
Functional analysis

Lecture 15: Fourier transform for L2-functions; Plancherel’s theorem;
generalized Fourier inversion formula

As we have seen, formula (9.3) originally defines the Fourier transform which maps the
space L1(R) into C0(R), but not in a surjective way (see Problem 6.30). So, there is no
Fourier-like correspondence between all integrable functions and all continuous functions
vanishing at infinity. Nonetheless, the machinery of Fourier transform can be adapted
to functions from L2(R) and in that space the resulting theory manifests full symmetry

between f and f̂ . This is the content of the following celebrated theorem whose most
important part is the formula in assertion (b).

Theorem 9.7 (Plancherel theorem). There exists a map L2(R) 3 f 7→ f̂ from L2(R)
into itself having the following properties:

(a) if f ∈ L1(R) ∩ L2(R), then f̂ is the Fourier transform of f in the sense of Defini-
tion 9.1;

(b) ‖f‖2 = ‖f̂‖2 for every f ∈ L2(R);

(c) the map L2(R) 3 f 7→ f̂ is an isometric isomorphism of L2(R) onto itself;

(d) if for every A > 0 we define

ϕA(x) =
1√
2π

∫ A

−A
f(t)e−itx dt and ψA(t) =

1√
2π

∫ A

−A
f̂(x)eitx dx,

then ‖ϕA − f̂‖2 → 0 and ‖ψA − f‖2 → 0 as A→∞.

Proof. For transparency, we divide the proof into several parts. We start with proving
equality (b) for functions from L1(R) ∩ L2(R) and then we extend the Fourier transform
to L2(R) and complete the proof of (b) for all L2-functions.

Part 1. ‖f‖2 = ‖f‖2 for every f ∈ L1(R) ∩ L2(R).

For any fixed f ∈ L1(R) ∩ L2(R) define

f̃(x) = f(−x) and g = f ∗ f̃ .

We have

g(x) =
1√
2π

∫
R
f(x− y)f(−y) dy =

1√
2π

∫
R
f(x+ y)f(y) dy,

hence we can write g in a form of the inner product in L2(R), namely, g(x) = (f−x, f). This
means that g(x) is the evaluation of the continuous linear functional on L2(R) generated
by f (like in the Riesz representation theorem) on the shifted function f−x. Since the
map x 7→ f−x is also continuous, we infer that g is continuous.

By the Cauchy–Schwarz inequality,

|g(x)| ≤ ‖f−x‖2‖f‖2 = ‖f‖22

and hence g is bounded. Notice also that since f, f̃ ∈ L1(R), the function g as their
convolution belongs to L1(R) as well. By Proposition 9.4(a), we have

(g ∗ hλ)(0) =
1√
2π

∫
R
H(λt)ĝ(t) dt.
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In view of Lemma 9.2(c), (d), we have ĝ = |f̂ |2 ≥ 0. Since also H(λt)↗ 1 as λ→ 0, the
Lebesgue theorem yields

lim
λ→0+

1√
2π

∫
R
H(λt)ĝ(t) dt =

1√
2π

∫
R
|f̂(t)|2 dt = ‖f̂‖22.

On the other hand, by Proposition 9.4(b), we have

lim
λ→0+

(g ∗ hλ)(0) = g(0) = ‖f‖22

which proves that ‖f‖2 = ‖f̂‖2.

Part 2. An extension of the Fourier transform to L2(R).

Fix any f ∈ L2(R) and define fA = f · 1[−A,A] for A > 0. Plainly, fA ∈ L1(R) ∩ L2(R)
and Lebesgue’s theorem implies that ‖fA − f‖2 → 0 as A → ∞. If we define ϕA as in
assertion (d), i.e.

ϕA(x) =
1√
2π

∫ A

−A
f(t)e−itx dt,

then, obviously, ϕA = f̂A.
By Part 1, we have ‖ϕA‖2 = ‖fA‖2 and since (fA)A∈N is a Cauchy sequence in L2(R),

so is (ϕA)A∈N. Therefore, we can define

f̂ = lim
A→∞

ϕA (the limit in L2(R)).

Notice that in the case where f ∈ L1(R)∩L2(R), the sequence (ϕA)A∈N converges pointwise

to f̂ . Therefore, the just defined map f 7→ f̂ is indeed an extension of the Fourier
transform.

Observe also that for every f ∈ L2(R) we have

‖f̂‖2 = lim
A→∞

‖ϕA‖2 = lim
A→∞

‖fA‖2 = ‖f‖2.

Consequently, we have proved assertions (a), (b) and the first part of (d).

Part 3. Generalizing the Fourier inversion formula (the second part of assertion (d)).

For clarity, we use here the symbols Φ and Ψ for the linear operators on L2(R) given

by Φ(f) = f̂ and

Ψ(g) = lim
A→∞

1√
2π

∫ A

−A
g(x)eitx dx (the limit in L2(R)).

(Note that the latter definition makes sense because, as we have already seen, the sequence
under the limit sign is Cauchy.)

We claim that
ΨΦ(f) = f for every f ∈ L2(R). (9.1)

Since Ψg(x) = Φg(−x), assertion (b) implies that both Φ and Ψ are isometries of L2 into
itself. In particular, they are both continuous. By the fact that L1(R)∩L2(R) is a dense
subspace of L2(R), it is thus enough to prove formula (9.1) for every f ∈ L1(R) ∩ L2(R).
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If f is such a function and additionally satisfies f̂ ∈ L1(R) ∩ L2(R), then (9.1) follows
directly from the Fourier inversion formula (Theorem 9.5). For any f ∈ L1(R) ∩ L2(R)
we consider the convolutions f ∗ hλ (λ > 0) which all satisfy the condition

f̂ ∗ hλ ∈ L1(R) ∩ L2(R).

Indeed, by Lemma 9.2(c), f̂ ∗ hλ = f̂ · ĥλ, whereas formula (9.8) (which is nothing but

the inverse formula for H(λx)) gives ĥλ(x) = H(λx) = e−λ|x|. Thus, the product f̂ · ĥλ is
obviously integrable.

Therefore, ΨΦ(f ∗ hλ) = f ∗ hλ for every λ > 0. By Proposition 9.4(d), we have
‖f ∗ hλ − f‖2 → 0 as λ → 0 and since ΨΦ is an isometry, we obtain formula (9.1) for
every f ∈ L1(R) ∩ L2(R), and hence for every f ∈ L2(R). We have thus proved assertion
(d) completely.

Part 4. f 7→ f̂ is a unitary operator on L2(R) (assertion (c)).

Swapping Φ and Ψ in Part 3, whose roles are symmetrical up to the minus sign, we
obtain ΦΨ(f) = f for every f ∈ L2(R). This, together with formula (9.1), implies that

our extension f 7→ f̂ , i.e. the map Φ, is both injective and surjective.
It remains to show that it preserves the inner product in L2(R) (cf. Problem 5.11).

This follows easily once we recall the polarization identity:

4(f, g) = ‖f + g‖2 − ‖f − g‖2 + i‖f + ig‖2 − i‖f − ig‖2 (f, g ∈ L2(R)).

Since Φ is an isometry, we thus obtain

(f, g) = (Φf,Φg) (f, g ∈ L2(R)),

which proves assertion (c) and completes the whole proof.

Remark 9.8. Let us stress the difference between the Fourier transform f̂ for f ∈ L1(R)

and for f ∈ L2(R) \L1(R). In the former case, f̂(x) is defined everywhere on R by means

of formula (9.3) and is a continuous functions. In the latter case, f̂(x) is just defined
almost everywhere R with the aid of the approximation procedure described in assertion
(d) above.

However, for every f ∈ L2(R), even if f 6∈ L1(R), the Fourier inversion formula is

valid, provided that f̂ ∈ L1(R). Indeed, the integral which defines ψA(t) in assertion (d)
is then convergent as A→∞ and since (ψA)A∈N converges to f in L2(R), we have

f(t) =
1√
2π

∫
R
f̂(x)eitx dx a.e. on R.

Of course, the Plancherel theorem has countless applications whenever we deal with
Fourier transforms for L2-functions. Let us just show one, where we calculate an improper
integral in quite an elegant way.

Example 9.9. By Plancherel’s theorem, we have∫ +∞

−∞

(sinx

x

)2
dx = π.
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Proof. We verify easily that

1̂[−1,1](x) =

√
2

π

sinx

x
(x ∈ R)

(see the comments after Definition 9.1). Comparing the squares of the L2-norms of these
functions (recall that we divide the Lebesgue measure by

√
2π), we get

1

π2

∫ +∞

−∞

(sinx

x

)2
dx = ‖1[−1,1]‖22 =

1

2π

∫ 1

−1
dx =

1

π
.
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