Lecture 1

Frits Beukers

October 23, 2018

Gauss' hypergeometric function

Euler and Gauss defined

$${}_{2}F_{1}\left(\begin{array}{c}\alpha & \beta\\\gamma\end{array}\right|z\right) = \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{n!(\gamma)_{n}} z^{n}$$

where $(x)_n = x(x+1)\cdots(x+n-1)$ (Pochhammer symbol). Examples

$$P_1 \begin{pmatrix} 1 & 1 \\ 2 \end{pmatrix} = -\frac{1}{z} \log(1-z)$$

$$P_1 \begin{pmatrix} 1/2 & 1 \\ 1 \end{pmatrix} = (1-z)^{-1/2}$$

$$P_1 \begin{pmatrix} 1/2 & 1/2 \\ 1 \end{pmatrix} = \frac{2}{\pi} \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-zt^2)}}$$
We will use the notation $F(\alpha, \beta, \gamma|z).$

Differential equation

$$z(z-1)F'' + ((\alpha + \beta + 1)z - \gamma)F' + \alpha\beta F = 0$$

This is a Fuchsian differential equation of order 2 with singularities at $0,1,\infty.$

Local solutions at z = 0:

- $F(\alpha, \beta, \gamma | z)$ • $z^{1-\gamma}F(\alpha + 1 - \gamma, \beta + 1 - \gamma, 2 - \gamma | z)$ At $z = \infty$ • $(1/z)^{\alpha}F(\alpha, \alpha + 1 - \gamma, \alpha + 1 - \beta | 1/z)$
 - $(1/z)^{\beta}F(\beta,\beta+1-\gamma,\beta+1-\alpha|1/z)$

Monodromy

Let ${\cal V}$ be solution space of hypergeometic equation. Analytic continuation gives us the monodromy representation

 $\rho: \pi_1(\mathbb{C}\setminus\{0,1\}) \to GL(V)$ z0 Х

Monodromy matrices: $M_i := \rho(g_i), i = 0, 1, \infty$ with relation $M_{\infty}M_1M_0 = 1$.

Monodromy properties

Denote $e(x) = \exp(2\pi i x)$. Eigenvalues

- $M_0: 1, e(-\gamma)$
- M_1 : 1, $e(\gamma \alpha \beta)$
- M_{∞} : $e(\alpha), e(\beta)$

Proposition

Let $A, B \in GL(2, \mathbb{C})$ with eigenvalues a_1, a_2 resp b_1, b_2 and such that $A^{-1}B$ has eigenvalue 1. Let $G = \langle A, B \rangle$. Then

G irreducible $\iff \{a_1, a_2\} \cap \{b_1, b_2\} = \emptyset.$

In that case A, B are uniquely determined up to common conjugation.

Application: $A = M_0^{-1}, B = M_\infty$. So, monodromy irreducible $\iff \{\alpha, \beta\} \pmod{\mathbb{Z}}$ and $\{0, \gamma\} \pmod{\mathbb{Z}}$ disjoint.

Introduction

Explicit matrices

Characteristic polynomial

- of M_0^{-1} is $x^2 (1 + e(\gamma))x + e(\gamma)$
- of M_{∞} is $x^2 (e(\alpha) + e(\beta))x + e(\alpha + \beta)$.

Up to common conjugation:

$$M_0^{-1} = \begin{pmatrix} 0 & -e(\gamma) \\ 1 & 1+e(\gamma) \end{pmatrix}$$
 $M_\infty = \begin{pmatrix} 0 & -e(\alpha+\beta) \\ 1 & e(\alpha)+e(\beta) \end{pmatrix}$.

Theorem

Suppose $\alpha, \beta, \gamma \in (0, 1]$. Then there exists a Hermitian form F on \mathbb{C}^2 such that $F(g\mathbf{x}, g\mathbf{y}) = F(\mathbf{x}, \mathbf{y})$ for all $g \in \langle M_0, M_\infty \rangle$. This form is definite if and only if γ lies between α and β .

Schwarz's list

In 1873 H.A. Schwarz gave a list of all parameter triples α, β, γ such that $_2F_1\left(\left. \begin{array}{c} \alpha & \beta \\ \gamma \end{array} \right| z \right)$ is algebraic in z. All triples are in \mathbb{Q} .

An example, ${}_{2}F_{1}\left(\left. \frac{19/60}{4/5} \right| z \right)$ is algebraic of degree 720. Its Galois group is a central extension of the alternating group A_{5} by a cyclic group of order 60.

Such functions were used in F.Klein's "Vorlesungen über das Ikosaeder".

Clausen-Thomae functions

Let $\alpha_1, \ldots, \alpha_d$ and $\beta_1, \ldots, \beta_{d-1}$ be any parameters and $\beta_d = 1$. Define

$$_{d}F_{d-1}\left(\begin{array}{c}\alpha_{1},\ldots,\alpha_{d}\\\beta_{1},\ldots,\beta_{d-1}\end{array}\middle|z\right)=\sum_{k=0}^{\infty}\frac{(\alpha_{1})_{k}\cdots(\alpha_{d})_{k}}{(\beta_{1})_{k}\cdots(\beta_{d-1})_{k}k!}z^{k}$$

where $(x)_n = x(x+1)\cdots(x+n-1)$ is the Pochhammer symbol. Hypergeometric equation

$$z(D+\alpha_1)\cdots(D+\alpha_d)F = (D+\beta_1-1)\cdots(D+\beta_d-1)F, \quad D = z\frac{d}{dz}$$

This is a Fuchsian differential equation of order d with singularities at $0, 1, \infty$.

Monodromy

Theorem

Monodromy irreducible $\iff \{\alpha_1, \ldots, \alpha_d\}$ and $\{\beta_1, \ldots, \beta_d\}$ disjoint modulo \mathbb{Z} .

Levelt's theorem (1960)

Write $\prod_{i=1}^{d} (x - e(\beta_i)) = x^d + B_1 x^{d-1} + \dots + B_d$ and $\prod_{i=1}^{d} (x - e(\alpha_i)) = x^d + A_1 x^{d-1} + \dots + A_d$. Then up to common conjugation M_{∞} and M_0^{-1} equal

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -A_d \\ 1 & 0 & \dots & 0 & -A_{d-1} \\ 0 & 1 & \dots & 0 & -A_{d-2} \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 1 & -A_1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & \dots & 0 & -B_d \\ 1 & 0 & \dots & 0 & -B_{d-1} \\ 0 & 1 & \dots & 0 & -B_{d-2} \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 1 & -B_1 \end{pmatrix}$$

Invariant Hermitean form

Suppose that $\alpha_i, \beta_j \in \mathbb{R}$ for all i, j.

Theorem

Then there exists a unique (up to scalars) monodromy invariant Hermitean form F. That is, F(gx, gy) = F(x, y) for all monodromy matrices g.

Theorem

The Hermitian form F is definite if and only if the sets $\{\alpha_1, \ldots, \alpha_d\}$ and $\{\beta_1, \ldots, \beta_d\}$ interlace modulo \mathbb{Z} .

Interlacing

Interlacing sets in [0, 1) when d = 4,

Two sets $\{\alpha_1, \ldots, \alpha_d\}$ and $\{\beta_1, \ldots, \beta_d\}$ are said to interlace modulo \mathbb{Z} if the sets $\{\alpha_i - \lfloor \alpha_i \rfloor\}_{i=1,\ldots,d}$ and $\{\beta_i - \lfloor \beta_i \rfloor\}_{i=1,\ldots,d}$ interlace in [0, 1).

Finite monodromy

Suppose $\{\alpha_1, \ldots, \alpha_d\}$ and $\{\beta_1, \ldots, \beta_d\}$ are sets of rational numbers disjoint modulo \mathbb{Z} . Let *N* be a common denominator.

Suppose the monodromy group is finite. Then there is an invariant definite Hermitian form. Hence the parameter sets interlace mod \mathbb{Z} .

Monodromy matrices have elements in $\mathbb{Z}[e(1/N)]$. Apply Galois element $\zeta_N \to \zeta_N^p, \gcd(p, N) = 1$ to monodromy matrices. Get monodromy with parameter sets $\{p\alpha_i\}$ and $\{p\beta_i\}$. Hence they interlace modulo \mathbb{Z} .

Algebraic hypergeometric functions

Converse also holds.

Theorem (Beukers-Heckman, 1986)

A hypergeometric group is finite if and only if the sets $\{p\alpha_1, \ldots, p\alpha_d\}$ and $\{p\beta_1, \ldots, p\beta_d\}$ interlace mod \mathbb{Z} for every integer p with gcd(p, N) = 1.

Example:

 $F(x) = {}_{8}F_{7} \left(\begin{array}{c} 1/30 \ 7/30 \ 11/30 \ 13/30 \ 17/30 \ 19/30 \ 23/30 \ 29/30 \\ 1/5 \ 1/3 \ 2/5 \ 1/2 \ 3/5 \ 2/3 \ 4/5 \end{array} \right| x \right)$

which equals

$$\sum_{n\geq 0} \frac{(30n)!n!}{(15n)!(10n)!(6n)!} \left(\frac{z}{2^{14}3^9 5^5}\right)^n.$$

Appell's functions

Consider

$$F_{1}(\alpha,\beta,\beta',\gamma,x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}(\beta')_{n}}{m!n!(\gamma)_{m+n}} x^{m}y^{n}$$

$$F_{2}(\alpha,\beta,\beta',\gamma,\gamma',x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}(\beta')_{n}}{m!n!(\gamma)_{m}(\gamma')_{n}} x^{m}y^{n}$$

$$F_{3}(\alpha,\alpha',\beta,\beta',\gamma,x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m}(\alpha)_{n}(\beta)_{m}(\beta')_{n}}{m!n!(\gamma)_{m+n}} x^{m}y^{n}$$

$$F_{4}(\alpha,\beta,\gamma,\gamma',x,y) = \sum_{m,n\geq 0} \frac{(\alpha)_{m+n}(\beta)_{m+n}}{m!n!(\gamma)_{m}(\gamma')_{n}} x^{m}y^{n}$$

These are the Appell hypergeometric functions in two variables, introduced in 1880.

Appell differential equation

The Appell functions satisfy a system of partial linear differential equations of order 2. For example, $F_4(\alpha, \beta, \gamma, \gamma', x, y)$ satisfies

$$\begin{aligned} x(1-x)F_{xx} - y^2F_{yy} - 2xyF_{xy} + \gamma F_x - (\alpha + \beta + 1)(xF_x + yF_y) \\ &= \alpha\beta F \\ y(1-y)F_{yy} - x^2F_{xx} - 2xyF_{xy} + \gamma'F_y - (\alpha + \beta + 1)(xF_x + yF_y) \end{aligned}$$

$$= \alpha \beta F$$

Studied by Picard and Goursat.

Lauricella functions

Further generalisation by Lauricella (1893),

$$\begin{aligned} F_A(a, \mathbf{b}, \mathbf{c} | \mathbf{x}) &= \sum_{\mathbf{m} \ge 0} \frac{(a)_{|\mathbf{m}|}(\mathbf{b})_{\mathbf{m}}}{(\mathbf{c})_{\mathbf{m}} \mathbf{m}!} \mathbf{x}^{\mathbf{m}} \quad |x_1| + \dots + |x_n| < 1 \\ F_B(\mathbf{a}, \mathbf{b}, \mathbf{c} | \mathbf{x}) &= \sum_{\mathbf{m} \ge 0} \frac{(\mathbf{a})_{\mathbf{m}}(\mathbf{b})_{\mathbf{m}}}{(c)_{|\mathbf{m}|} \mathbf{m}!} \mathbf{x}^{\mathbf{m}} \quad \forall i : |x_i| < 1 \\ F_C(a, b, \mathbf{c} | \mathbf{x}) &= \sum_{\mathbf{m} \ge 0} \frac{(a)_{|\mathbf{m}|}(b)_{|\mathbf{m}|}}{(\mathbf{c})_{\mathbf{m}} \mathbf{m}!} \mathbf{x}^{\mathbf{m}} \quad |\sqrt{x_1}| + \dots + |\sqrt{x_n}| < 1 \\ F_D(a, \mathbf{b}, \mathbf{c} | \mathbf{x}) &= \sum_{\mathbf{m} \ge 0} \frac{(a)_{|\mathbf{m}|}(\mathbf{b})_{\mathbf{m}}}{(c)_{|\mathbf{m}|} \mathbf{m}!} \mathbf{x}^{\mathbf{m}} \quad \forall i : |x_i| < 1 \end{aligned}$$

When n = 2 these functions coincide with Appell's F_2 , F_3 , F_4 , F_1 respectively. When n = 1, they all coincide with Gauss' $_2F_1$.

The A-polytope

Start with a finite subset $A \subset \mathbb{Z}^r \subset \mathbb{R}^r$. We assume

• The \mathbb{Z} -span of A is \mathbb{Z}^r

• There is a linear form h such that $h(\mathbf{a}) = 1$ for all $\mathbf{a} \in A$. Define a vector of parameters

 $\alpha = (\alpha_1, \ldots, \alpha_r) \in \mathbb{R}^r$

Remember:

The set A and the vector α will completely characterise a so-called A-hypergeometric system of differential equations.

Lattice of relations

Write $A = \{\mathbf{a}_1, \dots, \mathbf{a}_N\}$. The lattice of relations $L \subset \mathbb{Z}^N$ is formed by all $\mathbf{I} = (I_1, \dots, I_N) \in \mathbb{Z}^N$ such that

 $l_1\mathbf{a}_1+l_2\mathbf{a}_2+\cdots+l_N\mathbf{a}_N=\mathbf{0}.$

Let *h* be the form such that $h(\mathbf{a}_i) = 1$ for i = 1, ..., r. Apply *h* to any relation $l_1\mathbf{a}_1 + \cdots + l_N\mathbf{a}_N = \mathbf{0}$. Then we get $\sum_{i=1}^N l_i = 0$ for all $\mathbf{I} \in L$.

Formal A-hypergeometric series

Choose $\gamma_1, \ldots, \gamma_N$ such that

$$\alpha = \gamma_1 \mathbf{a}_1 + \dots + \gamma_N \mathbf{a}_N.$$

Note that $\gamma = (\gamma_1, \ldots, \gamma_N)$ is determined modulo $L \otimes \mathbb{R}$. Let v_1, \ldots, v_N be variables and consider

$$\Phi = \sum_{\mathbf{I} \in L} \frac{v_1^{I_1 + \gamma_1} \cdots v_N^{I_N + \gamma_N}}{\Gamma(I_1 + \gamma_1 + 1) \cdots \Gamma(I_N + \gamma_N + 1)}.$$

Homogeneity equations

For any j = 1, ..., N write $\mathbf{a}_j = (a_{1j}, ..., a_{rj})^t$. Note that $a_{i1}l_1 + \cdots + a_{iN}l_N = 0$ for every $\mathbf{l} \in L$ and every i. For i = 1, ..., r define the differential operator

$$Z_i = a_{i1}v_1\frac{\partial}{\partial v_1} + \dots + a_{iN}v_N\frac{\partial}{\partial v_N}$$

Note that

$$Z_i(v_1^{l_1+\gamma_1}\cdots v_N^{l_N+\gamma_N}) = (a_{i1}(l_1+\gamma_1)+\cdots+a_{iN}(l_N+\gamma_N))\mathbf{v}^{\mathbf{l}+\gamma}$$
$$= \alpha_i \mathbf{v}^{\mathbf{l}+\gamma}$$

Hence $(Z_i - \alpha_i)\Phi = 0$. These equations reflect the homogeneity property

$$\Psi(\mathbf{t}^{\mathbf{a}_1}v_1,\cdots,\mathbf{t}^{\mathbf{a}_N}v_N)=\mathbf{t}^{\alpha}\Psi(v_1,\ldots,v_N)$$

for any solution Ψ and any $\mathbf{t} \in (\mathbb{C}^*)^r$. Here \mathbf{t}^a denotes $t_1^{a_1} \cdots t_r^{a_r}$.

Box equations

Let $(\lambda_1, \ldots, \lambda_N) \in L$. Define the operator

$$\Box_{\lambda} = \prod_{\lambda_i > 0} \left(\frac{\partial}{\partial v_i} \right)^{\lambda_i} - \prod_{\lambda_i < 0} \left(\frac{\partial}{\partial v_i} \right)^{-\lambda_i}$$

Let λ^+ be the vector with components max $(0, \lambda_i)$ and λ^- with components min $(0, -\lambda_i)$. Then $\lambda = \lambda^+ - \lambda^-$. Notice that

$$\Box_{\lambda} \frac{\mathbf{v}^{\mathbf{l}+\gamma}}{\Gamma(\mathbf{l}+\gamma+\mathbf{1})} = \frac{\mathbf{v}^{\mathbf{l}+\gamma-\lambda^{+}}}{\Gamma(\mathbf{l}+\gamma-\lambda^{+}+\mathbf{1})} - \frac{\mathbf{v}^{\mathbf{l}+\gamma+\lambda^{-}}}{\Gamma(\mathbf{l}+\gamma+\lambda^{-}+\mathbf{1})}.$$

Since $\lambda^+ - \lambda^- = \lambda \in L$ summation over L gives equal sums that cancel.

A-hypergeometric system of equations

The system of differential equations

 $\Box_{\lambda} \Phi = 0, \qquad \lambda \in L$

and

$$(Z_i - \alpha_i)\Phi = 0, \qquad i = 1, 2, \ldots, r$$

was first explicitly described by Gel'fand, Kapranov and Zelevinsky around 1988. They called these equations A-hypergeometric equations and their analytic solutions A-hypergeometric functions. We denote the system by $H_A(\alpha)$.

In his book on *Generalised hypergeometric equations*, which appeared in 1990, B.Dwork independently arrives at the same equations, but in the language of differential modules.

Example 1, Gauss $_2F_1$

Gauss $F(\alpha, \beta, \gamma | z)$ is proportional to

$$\sum_{n\geq 0}\frac{\Gamma(n+\alpha)\Gamma(n+\beta)}{\Gamma(n+\gamma)\Gamma(n+1)} z^n.$$

Application of Γ -identities gives

$$\sum_{n\geq 0} \frac{z^n}{\Gamma(-n+1-\alpha)\Gamma(-n+1-\beta)\Gamma(n+\gamma)\Gamma(n+1)}.$$

The lattice L is spanned by (-1, -1, 1, 1). A set A is given by

A-hypergeometric equations for $_2F_1$

Recall that $L = \langle (-1, -1, 1, 1) \rangle$ and $F(\alpha, \beta, \gamma | z)$ is proportional to

$$\sum_{n\geq 0}\frac{z^n}{\Gamma(-n+1-\alpha)\Gamma(-n+1-\beta)\Gamma(n+\gamma)\Gamma(n+1)}.$$

Formal A-hypergeometric solution:

$$\sum_{n\geq 0} \frac{v_1^{-n-\alpha}v_2^{-n-\beta}v_3^{n+\gamma-1}v_4^n}{\Gamma(-n+1-\alpha)\Gamma(-n+1-\beta)\Gamma(n+\gamma)\Gamma(n+1)}.$$

The A-hypergeometric equations read

 $(\partial_1\partial_2 - \partial_3\partial_4)\Phi = 0$

$$(v_1\partial_1 + v_4\partial_4 + \alpha)\Phi = 0$$

$$(v_2\partial_2 + v_4\partial_4 + \beta)\Phi = 0$$

$$(-v_3\partial_3 + v_4\partial_4 + \gamma - 1)\Phi = 0$$

Classical equations for $_2F_1$

Reduction of the A-hypergeometric system gives, after setting $v_1 = v_2 = 1, v_3 = 1, v_4 = z$,

 $z(z-1)F'' + ((\alpha + \beta + 1)z - \gamma)F' + \alpha\beta F = 0$

Example 2, Appell F_1

Appell $F_1(\alpha, \beta, \beta', \gamma | x, y)$ is proportional to

$$\sum_{m,n\geq 0} \frac{\Gamma(m+n+\alpha)\Gamma(m+\beta)\Gamma(n+\beta')}{\Gamma(m+n+\gamma)\Gamma(m+1)\Gamma(n+1)} x^m y^n.$$

Application of Γ -identities gives

 $\frac{x^m y^n}{\Gamma(-m-n+1-\alpha)\Gamma(-m+1-\beta)\Gamma(-n+1-\beta')\Gamma(m+n+\gamma)\Gamma(m+1)\Gamma(n+1)}$ The lattice L is spanned by

(-1, -1, 0, 1, 1, 0) and (-1, 0, -1, 1, 0, 1).

A corresponding set A,

$$\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \mathbf{e}_2 + \mathbf{e}_1 - \mathbf{e}_4, \mathbf{e}_3 + \mathbf{e}_1 - \mathbf{e}_4 \in \mathbb{R}^4$$

F_1 and F_4 polytope

A-hypergeometric equations for F_1

Recall $L = \langle (-1, -1, 0, 1, 1, 0), (-1, 0, -1, 1, 0, 1) \rangle$ and F_1 proportional to

$$\begin{split} &\sum_{m,n\geq 0} \frac{x^m y^n}{\Gamma(-m-n+1-\alpha)\Gamma(-m+1-\beta)\Gamma(-n+1-\beta')\Gamma(m+n+\gamma)\Gamma(m+1)\Gamma(n+1)} \\ & \text{Formal A-hypergeometric solution:} \\ &\sum_{m,n\in\mathbb{Z}} \frac{v_1^{-m-n-\alpha} v_2^{-m-\beta} v_3^{-n-\beta'} v_4^{m+n+\gamma} v_5^m v_6^n}{\Gamma(-m-n+1-\alpha)\Gamma(-m+1-\beta)\Gamma(-n+1-\beta')\Gamma(m+n+\gamma)\Gamma(m+1)\Gamma(n+1)} \\ & \text{Denote } \partial_i = \frac{\partial}{\partial v_i}. \text{ The A-hypergeometric equations read} \\ & \partial_1 \partial_2 \Phi - \partial_4 \partial_5 \Phi = 0, \quad \partial_1 \partial_3 \Phi - \partial_4 \partial_6 \Phi = 0, \quad \partial_2 \partial_6 \Phi - \partial_3 \partial_5 \Phi = 0 \end{split}$$

$$(v_1\partial_1 + v_5\partial_5 + v_6\partial_6 + \alpha)\Phi = 0$$

$$(v_2\partial_2 + v_5\partial_5 + \beta)\Phi = 0$$

$$(v_3\partial_3 + v_6\partial_6 + \beta')\Phi = 0$$

$$(v_4\partial_4 - v_5\partial_5 - v_6\partial_6 - \gamma + 1)\Phi = 0$$

Classical equations for F_1

The A-hypergeometric system for F_1 can be reduced to the following system, where we have set

 $v_1 = v_2 = v_3 = v_4 = 1, v_5 = x, v_6 = y$,

$$x(1-x)F_{xx} + y(1-x)F_{xy} + [\gamma - (\alpha + \beta + 1)x]F_x - \beta yF_y$$
$$-\alpha\beta F = 0$$

$$y(1-y)F_{yy} + x(1-y)F_{xy} + [\gamma - (\alpha + \beta' + 1)y]F_y - \beta' xF_x$$
$$-\alpha\beta' F =$$

$$(x-y)F_{xy} - \beta'F_x + \beta F_y = 0$$

In classical literature the last equation is usually presented as a (non-trivial) consequence of the first two.

n

The rank of an A-hypergeometric system

The *toric ideal* associated to A is the ideal in $\mathbb{C}[\partial_1, \ldots, \partial_N]$ generated by all \Box_{λ} with $\lambda \in L$. Notation: I_A .

The *A*-polytope is the convex hull of the set *A*. Notation: Q_A . We assign to Q_A a volume normalised such that the volume of a standard simplex is 1. Notation: Vol (Q_A) .

Theorem (GKZ 1989)

The A-hypergeometric system $H_A(\alpha)$ has finite rank. Suppose that $\mathbb{C}[\partial_i]/I_A$ satisfies the Cohen-Macaulay condition. Then the rank equals $\operatorname{Vol}(Q_A)$.

By a theorem of Hochster the Cohen-Macaulay condition is satisfied if *A* is *saturated*, that is,

$$\mathbb{Z}_{\geq 0}A = \mathbb{Z}^r \cap \mathbb{R}_{\geq 0}A.$$

Rank jumps

A.Adolphson (1994) pointed out that without the Cohen-Macaulay condition the GKZ-theorem on the ranks need not be true.

Example, consider $A \subset \mathbb{R}^2$ given by the columns of

 $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \end{pmatrix}$

Then the rank of $H_A(\alpha, \beta)$ equals 5 if $\alpha = 1, \beta = 2$ and 4 otherwise.

It is known that the rank of any A-hypergeometric system is finite and $\geq \operatorname{Vol}(Q_A)$. L.Matusevich and U.Walther (2005) showed that this difference can be arbitrarily large.

Irreducibility

Theorem (GKZ 1990)

Suppose $\alpha + \mathbb{Z}^r$ has trivial intersection with the faces of C(A) (non-resonance). Then $H_A(\alpha)$ is irreducible.

Theorem (F.B, Walther 2011)

Suppose that A is saturated and Q_A is not a pyramid. If there exists a point of $\alpha + \mathbb{Z}^r$ contained in a face of C(A), then the A-hypergeometric system is reducible.

Reducibility of Gauss' equation

A-matrix

 $\begin{array}{ccccccccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}$

and parameters $(-\alpha, -\beta, \gamma - 1)$. Faces are given by

- $\mathbf{a}_1, \mathbf{a}_3$, equation $x_2 = 0$
- a_1, a_4 , equation $x_2 + x_3 = 0$
- **a**₂, **a**₃, equation *x*₁ = 0
- a_2, a_4 , equation $x_1 + x_3 = 0$

Non-resonance condition: None of β , $\beta - \gamma$, α , $\alpha - \gamma$ is an integer.

Reducibility of F_1

The set A associated to F_1 is given by

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{pmatrix}$$

Parameter vector is given by $(-\alpha, -\beta, -\beta', \gamma - 1)^t$. Q_A has 5 faces,

$$x_1 = 0, \ x_2 = 0, \ x_3 = 0, \ x_1 + x_4 = 0, \ x_2 + x_3 + x_4 = 0.$$

Non-resonance: none of the following numbers is an integer,

$$\alpha, \beta, \beta', \alpha - \gamma, \beta + \beta' - \gamma.$$