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Gauss’ hypergeometric function

Euler and Gauss defined

2F1

(
α β

γ

∣∣∣∣ z) =
∞∑
n=0

(α)n(β)n
n!(γ)n

zn

where (x)n = x(x + 1) · · · (x + n − 1) (Pochhammer symbol).
Examples

1 2F1

(
1 1
2

∣∣∣ z) = −1
z log(1− z)

2 2F1

(
1/2 1

1

∣∣∣ z) = (1− z)−1/2

3 2F1

(
1/2 1/2

1

∣∣∣ z) = 2
π

∫ 1
0

dt√
(1−t2)(1−zt2)

We will use the notation F (α, β, γ|z).
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Differential equation

z(z − 1)F ′′ + ((α + β + 1)z − γ)F ′ + αβF = 0

This is a Fuchsian differential equation of order 2 with singularities
at 0, 1,∞.
Local solutions at z = 0:

F (α, β, γ|z)

z1−γF (α + 1− γ, β + 1− γ, 2− γ|z)

At z =∞
(1/z)αF (α, α + 1− γ, α + 1− β|1/z)

(1/z)βF (β, β + 1− γ, β + 1− α|1/z)
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Monodromy

Let V be solution space of hypergeometic equation. Analytic
continuation gives us the monodromy representation
ρ : π1(C \ {0, 1})→ GL(V )

0 1

z0

X

Y

Monodromy matrices: Mi := ρ(gi ), i = 0, 1,∞ with relation
M∞M1M0 = 1.
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Monodromy properties

Denote e(x) = exp(2πix). Eigenvalues

M0 : 1, e(−γ)

M1 : 1, e(γ − α− β)

M∞ : e(α), e(β)

Proposition

Let A,B ∈ GL(2,C) with eigenvalues a1, a2 resp b1, b2 and such
that A−1B has eigenvalue 1. Let G = 〈A,B〉. Then

G irreducible ⇐⇒ {a1, a2} ∩ {b1, b2} = ∅.

In that case A,B are uniquely determined up to common
conjugation.

Application: A = M−1
0 ,B = M∞.

So, monodromy irreducible ⇐⇒ {α, β}(mod Z) and
{0, γ}(mod Z) disjoint.
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Explicit matrices

Characteristic polynomial

of M−1
0 is x2 − (1 + e(γ))x + e(γ)

of M∞ is x2 − (e(α) + e(β))x + e(α + β).

Up to common conjugation:

M−1
0 =

(
0 −e(γ)
1 1 + e(γ)

)
M∞ =

(
0 −e(α + β)
1 e(α) + e(β)

)
.

Theorem

Suppose α, β, γ ∈ (0, 1]. Then there exists a Hermitian form F on
C2 such that F (gx, gy) = F (x, y) for all g ∈ 〈M0,M∞〉. This form
is definite if and only if γ lies between α and β.
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Schwarz’s list

In 1873 H.A. Schwarz gave a list of all parameter triples α, β, γ

such that 2F1

(
α β
γ

∣∣∣ z) is algebraic in z . All triples are in Q.

An example, 2F1

(
19/60 49/60

4/5

∣∣∣ z) is algebraic of degree 720. Its

Galois group is a central extension of the alternating group A5 by a
cyclic group of order 60.

Such functions were used in F.Klein’s
”Vorlesungen über das Ikosaeder”.
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Clausen-Thomae functions

Let α1, . . . , αd and β1, . . . , βd−1 be any parameters and βd = 1.
Define

dFd−1

(
α1, . . . , αd

β1, . . . , βd−1

∣∣∣∣ z) =
∞∑
k=0

(α1)k · · · (αd)k
(β1)k · · · (βd−1)kk!

zk

where (x)n = x(x + 1) · · · (x + n − 1) is the Pochhammer symbol.
Hypergeometric equation

z(D+α1) · · · (D+αd)F = (D+β1−1) · · · (D+βd−1)F , D = z
d

dz

This is a Fuchsian differential equation of order d with singularities
at 0, 1,∞.
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Monodromy

Theorem

Monodromy irreducible ⇐⇒ {α1, . . . , αd} and {β1, . . . , βd}
disjoint modulo Z.

Levelt’s theorem (1960)

Write
∏d

i=1(x − e(βi )) = xd + B1x
d−1 + · · ·+ Bd and∏d

i=1(x − e(αi )) = xd + A1x
d−1 + · · ·+ Ad . Then up to common

conjugation M∞ and M−1
0 equal

0 0 . . . 0 −Ad

1 0 . . . 0 −Ad−1

0 1 . . . 0 −Ad−2
...

...
0 0 . . . 1 −A1




0 0 . . . 0 −Bd

1 0 . . . 0 −Bd−1

0 1 . . . 0 −Bd−2
...

...
0 0 . . . 1 −B1
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Invariant Hermitean form

Suppose that αi , βj ∈ R for all i , j .

Theorem

Then there exists a unique (up to scalars) monodromy invariant
Hermitean form F . That is, F (gx , gy) = F (x , y) for all
monodromy matrices g .

Theorem

The Hermitian form F is definite if and only if the sets
{α1, . . . , αd} and {β1, . . . , βd} interlace modulo Z.
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Interlacing

Interlacing sets in [0, 1) when d = 4,

0 1

Two sets {α1, . . . , αd} and {β1, . . . , βd} are said to interlace
modulo Z if the sets {αi − bαic}i=1,...,d and {βi − bβic}i=1,...,d

interlace in [0, 1).
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Finite monodromy

Suppose {α1, . . . , αd} and {β1, . . . , βd} are sets of rational
numbers disjoint modulo Z. Let N be a common denominator.

Suppose the monodromy group is finite. Then there is an invariant
definite Hermitian form. Hence the parameter sets interlace mod
Z.

Monodromy matrices have elements in Z[e(1/N)]. Apply Galois
element ζN → ζpN , gcd(p,N) = 1 to monodromy matrices. Get
monodromy with parameter sets {pαi} and {pβi}. Hence they
interlace modulo Z.
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Algebraic hypergeometric functions

Converse also holds.

Theorem (Beukers-Heckman, 1986)

A hypergeometric group is finite if and only if the sets
{pα1, . . . , pαd} and {pβ1, . . . , pβd}
interlace mod Z for every integer p with gcd(p,N) = 1.

Example:

F (x) = 8F7

(
1/30 7/30 11/30 13/30 17/30 19/30 23/30 29/30

1/5 1/3 2/5 1/2 3/5 2/3 4/5

∣∣∣∣ x)
which equals ∑

n≥0

(30n)!n!

(15n)!(10n)!(6n)!

( z

2143955

)n
.
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Appell’s functions

Consider

F1(α, β, β′, γ, x , y) =
∑

m,n≥0

(α)m+n(β)m(β′)n
m!n!(γ)m+n

xmyn

F2(α, β, β′, γ, γ′, x , y) =
∑

m,n≥0

(α)m+n(β)m(β′)n
m!n!(γ)m(γ′)n

xmyn

F3(α, α′, β, β′, γ, x , y) =
∑

m,n≥0

(α)m(α)n(β)m(β′)n
m!n!(γ)m+n

xmyn

F4(α, β, γ, γ′, x , y) =
∑

m,n≥0

(α)m+n(β)m+n

m!n!(γ)m(γ′)n
xmyn

These are the Appell hypergeometric functions in two variables,
introduced in 1880.
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Appell differential equation

The Appell functions satisfy a system of partial linear differential
equations of order 2. For example, F4(α, β, γ, γ′, x , y) satisfies

x(1− x)Fxx − y2Fyy − 2xyFxy + γFx − (α + β + 1)(xFx + yFy )

= αβF

y(1− y)Fyy − x2Fxx − 2xyFxy + γ′Fy − (α + β + 1)(xFx + yFy )

= αβF

Studied by Picard and Goursat.
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Lauricella functions

Further generalisation by Lauricella (1893),

FA(a,b, c|x) =
∑
m≥0

(a)|m|(b)m

(c)mm!
xm |x1|+ · · ·+ |xn| < 1

FB(a,b, c |x) =
∑
m≥0

(a)m(b)m
(c)|m|m!

xm ∀i : |xi | < 1

FC (a, b, c|x) =
∑
m≥0

(a)|m|(b)|m|
(c)mm!

xm |
√
x1|+ · · ·+ |

√
xn| < 1

FD(a,b, c |x) =
∑
m≥0

(a)|m|(b)m

(c)|m|m!
xm ∀i : |xi | < 1

When n = 2 these functions coincide with Appell’s F2,F3,F4,F1

respectively. When n = 1, they all coincide with Gauss’ 2F1.
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The A-polytope

Start with a finite subset A ⊂ Zr ⊂ Rr . We assume

The Z-span of A is Zr

There is a linear form h such that h(a) = 1 for all a ∈ A.

Define a vector of parameters

α = (α1, . . . , αr ) ∈ Rr

Remember:

The set A and the vector α will completely characterise a so-called
A-hypergeometric system of differential equations.
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Lattice of relations

Write A = {a1, . . . , aN}. The lattice of relations L ⊂ ZN is formed
by all l = (l1, . . . , lN) ∈ ZN such that

l1a1 + l2a2 + · · ·+ lNaN = 0.

Let h be the form such that h(ai ) = 1 for i = 1, . . . , r .
Apply h to any relation l1a1 + · · ·+ lNaN = 0.
Then we get

∑N
i=1 li = 0 for all l ∈ L.

A-hypergeometric functions Lecture 1 October 23, 2018 18 / 34



Formal A-hypergeometric series

Choose γ1, . . . , γN such that

α = γ1a1 + · · ·+ γNaN .

Note that γ = (γ1, . . . , γN) is determined modulo L⊗ R.
Let v1, . . . , vN be variables and consider

Φ =
∑
l∈L

v l1+γ1
1 · · · v lN+γN

N

Γ(l1 + γ1 + 1) · · · Γ(lN + γN + 1)
.
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Homogeneity equations

For any j = 1, . . . ,N write aj = (a1j , . . . , arj)
t .

Note that ai1l1 + · · ·+ aiN lN = 0 for every l ∈ L and every i .
For i = 1, . . . , r define the differential operator

Zi = ai1v1
∂

∂v1
+ · · ·+ aiNvN

∂

∂vN

Note that

Zi (v
l1+γ1
1 · · · v lN+γN

N ) = (ai1(l1 + γ1) + · · ·+ aiN(lN + γN))vl+γ

= αiv
l+γ

Hence (Zi − αi )Φ = 0.
These equations reflect the homogeneity property

Ψ(ta1v1, · · · , taNvN) = tαΨ(v1, . . . , vN)

for any solution Ψ and any t ∈ (C∗)r . Here ta denotes ta1
1 · · · tarr .
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Box equations

Let (λ1, . . . , λN) ∈ L. Define the operator

�λ =
∏
λi>0

(
∂

∂vi

)λi
−
∏
λi<0

(
∂

∂vi

)−λi
Let λ+ be the vector with components max(0, λi ) and λ− with
components min(0,−λi ). Then λ = λ+ − λ−.
Notice that

�λ
vl+γ

Γ(l + γ + 1)
=

vl+γ−λ
+

Γ(l + γ − λ+ + 1)
− vl+γ+λ−

Γ(l + γ + λ− + 1)
.

Since λ+ − λ− = λ ∈ L summation over L gives equal sums that
cancel.
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A-hypergeometric system of equations

The system of differential equations

�λΦ = 0, λ ∈ L

and
(Zi − αi )Φ = 0, i = 1, 2, . . . , r

was first explicitly described by Gel’fand, Kapranov and Zelevinsky
around 1988. They called these equations A-hypergeometric
equations and their analytic solutions A-hypergeometric functions.
We denote the system by HA(α).
In his book on Generalised hypergeometric equations, which
appeared in 1990, B.Dwork independently arrives at the same
equations, but in the language of differential modules.

A-hypergeometric functions Lecture 1 October 23, 2018 22 / 34



Example 1, Gauss 2F1

Gauss F (α, β, γ|z) is proportional to∑
n≥0

Γ(n + α)Γ(n + β)

Γ(n + γ)Γ(n + 1)
zn.

Application of Γ-identities gives∑
n≥0

zn

Γ(−n + 1− α)Γ(−n + 1− β)Γ(n + γ)Γ(n + 1)
.

The lattice L is spanned by (−1,−1, 1, 1). A set A is given by

1 0 0 1
0 1 0 1
0 0 1 −1
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A-hypergeometric equations for 2F1

Recall that L = 〈(−1,−1, 1, 1)〉 and F (α, β, γ|z) is proportional to∑
n≥0

zn

Γ(−n + 1− α)Γ(−n + 1− β)Γ(n + γ)Γ(n + 1)
.

Formal A-hypergeometric solution:∑
n≥0

v−n−α1 v−n−β2 vn+γ−1
3 vn4

Γ(−n + 1− α)Γ(−n + 1− β)Γ(n + γ)Γ(n + 1)
.

The A-hypergeometric equations read

(∂1∂2 − ∂3∂4)Φ = 0

(v1∂1 + v4∂4 + α)Φ = 0

(v2∂2 + v4∂4 + β)Φ = 0

(−v3∂3 + v4∂4 + γ − 1)Φ = 0
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Classical equations for 2F1

Reduction of the A-hypergeometric system gives, after setting
v1 = v2 = 1, v3 = 1, v4 = z ,

z(z − 1)F ′′ + ((α + β + 1)z − γ)F ′ + αβF = 0
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Example 2, Appell F1

Appell F1(α, β, β′, γ|x , y) is proportional to∑
m,n≥0

Γ(m + n + α)Γ(m + β)Γ(n + β′)

Γ(m + n + γ)Γ(m + 1)Γ(n + 1)
xmyn.

Application of Γ-identities gives∑
m,n≥0

xmyn

Γ(−m−n+1−α)Γ(−m+1−β)Γ(−n+1−β′)Γ(m+n+γ)Γ(m+1)Γ(n+1)

The lattice L is spanned by

(−1,−1, 0, 1, 1, 0) and (−1, 0,−1, 1, 0, 1).

A corresponding set A,

e1, e2, e3, e4, e2 + e1 − e4, e3 + e1 − e4 ∈ R4
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F1 and F4 polytope

F1 F4
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A-hypergeometric equations for F1

Recall L = 〈(−1,−1, 0, 1, 1, 0), (−1, 0,−1, 1, 0, 1)〉 and F1

proportional to∑
m,n≥0

xmyn

Γ(−m−n+1−α)Γ(−m+1−β)Γ(−n+1−β′)Γ(m+n+γ)Γ(m+1)Γ(n+1)

Formal A-hypergeometric solution:∑
m,n∈Z

v−m−n−α
1 v−m−β

2 v−n−β′
3 vm+n+γ

4 vm
5 vn

6
Γ(−m−n+1−α)Γ(−m+1−β)Γ(−n+1−β′)Γ(m+n+γ)Γ(m+1)Γ(n+1)

Denote ∂i = ∂
∂vi

. The A-hypergeometric equations read

∂1∂2Φ− ∂4∂5Φ = 0, ∂1∂3Φ− ∂4∂6Φ = 0, ∂2∂6Φ− ∂3∂5Φ = 0

(v1∂1 + v5∂5 + v6∂6 + α)Φ = 0

(v2∂2 + v5∂5 + β)Φ = 0

(v3∂3 + v6∂6 + β′)Φ = 0

(v4∂4 − v5∂5 − v6∂6 − γ + 1)Φ = 0
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Classical equations for F1

The A-hypergeometric system for F1 can be reduced to the
following system, where we have set
v1 = v2 = v3 = v4 = 1, v5 = x , v6 = y ,

x(1− x)Fxx + y(1− x)Fxy + [γ − (α + β + 1)x ]Fx − βyFy
−αβF = 0

y(1− y)Fyy + x(1− y)Fxy + [γ − (α + β′ + 1)y ]Fy − β′xFx
−αβ′F = 0

(x − y)Fxy − β′Fx + βFy = 0

In classical literature the last equation is usually presented as a
(non-trivial) consequence of the first two.
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The rank of an A-hypergeometric system

The toric ideal associated to A is the ideal in C[∂1, . . . , ∂N ]
generated by all �λ with λ ∈ L. Notation: IA.

The A-polytope is the convex hull of the set A. Notation: QA. We
assign to QA a volume normalised such that the volume of a
standard simplex is 1. Notation: Vol(QA).

Theorem (GKZ 1989)

The A-hypergeometric system HA(α) has finite rank. Suppose that
C[∂i ]/IA satisfies the Cohen-Macaulay condition. Then the rank
equals Vol(QA).

By a theorem of Hochster the Cohen-Macaulay condition is
satisfied if A is saturated, that is,

Z≥0A = Zr ∩ R≥0A.
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Rank jumps

A.Adolphson (1994) pointed out that without the Cohen-Macaulay
condition the GKZ-theorem on the ranks need not be true.

Example, consider A ⊂ R2 given by the columns of(
1 1 1 1
0 1 3 4

)
Then the rank of HA(α, β) equals 5 if α = 1, β = 2 and 4
otherwise.

It is known that the rank of any A-hypergeometric system is finite
and ≥ Vol(QA). L.Matusevich and U.Walther (2005) showed that
this difference can be arbitrarily large.
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Irreducibility

Theorem (GKZ 1990)

Suppose α + Zr has trivial intersection with the faces of C (A)
(non-resonance). Then HA(α) is irreducible.

Theorem (F.B, Walther 2011)

Suppose that A is saturated and QA is not a pyramid. If there
exists a point of α + Zr contained in a face of C (A), then the
A-hypergeometric system is reducible.

A-hypergeometric functions Lecture 1 October 23, 2018 32 / 34



Reducibility of Gauss’ equation

A-matrix
1 0 0 1
0 1 0 1
0 0 1 −1

and parameters (−α,−β, γ − 1).
Faces are given by

a1, a3, equation x2 = 0

a1, a4, equation x2 + x3 = 0

a2, a3, equation x1 = 0

a2, a4, equation x1 + x3 = 0

Non-resonance condition: None of β, β − γ, α, α− γ is an integer.
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Reducibility of F1

The set A associated to F1 is given by
1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 −1 −1


Parameter vector is given by (−α,−β,−β′, γ − 1)t . QA has 5
faces,

x1 = 0, x2 = 0, x3 = 0, x1 + x4 = 0, x2 + x3 + x4 = 0.

Non-resonance: none of the following numbers is an integer,

α, β, β′, α− γ, β + β′ − γ.
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