Functional analysis

Lecture 15: Fourier transform for L_2 -functions; Plancherel's theorem; generalized Fourier inversion formula

As we have seen, formula (9.3) originally defines the Fourier transform which maps the space $L_1(\mathbb{R})$ into $C_0(\mathbb{R})$, but not in a surjective way (see **Problem 6.30**). So, there is no Fourier-like correspondence between all integrable functions and all continuous functions vanishing at infinity. Nonetheless, the machinery of Fourier transform can be adapted to functions from $L_2(\mathbb{R})$ and in that space the resulting theory manifests full symmetry between f and \hat{f} . This is the content of the following celebrated theorem whose most important part is the formula in assertion (b).

Theorem 9.7 (Plancherel theorem). There exists a map $L_2(\mathbb{R}) \ni f \mapsto \hat{f}$ from $L_2(\mathbb{R})$ into itself having the following properties:

- (a) if $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$, then \hat{f} is the Fourier transform of f in the sense of Definition 9.1;
- (b) $||f||_2 = ||\widehat{f}||_2$ for every $f \in L_2(\mathbb{R})$;
- (c) the map $L_2(\mathbb{R}) \ni f \mapsto \widehat{f}$ is an isometric isomorphism of $L_2(\mathbb{R})$ onto itself;
- (d) if for every A > 0 we define

$$\varphi_A(x) = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f(t) e^{-itx} dt \quad and \quad \psi_A(t) = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} \widehat{f}(x) e^{itx} dx,$$

then $\|\varphi_A - \widehat{f}\|_2 \to 0$ and $\|\psi_A - f\|_2 \to 0$ as $A \to \infty$.

Proof. For transparency, we divide the proof into several parts. We start with proving equality (b) for functions from $L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ and then we extend the Fourier transform to $L_2(\mathbb{R})$ and complete the proof of (b) for all L_2 -functions.

<u>Part 1.</u> $||f||_2 = ||f||_2$ for every $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$.

For any fixed $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ define

$$\widetilde{f}(x) = \overline{f(-x)}$$
 and $g = f * \widetilde{f}$.

We have

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x-y)\overline{f(-y)} \, \mathrm{d}y = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x+y)\overline{f(y)} \, \mathrm{d}y,$$

hence we can write g in a form of the inner product in $L_2(\mathbb{R})$, namely, $g(x) = (f_{-x}, f)$. This means that g(x) is the evaluation of the continuous linear functional on $L_2(\mathbb{R})$ generated by f (like in the Riesz representation theorem) on the shifted function f_{-x} . Since the map $x \mapsto f_{-x}$ is also continuous, we infer that g is continuous.

By the Cauchy–Schwarz inequality,

$$|g(x)| \le ||f_{-x}||_2 ||f||_2 = ||f||_2^2$$

and hence g is bounded. Notice also that since $f, \tilde{f} \in L_1(\mathbb{R})$, the function g as their convolution belongs to $L_1(\mathbb{R})$ as well. By Proposition 9.4(a), we have

$$(g * h_{\lambda})(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} H(\lambda t)\widehat{g}(t) \,\mathrm{d}t.$$

In view of Lemma 9.2(c), (d), we have $\widehat{g} = |\widehat{f}|^2 \ge 0$. Since also $H(\lambda t) \nearrow 1$ as $\lambda \to 0$, the Lebesgue theorem yields

$$\lim_{\lambda \to 0^+} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} H(\lambda t) \widehat{g}(t) \, \mathrm{d}t = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |\widehat{f}(t)|^2 \, \mathrm{d}t = \|\widehat{f}\|_2^2.$$

On the other hand, by Proposition 9.4(b), we have

$$\lim_{\lambda \to 0^+} (g * h_{\lambda})(0) = g(0) = ||f||_2^2$$

which proves that $||f||_2 = ||\widehat{f}||_2$.

<u>Part 2.</u> An extension of the Fourier transform to $L_2(\mathbb{R})$.

Fix any $f \in L_2(\mathbb{R})$ and define $f_A = f \cdot \mathbb{1}_{[-A,A]}$ for A > 0. Plainly, $f_A \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ and Lebesgue's theorem implies that $||f_A - f||_2 \to 0$ as $A \to \infty$. If we define φ_A as in assertion (d), i.e.

$$\varphi_A(x) = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f(t) e^{-itx} dt,$$

then, obviously, $\varphi_A = \widehat{f_A}$.

By Part 1, we have $\|\varphi_A\|_2 = \|f_A\|_2$ and since $(f_A)_{A \in \mathbb{N}}$ is a Cauchy sequence in $L_2(\mathbb{R})$, so is $(\varphi_A)_{A \in \mathbb{N}}$. Therefore, we can define

$$\widehat{f} = \lim_{A \to \infty} \varphi_A$$
 (the limit in $L_2(\mathbb{R})$).

Notice that in the case where $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$, the sequence $(\varphi_A)_{A \in \mathbb{N}}$ converges pointwise to \widehat{f} . Therefore, the just defined map $f \mapsto \widehat{f}$ is indeed an extension of the Fourier transform.

Observe also that for every $f \in L_2(\mathbb{R})$ we have

$$\|\widehat{f}\|_2 = \lim_{A \to \infty} \|\varphi_A\|_2 = \lim_{A \to \infty} \|f_A\|_2 = \|f\|_2.$$

Consequently, we have proved assertions (a), (b) and the first part of (d).

<u>Part 3.</u> Generalizing the Fourier inversion formula (the second part of assertion (d)).

For clarity, we use here the symbols Φ and Ψ for the linear operators on $L_2(\mathbb{R})$ given by $\Phi(f) = \hat{f}$ and

$$\Psi(g) = \lim_{A \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} g(x) e^{itx} \, \mathrm{d}x \quad \text{(the limit in } L_2(\mathbb{R})\text{)}.$$

(Note that the latter definition makes sense because, as we have already seen, the sequence under the limit sign is Cauchy.)

We *claim* that

$$\Psi\Phi(f) = f$$
 for every $f \in L_2(\mathbb{R})$. (9.1)

Since $\Psi g(x) = \Phi g(-x)$, assertion (b) implies that both Φ and Ψ are isometries of L_2 into itself. In particular, they are both continuous. By the fact that $L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ is a dense subspace of $L_2(\mathbb{R})$, it is thus enough to prove formula (9.1) for every $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$. If f is such a function and additionally satisfies $\widehat{f} \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$, then (9.1) follows directly from the Fourier inversion formula (Theorem 9.5). For any $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ we consider the convolutions $f * h_\lambda$ ($\lambda > 0$) which all satisfy the condition

$$\widehat{f * h_{\lambda}} \in L_1(\mathbb{R}) \cap L_2(\mathbb{R}).$$

Indeed, by Lemma 9.2(c), $\widehat{f * h_{\lambda}} = \widehat{f} \cdot \widehat{h_{\lambda}}$, whereas formula (9.8) (which is nothing but the inverse formula for $H(\lambda x)$) gives $\widehat{h_{\lambda}}(x) = H(\lambda x) = e^{-\lambda |x|}$. Thus, the product $\widehat{f} \cdot \widehat{h_{\lambda}}$ is obviously integrable.

Therefore, $\Psi\Phi(f * h_{\lambda}) = f * h_{\lambda}$ for every $\lambda > 0$. By Proposition 9.4(d), we have $||f * h_{\lambda} - f||_2 \to 0$ as $\lambda \to 0$ and since $\Psi\Phi$ is an isometry, we obtain formula (9.1) for every $f \in L_1(\mathbb{R}) \cap L_2(\mathbb{R})$, and hence for every $f \in L_2(\mathbb{R})$. We have thus proved assertion (d) completely.

<u>Part 4.</u> $f \mapsto \hat{f}$ is a unitary operator on $L_2(\mathbb{R})$ (assertion (c)).

Swapping Φ and Ψ in Part 3, whose roles are symmetrical up to the minus sign, we obtain $\Phi\Psi(f) = f$ for every $f \in L_2(\mathbb{R})$. This, together with formula (9.1), implies that our extension $f \mapsto \hat{f}$, i.e. the map Φ , is both injective and surjective.

It remains to show that it preserves the inner product in $L_2(\mathbb{R})$ (cf. **Problem 5.11**). This follows easily once we recall the polarization identity:

$$4(f,g) = \|f+g\|^2 - \|f-g\|^2 + i\|f+ig\|^2 - i\|f-ig\|^2 \quad (f,g \in L_2(\mathbb{R})).$$

Since Φ is an isometry, we thus obtain

$$(f,g) = (\Phi f, \Phi g) \quad (f,g \in L_2(\mathbb{R})),$$

which proves assertion (c) and completes the whole proof.

Remark 9.8. Let us stress the difference between the Fourier transform \hat{f} for $f \in L_1(\mathbb{R})$ and for $f \in L_2(\mathbb{R}) \setminus L_1(\mathbb{R})$. In the former case, $\hat{f}(x)$ is defined *everywhere* on \mathbb{R} by means of formula (9.3) and is a continuous functions. In the latter case, $\hat{f}(x)$ is just defined *almost everywhere* \mathbb{R} with the aid of the approximation procedure described in assertion (d) above.

However, for every $f \in L_2(\mathbb{R})$, even if $f \notin L_1(\mathbb{R})$, the Fourier inversion formula is valid, provided that $\hat{f} \in L_1(\mathbb{R})$. Indeed, the integral which defines $\psi_A(t)$ in assertion (d) is then convergent as $A \to \infty$ and since $(\psi_A)_{A \in \mathbb{N}}$ converges to f in $L_2(\mathbb{R})$, we have

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \widehat{f}(x) e^{itx} dx$$
 a.e. on \mathbb{R} .

Of course, the Plancherel theorem has countless applications whenever we deal with Fourier transforms for L_2 -functions. Let us just show one, where we calculate an improper integral in quite an elegant way.

Example 9.9. By Plancherel's theorem, we have

$$\int_{-\infty}^{+\infty} \left(\frac{\sin x}{x}\right)^2 \mathrm{d}x = \pi.$$

Proof. We verify easily that

$$\widehat{\mathbb{1}_{[-1,1]}}(x) = \sqrt{\frac{2}{\pi}} \frac{\sin x}{x} \quad (x \in \mathbb{R})$$

(see the comments after Definition 9.1). Comparing the squares of the L_2 -norms of these functions (recall that we divide the Lebesgue measure by $\sqrt{2\pi}$), we get

$$\frac{1}{\pi^2} \int_{-\infty}^{+\infty} \left(\frac{\sin x}{x}\right)^2 \mathrm{d}x = \|\mathbb{1}_{[-1,1]}\|_2^2 = \frac{1}{2\pi} \int_{-1}^1 \mathrm{d}x = \frac{1}{\pi}.$$