

∫
R

(
g(x− λy)− g(x)

)
h1(y) dy.

Since the integrated function is bounded by 2‖g‖∞h1(y), we get that (g ∗ hλ)(x)→ g(x)
as λ→ 0+ by Lebesgue’s dominated convergence theorem.

For assertion (c), observe first that f ∗ hλ is well-defined and continuous. In general,
using Hölder’s inequality and the fact that the map R 3 z 7→ Gz ∈ Lq(R) is uniformly
continuous for any G ∈ Lq(R), we may infer that for all f ∈ Lp(R) and G ∈ Lq(R) with
1
p

+ 1
q

= 1 the convolution F ∗G is uniformly continuous.

Using (9.10) we may write

(f ∗ hλ)(x)− f(x) =
1√
2π

∫
R

(
f(x− y)− f(x)

)
hλ(y) dy.

Integrating over x ∈ R and using Fubini’s theorem we obtain

‖f ∗ hλ − f‖1 ≤
1√
2π

∫
R
‖fy − f‖1 · hλ(y) dy.

Hence, applying assertion (b) to the continuous function g(y) := ‖fy − f‖1 with g(0) = 0,
we infer that the right-hand side tends to 0 as λ→ 0+.

Assertion (d) is proved in the same way as above with one difference that in order to
estimate ‖f ∗ hλ − f‖p one should use the Jensen inequality for integrals, applied to the
convex function t 7→ tp.

Theorem 9.5 (Fourier inversion formula). If f, f̂ ∈ L1(R), then the function g defined
by

g(t) =
1√
2π

∫
R
f̂(x)eitx dx

belongs to C0(R) and f(t) = g(t) a.e. on R.
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Proof. Since we assume that f̂ ∈ L1(R), the above integral makes sense and it defines
g ∈ C0(R) according to Proposition 9.3. Note that

|H(λt)f̂(t)eitx| ≤ |f̂(t)| for every t ∈ R

and H(λt) → 1 as λ → 0+. Hence, by Proposition 9.4(a) and Lebesgue’s theorem, we
obtain

lim
λ→0+

(f ∗ hλ)(x) = g(x) for every x ∈ R.

On theother hand, Proposition 9.4(c) says that

lim
λ→0+

‖f ∗ hλ − f‖1 = 0.

Hence, there exists a sequence (λn)∞n=1 of positive numbers converging to zero such that

lim
n→∞

(f ∗ hλn)(f) = f(x) a.e. on R.

(see the proof of Theorem 1.12). Consequently, f(x) = g(x) a.e.

Corollary 9.6. If f ∈ L1(R) and f̂(x) ≡ 0, then f = 0 a.e.
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