Lecture 1

Frits Beukers

October 23, 2018

Gauss' hypergeometric function

Euler and Gauss defined

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
\alpha \beta \\
\gamma
\end{array} \right\rvert\, z\right)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{n!(\gamma)_{n}} z^{n}
$$

where $(x)_{n}=x(x+1) \cdots(x+n-1)$ (Pochhammer symbol). Examples
(1) ${ }_{2} F_{1}\left(\left.\begin{array}{c}1 \\ 2\end{array} \right\rvert\, z\right)=-\frac{1}{z} \log (1-z)$
(2) ${ }_{2} F_{1}\left(\left.\begin{array}{c}1 / 2 \\ 1\end{array} \right\rvert\, z\right)=(1-z)^{-1 / 2}$
(3) ${ }_{2} F_{1}\left({ }_{1}^{1 / 2} 1 / 2 \mid z\right)=\frac{2}{\pi} \int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-z t^{2}\right)}}$

We will use the notation $F(\alpha, \beta, \gamma \mid z)$.

Differential equation

$$
z(z-1) F^{\prime \prime}+((\alpha+\beta+1) z-\gamma) F^{\prime}+\alpha \beta F=0
$$

This is a Fuchsian differential equation of order 2 with singularities at $0,1, \infty$.
Local solutions at $z=0$:

- $F(\alpha, \beta, \gamma \mid z)$
- $z^{1-\gamma} F(\alpha+1-\gamma, \beta+1-\gamma, 2-\gamma \mid z)$

At $z=\infty$

- $(1 / z)^{\alpha} F(\alpha, \alpha+1-\gamma, \alpha+1-\beta \mid 1 / z)$
- $(1 / z)^{\beta} F(\beta, \beta+1-\gamma, \beta+1-\alpha \mid 1 / z)$

Monodromy

Let V be solution space of hypergeometic equation. Analytic continuation gives us the monodromy representation $\rho: \pi_{1}(\mathbb{C} \backslash\{0,1\}) \rightarrow G L(V)$

Monodromy matrices: $M_{i}:=\rho\left(g_{i}\right), i=0,1, \infty$ with relation $M_{\infty} M_{1} M_{0}=1$.

Monodromy properties

Denote $e(x)=\exp (2 \pi i x)$. Eigenvalues

- $M_{0}: 1, e(-\gamma)$
- $M_{1}: 1, e(\gamma-\alpha-\beta)$
- $M_{\infty}: e(\alpha), e(\beta)$

Proposition

Let $A, B \in G L(2, \mathbb{C})$ with eigenvalues a_{1}, a_{2} resp b_{1}, b_{2} and such that $A^{-1} B$ has eigenvalue 1 . Let $G=\langle A, B\rangle$. Then

$$
G \text { irreducible } \Longleftrightarrow\left\{a_{1}, a_{2}\right\} \cap\left\{b_{1}, b_{2}\right\}=\emptyset .
$$

In that case A, B are uniquely determined up to common conjugation.

Application: $A=M_{0}^{-1}, B=M_{\infty}$.
So, monodromy irreducible $\Longleftrightarrow\{\alpha, \beta\}(\bmod \mathbb{Z})$ and $\{0, \gamma\}(\bmod \mathbb{Z})$ disjoint.

Explicit matrices

Characteristic polynomial

- of M_{0}^{-1} is $x^{2}-(1+e(\gamma)) x+e(\gamma)$
- of M_{∞} is $x^{2}-(e(\alpha)+e(\beta)) x+e(\alpha+\beta)$.

Up to common conjugation:

$$
M_{0}^{-1}=\left(\begin{array}{cc}
0 & -e(\gamma) \\
1 & 1+e(\gamma)
\end{array}\right) \quad M_{\infty}=\left(\begin{array}{cc}
0 & -e(\alpha+\beta) \\
1 & e(\alpha)+e(\beta)
\end{array}\right)
$$

Theorem

Suppose $\alpha, \beta, \gamma \in(0,1]$. Then there exists a Hermitian form F on \mathbb{C}^{2} such that $F(g \mathbf{x}, g \mathbf{y})=F(\mathbf{x}, \mathbf{y})$ for all $g \in\left\langle M_{0}, M_{\infty}\right\rangle$. This form is definite if and only if γ lies between α and β.

Schwarz's list

In 1873 H.A. Schwarz gave a list of all parameter triples α, β, γ such that ${ }_{2} F_{1}\left(\left.\begin{array}{c}\alpha \beta \\ \gamma\end{array} \right\rvert\, z\right)$ is algebraic in z. All triples are in \mathbb{Q}. An example, ${ }_{2} F_{1}\left(\left.\begin{array}{c}19 / 60 ~ 49 / 60 \\ 4 / 5\end{array} \right\rvert\, z\right)$ is algebraic of degree 720. Its Galois group is a central extension of the alternating group A_{5} by a cyclic group of order 60.

Such functions were used in F.Klein's
" Vorlesungen über das Ikosaeder".

Clausen-Thomae functions

Let $\alpha_{1}, \ldots, \alpha_{d}$ and $\beta_{1}, \ldots, \beta_{d-1}$ be any parameters and $\beta_{d}=1$. Define

$$
{ }_{d} F_{d-1}\left(\left.\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{d} \\
\beta_{1}, \ldots, \beta_{d-1}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{d}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{d-1}\right)_{k} k!} z^{k}
$$

where $(x)_{n}=x(x+1) \cdots(x+n-1)$ is the Pochhammer symbol. Hypergeometric equation
$z\left(D+\alpha_{1}\right) \cdots\left(D+\alpha_{d}\right) F=\left(D+\beta_{1}-1\right) \cdots\left(D+\beta_{d}-1\right) F, \quad D=z \frac{d}{d z}$
This is a Fuchsian differential equation of order d with singularities at $0,1, \infty$.

Monodromy

Theorem

Monodromy irreducible $\Longleftrightarrow\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ disjoint modulo \mathbb{Z}.

Levelt's theorem (1960)

Write $\prod_{i=1}^{d}\left(x-e\left(\beta_{i}\right)\right)=x^{d}+B_{1} x^{d-1}+\cdots+B_{d}$ and
$\prod_{i=1}^{d}\left(x-e\left(\alpha_{i}\right)\right)=x^{d}+A_{1} x^{d-1}+\cdots+A_{d}$. Then up to common conjugation M_{∞} and M_{0}^{-1} equal

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -A_{d} \\
1 & 0 & \ldots & 0 & -A_{d-1} \\
0 & 1 & \ldots & 0 & -A_{d-2} \\
\vdots & & & & \vdots \\
0 & 0 & \ldots & 1 & -A_{1}
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -B_{d} \\
1 & 0 & \ldots & 0 & -B_{d-1} \\
0 & 1 & \ldots & 0 & -B_{d-2} \\
\vdots & & & & \vdots \\
0 & 0 & \ldots & 1 & -B_{1}
\end{array}\right)
$$

Invariant Hermitean form

Suppose that $\alpha_{i}, \beta_{j} \in \mathbb{R}$ for all i, j.

Theorem

Then there exists a unique (up to scalars) monodromy invariant Hermitean form F. That is, $F(g x, g y)=F(x, y)$ for all monodromy matrices g.

Theorem

The Hermitian form F is definite if and only if the sets $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ interlace modulo \mathbb{Z}.

Interlacing

Interlacing sets in $[0,1)$ when $d=4$,

Two sets $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ are said to interlace modulo \mathbb{Z} if the sets $\left\{\alpha_{i}-\left\lfloor\alpha_{i}\right\rfloor\right\}_{i=1, \ldots, d}$ and $\left\{\beta_{i}-\left\lfloor\beta_{i}\right\rfloor\right\}_{i=1, \ldots, d}$ interlace in $[0,1)$.

Finite monodromy

Suppose $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ are sets of rational numbers disjoint modulo \mathbb{Z}. Let N be a common denominator.

Suppose the monodromy group is finite. Then there is an invariant definite Hermitian form. Hence the parameter sets interlace mod \mathbb{Z}.

Monodromy matrices have elements in $\mathbb{Z}[e(1 / N)]$. Apply Galois element $\zeta_{N} \rightarrow \zeta_{N}^{p}, \operatorname{gcd}(p, N)=1$ to monodromy matrices. Get monodromy with parameter sets $\left\{p \alpha_{i}\right\}$ and $\left\{p \beta_{i}\right\}$. Hence they interlace modulo \mathbb{Z}.

Algebraic hypergeometric functions

Converse also holds.

Theorem (Beukers-Heckman, 1986)

A hypergeometric group is finite if and only if the sets $\left\{p \alpha_{1}, \ldots, p \alpha_{d}\right\}$ and $\left\{p \beta_{1}, \ldots, p \beta_{d}\right\}$
interlace $\bmod \mathbb{Z}$ for every integer p with $\operatorname{gcd}(p, N)=1$.
Example:

$$
F(x)={ }_{8} F_{7}\left(\left.\begin{array}{c}
1 / 307 / 3011 / 3013 / 3017 / 3019 / 3023 / 3029 / 30 \\
1 / 51 / 32 / 51 / 23 / 52 / 34 / 5
\end{array} \right\rvert\, x\right)
$$

which equals

$$
\sum_{n \geq 0} \frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)!}\left(\frac{z}{2^{14} 3^{9} 5^{5}}\right)^{n}
$$

Appell's functions

Consider

$$
\begin{aligned}
F_{1}\left(\alpha, \beta, \beta^{\prime}, \gamma, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}\left(\beta^{\prime}\right)_{n}}{m!n!(\gamma)_{m+n}} x^{m} y^{n} \\
F_{2}\left(\alpha, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m+n}(\beta)_{m}\left(\beta^{\prime}\right)_{n}}{m!n!(\gamma)_{m}\left(\gamma^{\prime}\right)_{n}} x^{m} y^{n} \\
F_{3}\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m}(\alpha)_{n}(\beta)_{m}\left(\beta^{\prime}\right)_{n}}{m!n!(\gamma)_{m+n}} x^{m} y^{n} \\
F_{4}\left(\alpha, \beta, \gamma, \gamma^{\prime}, x, y\right) & =\sum_{m, n \geq 0} \frac{(\alpha)_{m+n}(\beta)_{m+n}}{m!n!(\gamma)_{m}\left(\gamma^{\prime}\right)_{n}} x^{m} y^{n}
\end{aligned}
$$

These are the Appell hypergeometric functions in two variables, introduced in 1880.

Appell differential equation

The Appell functions satisfy a system of partial linear differential equations of order 2. For example, $F_{4}\left(\alpha, \beta, \gamma, \gamma^{\prime}, x, y\right)$ satisfies

$$
\begin{array}{r}
x(1-x) F_{x x}-y^{2} F_{y y}-2 x y F_{x y}+\gamma F_{x}-(\alpha+\beta+1)\left(x F_{x}+y F_{y}\right) \\
=\alpha \beta F \\
y(1-y) F_{y y}-x^{2} F_{x x}-2 x y F_{x y}+\gamma^{\prime} F_{y}-(\alpha+\beta+1)\left(x F_{x}+y F_{y}\right) \\
=\alpha \beta F
\end{array}
$$

Studied by Picard and Goursat.

Lauricella functions

Further generalisation by Lauricella (1893),

$$
\begin{aligned}
& F_{A}(a, \mathbf{b}, \mathbf{c} \mid \mathbf{x})=\sum_{\mathbf{m} \geq 0} \frac{(a)_{|\mathbf{m}|}(\mathbf{b})_{\mathbf{m}}}{(\mathbf{c})_{\mathbf{m}} \mathbf{m}!} x^{\mathbf{m}} \quad\left|x_{1}\right|+\cdots+\left|x_{n}\right|<1 \\
& F_{B}(\mathbf{a}, \mathbf{b}, c \mid \mathbf{x})=\sum_{\mathbf{m} \geq 0} \frac{(\mathbf{a})_{\mathbf{m}}(\mathbf{b})_{\mathbf{m}}}{(c)_{|\mathbf{m}|} \mathbf{m}!} x^{\mathbf{m}} \quad \forall i:\left|x_{i}\right|<1 \\
& F_{C}(a, b, \mathbf{c} \mid \mathbf{x})=\sum_{\mathbf{m} \geq 0} \frac{(a)_{|\mathbf{m}|}(b)_{|\mathbf{m}|}}{(\mathbf{c})_{\mathbf{m}} \mathbf{m}!} x^{\mathbf{m}} \quad\left|\sqrt{x_{1}}\right|+\cdots+\mid \sqrt{x_{n} \mid<1} \\
& F_{D}(a, \mathbf{b}, c \mid \mathbf{x})=\sum_{\mathbf{m} \geq 0} \frac{(a)_{|\mathbf{m}|}(\mathbf{b})_{\mathbf{m}}}{(c)_{|\mathbf{m}|}^{\mathbf{m}!}} x^{\mathbf{m}} \quad \forall i:\left|x_{i}\right|<1
\end{aligned}
$$

When $n=2$ these functions coincide with Appell's $F_{2}, F_{3}, F_{4}, F_{1}$ respectively. When $n=1$, they all coincide with Gauss' ${ }_{2} F_{1}$.

The A-polytope

Start with a finite subset $A \subset \mathbb{Z}^{r} \subset \mathbb{R}^{r}$. We assume

- The \mathbb{Z}-span of A is \mathbb{Z}^{r}
- There is a linear form h such that $h(\mathbf{a})=1$ for all $\mathbf{a} \in A$.

Define a vector of parameters

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{R}^{r}
$$

Remember:

The set A and the vector α will completely characterise a so-called A-hypergeometric system of differential equations.

Lattice of relations

Write $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}$. The lattice of relations $L \subset \mathbb{Z}^{N}$ is formed by all $\mathbf{I}=\left(I_{1}, \ldots, I_{N}\right) \in \mathbb{Z}^{N}$ such that

$$
I_{1} \mathbf{a}_{1}+I_{2} \mathbf{a}_{2}+\cdots+I_{N} \mathbf{a}_{N}=\mathbf{0}
$$

Let h be the form such that $h\left(\mathbf{a}_{i}\right)=1$ for $i=1, \ldots, r$. Apply h to any relation $I_{1} \mathbf{a}_{1}+\cdots+I_{N} \mathbf{a}_{N}=\mathbf{0}$. Then we get $\sum_{i=1}^{N} l_{i}=0$ for all $\mathbf{I} \in L$.

Formal A-hypergeometric series

Choose $\gamma_{1}, \ldots, \gamma_{N}$ such that

$$
\alpha=\gamma_{1} \mathbf{a}_{1}+\cdots+\gamma_{N} \mathbf{a}_{N}
$$

Note that $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ is determined modulo $L \otimes \mathbb{R}$. Let v_{1}, \ldots, v_{N} be variables and consider

$$
\Phi=\sum_{1 \in L} \frac{v_{1}^{I_{1}+\gamma_{1}} \cdots v_{N}^{I_{N}+\gamma_{N}}}{\Gamma\left(I_{1}+\gamma_{1}+1\right) \cdots \Gamma\left(I_{N}+\gamma_{N}+1\right)} .
$$

Homogeneity equations

For any $j=1, \ldots, N$ write $\mathbf{a}_{j}=\left(a_{1 j}, \ldots, a_{r j}\right)^{t}$.
Note that $a_{i 1} I_{1}+\cdots+a_{i N} I_{N}=0$ for every $\mathbf{I} \in L$ and every i.
For $i=1, \ldots, r$ define the differential operator

$$
Z_{i}=a_{i 1} v_{1} \frac{\partial}{\partial v_{1}}+\cdots+a_{i N} v_{N} \frac{\partial}{\partial v_{N}}
$$

Note that

$$
\begin{aligned}
Z_{i}\left(v_{1}^{l_{1}+\gamma_{1}} \cdots v_{N}^{I_{N}+\gamma_{N}}\right) & =\left(a_{i 1}\left(l_{1}+\gamma_{1}\right)+\cdots+a_{i N}\left(I_{N}+\gamma_{N}\right)\right) \mathbf{v}^{1+\gamma} \\
& =\alpha_{i} \mathbf{v}^{1+\gamma}
\end{aligned}
$$

Hence $\left(Z_{i}-\alpha_{i}\right) \Phi=0$.
These equations reflect the homogeneity property

$$
\Psi\left(\mathbf{t}^{\mathbf{a}_{1}} v_{1}, \cdots, \mathbf{t}^{\mathbf{a}_{N}} v_{N}\right)=\mathbf{t}^{\alpha} \Psi\left(v_{1}, \ldots, v_{N}\right)
$$

for any solution Ψ and any $\mathbf{t} \in\left(\mathbb{C}^{*}\right)^{r}$. Here $\mathbf{t}^{\text {a }}$ denotes $t_{1}^{a_{1}} \cdots t_{r}^{a_{r}}$.

Box equations

Let $\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in L$. Define the operator

$$
\square_{\lambda}=\prod_{\lambda_{i}>0}\left(\frac{\partial}{\partial v_{i}}\right)^{\lambda_{i}}-\prod_{\lambda_{i}<0}\left(\frac{\partial}{\partial v_{i}}\right)^{-\lambda_{i}}
$$

Let λ^{+}be the vector with components $\max \left(0, \lambda_{i}\right)$ and λ^{-}with components $\min \left(0,-\lambda_{i}\right)$. Then $\lambda=\lambda^{+}-\lambda^{-}$.
Notice that

$$
\square_{\lambda} \frac{\mathbf{v}^{\mathbf{I}+\gamma}}{\Gamma(\mathbf{I}+\gamma+\mathbf{1})}=\frac{\mathbf{v}^{\mathbf{1}+\gamma-\lambda^{+}}}{\Gamma\left(\mathbf{I}+\gamma-\lambda^{+}+\mathbf{1}\right)}-\frac{\mathbf{v}^{\mathbf{I}+\gamma+\lambda^{-}}}{\Gamma\left(\mathbf{I}+\gamma+\lambda^{-}+\mathbf{1}\right)}
$$

Since $\lambda^{+}-\lambda^{-}=\lambda \in L$ summation over L gives equal sums that cancel.

A-hypergeometric system of equations

The system of differential equations

$$
\square_{\lambda} \Phi=0, \quad \lambda \in L
$$

and

$$
\left(Z_{i}-\alpha_{i}\right) \Phi=0, \quad i=1,2, \ldots, r
$$

was first explicitly described by Gel'fand, Kapranov and Zelevinsky around 1988. They called these equations A-hypergeometric equations and their analytic solutions A-hypergeometric functions. We denote the system by $H_{A}(\alpha)$.
In his book on Generalised hypergeometric equations, which appeared in 1990, B.Dwork independently arrives at the same equations, but in the language of differential modules.

Example 1, Gauss ${ }_{2} F_{1}$

Gauss $F(\alpha, \beta, \gamma \mid z)$ is proportional to

$$
\sum_{n \geq 0} \frac{\Gamma(n+\alpha) \Gamma(n+\beta)}{\Gamma(n+\gamma) \Gamma(n+1)} z^{n}
$$

Application of Γ-identities gives

$$
\sum_{n \geq 0} \frac{z^{n}}{\Gamma(-n+1-\alpha) \Gamma(-n+1-\beta) \Gamma(n+\gamma) \Gamma(n+1)}
$$

The lattice L is spanned by $(-1,-1,1,1)$. A set A is given by

$$
\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}
$$

A-hypergeometric equations for ${ }_{2} F_{1}$

Recall that $L=\langle(-1,-1,1,1)\rangle$ and $F(\alpha, \beta, \gamma \mid z)$ is proportional to

$$
\sum_{n \geq 0} \frac{z^{n}}{\Gamma(-n+1-\alpha) \Gamma(-n+1-\beta) \Gamma(n+\gamma) \Gamma(n+1)}
$$

Formal A-hypergeometric solution:

$$
\sum_{n \geq 0} \frac{v_{1}^{-n-\alpha} v_{2}^{-n-\beta} v_{3}^{n+\gamma-1} v_{4}^{n}}{\Gamma(-n+1-\alpha) \Gamma(-n+1-\beta) \Gamma(n+\gamma) \Gamma(n+1)}
$$

The A-hypergeometric equations read

$$
\begin{aligned}
\left(\partial_{1} \partial_{2}-\partial_{3} \partial_{4}\right) \Phi=0 & \\
\left(v_{1} \partial_{1}+v_{4} \partial_{4}+\alpha\right) \Phi & =0 \\
\left(v_{2} \partial_{2}+v_{4} \partial_{4}+\beta\right) \Phi & =0 \\
\left(-v_{3} \partial_{3}+v_{4} \partial_{4}+\gamma-1\right) \Phi & =0
\end{aligned}
$$

Classical equations for ${ }_{2} F_{1}$

Reduction of the A-hypergeometric system gives, after setting $v_{1}=v_{2}=1, v_{3}=1, v_{4}=z$,

$$
z(z-1) F^{\prime \prime}+((\alpha+\beta+1) z-\gamma) F^{\prime}+\alpha \beta F=0
$$

Example 2, Appell F_{1}

Appell $F_{1}\left(\alpha, \beta, \beta^{\prime}, \gamma \mid x, y\right)$ is proportional to

$$
\sum_{m, n \geq 0} \frac{\Gamma(m+n+\alpha) \Gamma(m+\beta) \Gamma\left(n+\beta^{\prime}\right)}{\Gamma(m+n+\gamma) \Gamma(m+1) \Gamma(n+1)} x^{m} y^{n}
$$

Application of Γ-identities gives
$\sum_{m, n \geq 0} \Gamma(-m-n+1-\alpha) \Gamma(-m+1-\beta) \Gamma\left(-n+1-\beta^{\prime}\right) \Gamma(m+n+\gamma) \Gamma(m+1) \Gamma(n+1)$
The lattice L is spanned by

$$
(-1,-1,0,1,1,0) \quad \text { and } \quad(-1,0,-1,1,0,1) .
$$

A corresponding set A,

$$
\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{2}+\mathbf{e}_{1}-\mathbf{e}_{4}, \mathbf{e}_{3}+\mathbf{e}_{1}-\mathbf{e}_{4} \in \mathbb{R}^{4}
$$

F_{1} and F_{4} polytope

F1

F4

A-hypergeometric equations for F_{1}

Recall $L=\langle(-1,-1,0,1,1,0),(-1,0,-1,1,0,1)\rangle$ and F_{1} proportional to
$\sum_{m, n \geq 0} \overline{\Gamma(-m-n+1-\alpha) \Gamma(-m+1-\beta) \Gamma\left(-n+1-\beta^{\prime}\right) \Gamma(m+n+\gamma) \Gamma(m+1) \Gamma(n+1)}$
Formal A-hypergeometric solution:
$\sum_{m, n \in \mathbb{Z}} \frac{v_{1}^{-m-n-\alpha} v_{2}^{-m-\beta} v_{3}^{-n-\beta^{\prime}} v_{4}^{m+n+\gamma} v_{5}^{m} v_{6}^{n}}{\Gamma(-m-n+1-\alpha) \Gamma(-m+1-\beta) \Gamma\left(-n+1-\beta^{\prime}\right) \Gamma(m+n+\gamma) \Gamma(m+1) \Gamma(n+1)}$
Denote $\partial_{i}=\frac{\partial}{\partial v_{i}}$. The A-hypergeometric equations read

$$
\partial_{1} \partial_{2} \Phi-\partial_{4} \partial_{5} \Phi=0, \quad \partial_{1} \partial_{3} \Phi-\partial_{4} \partial_{6} \Phi=0, \quad \partial_{2} \partial_{6} \Phi-\partial_{3} \partial_{5} \Phi=0
$$

$$
\begin{aligned}
\left(v_{1} \partial_{1}+v_{5} \partial_{5}+v_{6} \partial_{6}+\alpha\right) \Phi & =0 \\
\left(v_{2} \partial_{2}+v_{5} \partial_{5}+\beta\right) \Phi & =0 \\
\left(v_{3} \partial_{3}+v_{6} \partial_{6}+\beta^{\prime}\right) \Phi & =0 \\
\left(v_{4} \partial_{4}-v_{5} \partial_{5}-v_{6} \partial_{6}-\gamma+1\right) \Phi & =0
\end{aligned}
$$

Classical equations for F_{1}

The A-hypergeometric system for F_{1} can be reduced to the following system, where we have set

$$
\begin{aligned}
& v_{1}=v_{2}=v_{3}=v_{4}=1, v_{5}=x, v_{6}=y, \\
& x(1-x) F_{x x}+y(1-x) F_{x y}+[\gamma-(\alpha+\beta+1) x] F_{x}-\beta y F_{y} \\
& -\alpha \beta F
\end{aligned} \quad \begin{aligned}
-\alpha \beta & \\
y(1-y) F_{y y}+x(1-y) F_{x y}+\left[\gamma-\left(\alpha+\beta^{\prime}+1\right) y\right] F_{y}-\beta^{\prime} x F_{x} & \\
-\alpha \beta^{\prime} F & =0 \\
(x-y) F_{x y}-\beta^{\prime} F_{x}+\beta F_{y} & =0
\end{aligned}
$$

In classical literature the last equation is usually presented as a (non-trivial) consequence of the first two.

The rank of an A-hypergeometric system

The toric ideal associated to A is the ideal in $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{N}\right]$ generated by all \square_{λ} with $\lambda \in L$. Notation: I_{A}.
The A-polytope is the convex hull of the set A. Notation: Q_{A}. We assign to Q_{A} a volume normalised such that the volume of a standard simplex is 1 . Notation: $\operatorname{Vol}\left(Q_{A}\right)$.

Theorem (GKZ 1989)

The A-hypergeometric system $H_{A}(\alpha)$ has finite rank. Suppose that $\mathbb{C}\left[\partial_{i}\right] / I_{A}$ satisfies the Cohen-Macaulay condition. Then the rank equals $\operatorname{Vol}\left(Q_{A}\right)$.

By a theorem of Hochster the Cohen-Macaulay condition is satisfied if A is saturated, that is,

$$
\mathbb{Z}_{\geq 0} A=\mathbb{Z}^{r} \cap \mathbb{R}_{\geq 0} A
$$

Rank jumps

A.Adolphson (1994) pointed out that without the Cohen-Macaulay condition the GKZ-theorem on the ranks need not be true.

Example, consider $A \subset \mathbb{R}^{2}$ given by the columns of

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 4
\end{array}\right)
$$

Then the rank of $H_{A}(\alpha, \beta)$ equals 5 if $\alpha=1, \beta=2$ and 4 otherwise.

It is known that the rank of any A-hypergeometric system is finite and $\geq \operatorname{Vol}\left(Q_{A}\right)$. L.Matusevich and U.Walther (2005) showed that this difference can be arbitrarily large.

Irreducibility

Theorem (GKZ 1990)

Suppose $\alpha+\mathbb{Z}^{r}$ has trivial intersection with the faces of $C(A)$ (non-resonance). Then $H_{A}(\alpha)$ is irreducible.

Theorem (F.B, Walther 2011)

Suppose that A is saturated and Q_{A} is not a pyramid. If there exists a point of $\alpha+\mathbb{Z}^{r}$ contained in a face of $C(A)$, then the A-hypergeometric system is reducible.

Reducibility of Gauss' equation

A-matrix

$$
\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}
$$

and parameters $(-\alpha,-\beta, \gamma-1)$.
Faces are given by

- $\mathbf{a}_{1}, \mathbf{a}_{3}$, equation $x_{2}=0$
- $\mathbf{a}_{1}, \mathbf{a}_{4}$, equation $x_{2}+x_{3}=0$
- $\mathbf{a}_{2}, \mathbf{a}_{3}$, equation $x_{1}=0$
- $\mathbf{a}_{2}, \mathbf{a}_{4}$, equation $x_{1}+x_{3}=0$

Non-resonance condition: None of $\beta, \beta-\gamma, \alpha, \alpha-\gamma$ is an integer.

Reducibility of F_{1}

The set A associated to F_{1} is given by

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 & -1
\end{array}\right)
$$

Parameter vector is given by $\left(-\alpha,-\beta,-\beta^{\prime}, \gamma-1\right)^{t}$. Q_{A} has 5 faces,

$$
x_{1}=0, x_{2}=0, x_{3}=0, x_{1}+x_{4}=0, x_{2}+x_{3}+x_{4}=0
$$

Non-resonance: none of the following numbers is an integer,

$$
\alpha, \beta, \beta^{\prime}, \alpha-\gamma, \beta+\beta^{\prime}-\gamma
$$

