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Start with a finite subset A C Z" C R". We assume
@ The Z-span of Ais Z"
@ There is a linear form h such that h(a) =1 for all a € A.

Define a vector of parameters

a=(o,...,ar) €R"

Remember:

The set A and the vector o will completely characterise a so-called
A-hypergeometric system of differential equations.
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Write A = {a,...,ay}. The lattice of relations L C ZV is formed
by all I = (/1 ..., Iy) € Z" such that

hai + bhas + -+ Iyay = 0.

Let h be the form such that h(a;) =1fori=1,...,r.
Apply h to any relation ha; +--- + Iyay = 0.
Then we get SV /; =0 for all | € L.

October 26,2018 3 /36



Formal A-hypergeometric series

Choose 71, ...,y such that
o= may + -+ ynan.

Note that v = (71,...,7n) is determined modulo L ® R.
Let vi,..., vy be variables and consider

h+m IN+Yn
Vl e VN

b = .
;r(ll‘f"Yl‘i‘l)"'r(/N‘i"YN‘i‘l)
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Consider the set A C Z3 given by
a; —e;, a=ep, a3 —=e3, ag —e;+e—e3

and the parameter triple (—a, —b,c — 1).

Lattice of relations L is generated by (—1,—1,1,1). Choose
v=(—a,—b,c—1,0)+7(-1,—1,1,1) for some 7. We choose 7
such that one of the components of + vanishes. Let us take 7 = 0.

Formal solution:
—n a. —n—b n+c 1 v
4

*=D F n—a+1)r(—n2—b+31)r(n+c)r(n+1)

nez
Notice that n > 0. Standard identities for I yield

b~y ? bclz M(n+a)(n+b) (vsva)”
1 FMn+c)f(n+1) \vivp
Thisis 2F; (acb‘z>, whenwe put vi =wvo =v3=1,v4 = z.
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z=20

Same example, but now 7 =1 — ¢ so that
vy=(c—a—-1,c—b—1,0,1—c). We get

o Z V—n+c a—1 2—n+c b— 1V£V£+l c
M(—n+c—a)(—n+c—b)I(n+1)I(n+2—¢)

Notice that n > 0. Standard identities for I yield

R Y czr(”+a+1—C)r(n+b+1—c) <V3V4>n

V.
2 e F(n+1)I(n+2—c) Vi Vo

This is 21, F; (9“*;_‘;*1*

vi=w=wv3=1 v ==z

z), when we put
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z =00
Same example, but now 7 = a so that
=(0,a—b,c—a—1,—a). We get
—n+a—b n+c a— lvn a

vy v,
¢ — 1 3 4
n%r —n+1)(-n+a—-b+1)(n+c—a)(n—a+1)

Notice that n < 0. Replace n — —n. Standard identities for I yield

q>NV3bC31*a Mn+1l+a—c)f(n+a) [viva\"
2 " FMn+1DIM(n+a—-b+1) \vzvy

1
z

P —a 1+a—c a
Thisis z79,F; ( o bil

vi=w=wv3=1v ==z

), when we put
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Fy

Appell Fi(a, 8,5, 7|x,y) is proportional to
Zm,nEZ r(—m—n+1—a)r(—m+1—ﬁ)r(fn+1—B’)F(m+n+’v)r(m+1)r(n+1)

The lattice L is spanned by rows of
-1 -1 0 1 10
-1 0 -1 10 1)°

Denote i-th column by b;. We call this the B-matrix.

Then solution becomes
Xb5.syb6.s

D sez? F(by-s+1—a)l (by-s+1—pB)I (b3-s+1—p3) (bs-s+7)T (bs-s+1)I (bg-s+1)
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In general: d := N — r (rank of L) and ~; are fixed. We write
formal solution as

N Vb;-(S+O’)+’y,'

cba: ! )
2 1:[ F(bj-(s+0)+7i+1)
sezd i=1

where o € RY is arbitary.

Choose a subset .# C {1,2,..., N} with |.#| = d such that b;
with / € . are linearly independent.

Then choose o such that b; -0 +~; =0 for i € .#. Then ¢,
becomes Laurent series with support in b;.s > 0 for j € .7.
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F1
Recall that the rows of L are given by
-1 -1 0 1 10
-1 0 -1 10 1/°
Then &, equals sum over s € Z? of

Xb5.(5+a)yb6.(s+a)
Fbr-(s+o0)+1—a)(br-(sto)+1—p)(bs-(sto)tl—7
1
“Tbs-(s+ o)+ ) (bs-(s+0)+ )(bs-(s+0)+1)

Choose o such that by -0 — a =0 and by - 0 — 5 = 0. Explicitly,
—al—agzaand —01:,8. Soalz—ﬁand 0'225—6!.
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We get

XSl *5),52 +B—a

®1

2= Z M=s1i—so+DMN(=s1+ DI (-s2+1—-F+a—7)
S1,52€7Z
1

T+t —a(s+1-B)(s+1+8—a)

Laurent series with support —s; — s, > 0, —s; > 0.Setting
m= —s; — S, N = —S] gives

B (y/X)n+By—(m+a)
Pz = 20 M(m+n+)f(m—n+1-B+a—p)

1
Xr(—m—i—’y—a)r(—n—i—l—ﬁ)r(n—m—i—l—i—ﬁ—a)'
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For any subset J of {1,2,..., N} we denote by ¥, the convex hull
of {aj}jGJ.
Definition
A triangulation of Q(A) is a subset
T c{Jc{1,2,...,N}| |J] = r and rank(X,) = r}

such that
° Q(A) =UyerX,
eforall J,J eT: LNy =X y.

Solutions Lecture 2 October 26, 2018 12 / 36



Theorem (GKZ)

Let T be a (regular) triangulation of Q(A). Then the Laurent
series ® jc with J C T form a basis of solutions having a common
domain of convergence.

Gauss' hypergeometric function with A-matrix

1 0 0 1
010 1
001 -1
Triangulations of Q(A),
2 4 2 4
3 1 3 1
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Schwarz's list has been extended to Appell's functions in the
following cases

@ F; and higher generalisations (Lauricella Fp) by T.Sasaki
(1977) and P.Cohen, J.Wolfart (1992)

e F» (and F3) by Mitsuo Kato (2000)
e F4 by Mitsuo Kato (1997)
Examples of algebraic Appell functions;
e F»(1/2,5/6,1/6,2/3,1/3,x,y) with Galois group of order
192.
e F»(—1/10,3/10,1/10,3/5,1/5, x,y) with Galois group of
order 14400.
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Let C(A) be the positive real cone spanned by the elements of A
and a € R". Consider the set

K(a,A) == (a+Z7) N C(A)

A point p € K(a, A) is called apexpoint if there is no q € K(«a, A),
distinct from p, such that p — q € C(A).

cA)
[ ] [ ]
[ ] ®
[ ] [ ]
[ ] [ )
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Lemma

The number of apexpoints in K(a, A) is at most equal to the
volume of the convex hull of A.

We say that the number of apexpoints of K(«, A) is maximal if it
equals this upper bound.
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Consider the A-hypergeometric system Ha(a) with o € Q".
Suppose the normality condition is satisfied and that the
GKZ-system is irreducible.

Let NV be the smallest positive integer such that Na € Z".

Theorem (FB, 2006)

The GKZ-system has a solution space consisting of algebraic
functions <= the number of apex points in (koo +Z") N C(A) is
maximal for all integers k with ged(k, N) = 1.

Remark: Using this criterion it is possible to extend Schwarz's list
to all algebraic Lauricella functions and two variable Horn functions
(E.Bod, 2009).
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The Horn series G3

Consider

G3(3, b7Xa.y Z (a 2m-n b)2n = men

m!n!
m,n>0

(1.2

A and C(A)
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Apexpoints for Gz

apexpointsin A
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Algebraic Gz

Let o € Q and choose Leta=1/2,b=1/3
a=a,b=1-a. and a=1/2,b=2/3.
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It is proven by J.Schipper that the only a, b € Q for which the
system for Gs(a, b, x, y) is irreducible with finite monodromy is
given by the following cases

Q@ at+tbceZanda bgZ
Q@ 2a=1/2(mod Z), b=1/3,2/3(mod Z) or vice versa.
The first case explicitly,

g(x,y)
A

G3(371 - a,x,y) = f(va)a

where
A =1+ 4x +4y +18xy — 27x°y?

and
xf3—y=Ff—Ff2 g(g—1-3x*=x°A

Finite monodromy Lecture 2 October 26, 2018

21/ 36



@ The combinatorial condition is equivalent to the statement
that for almost all primes p the GKZ-system modulo p has a
maximal set of independent (over Fy[vy, ..., vy]) polynomial
solutions in Fp[vi, ..., vp).

@ This is equivalent to the statement that the D-module
associated to the GKZ-system has vanishing p-curvature for
all almost all primes p.

@ A conjecture of Grothendieck asserts that vanishing
p-curvature for almost all p is equivalent to finite monodromy,
hence a solution space consisting of algebraic functions.

e Grothendieck's conjecture has been proven by N.Katz (1972)
in the case of systems of equation which are factors of
Gauss-Manin systems, i.e systems that are associated to
families of algebraic varieties.

@ Any GKZ-system with rational parameters 'comes from
algebraic geometry’.
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Monodromy computation

Solutions for the Gauss hypergeometric equation.
Solution base in |z| < 1:

=2 ("]2)

o i=z""2F < 1+a_27_’17+ﬂ_ﬂf‘ z)

Solution base in |z| > 1 (locally around z = 0):

¢ somrran (71
° g1 = 2752F1 (Bifz—aﬁ a’}’ %)
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M(z) = — /m M=o+ $)T (=B + $)F(1 — 7 — $)[(—s)z°ds

B % —ioo
where / = y/—1. Converges whenever —27 < Arg(z) < 2.

Theorem

When «, 5 > 0,7 < 1 this is solution of hypergeometric equation.
Moreover, different argument choices for z yield two independent
solutions.
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Let z € C\ R. Let My(z) be the Mellin-Barnes integral with
Arg(z) € (—2m,0) and Ma(z) with Arg(z) € (0, 27).

After analytic continuation along a loop counter clockwise around
0 we get My(z) — Ma(z).

Let f1(z), 2t~ 7f(z) be basis of hypergeometric solutions around
z = 0 with f1, f, analytic. There exist u1, 2 € C such that

Mi(2) = mnfi(2) + paz' 7 fo(2).
After analytic continuation around z =0,
Mo(z) = p1fi(2) + e A6 (2).
Note i1, 2 # 0 and we can renormalize fi, f> to get

Mi(z) = f(z)+ zl_wfz(z)
Ms(z) f(z) + ezt h(z2), ¢ = 2™ (1)

Finite monodromy Lecture 2 October 26, 2018 25 / 36



Previously,

Mi(z) = fi(z)+2"77h(2)
Mx(z) = fi(z)+ Czl_sz(z)’ c = e2mi(1-7)

So we have a transition matrix Xy between the bases My, M> and
fi, zY7f, namely

After closed loop around 0: fi — f; and z'~7f; — ¢z~ 7f. Hence,

() =0 0%t () - (5 1) (i)

Finite monodromy Lecture 2 October 26, 2018 26 / 36



(0,@)

Letting z~%g1(1/2),z ”g2(1/z) be suitably normalized basis
around z = oo,

Ml(Z) = z—agl(l/z) +Z_6g2(1/2)
My(z) = az “g¢i(1/z) + bz_ﬁgz(l/z), a= e 2mia b o=2miB

11
(1)

After a closed loop around oco: z7%gy — az~%gy and
z‘ﬁgg — bz‘ﬁgz. Hence,

(i) =2 (3 2) % (i) = (2 ate) ()
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With respect to the Mellin-Barnes basis of solutions My, M, the
monodromy group G of the Gauss hypergeometric equation is

generated by
0 1 0 1
—c c+1 —ab a+b

where a = e 27 p = =278 ¢ = =277,
When «, 5,7 € R there is G-invariant Hermitian form

B c—ab a+b—(c+1)
H_<(a+b)c+ab(c+1) c—ab >

(i.e. g"Hg = H for all g € G).
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Horn G

Consider the Horn Gs-function

a nfmb m—n_m. n
Gs(a,b,x,y) = > (8)2n-m(B)om—n y

min!
m,n>0
We have

(-1.2)

A and C(A)
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The B-matrix of Gj3

-1 01 2
=510 4)

Lattice of relations is generated by the rows of
11 -1 -1
B= (0 1 -2 1 )

We call this matrix the B-matrix.

Recall
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The B-zonotope

Start with a set A C Z" and construct a B-matrix. The number of
rows is N — r which we denote by d (number of essential
variables). Denote its columns by by, by, ... by € RY. Define the
B-zonotope by

ZB:{%ZJ-NZI)\jbj ; —1<)\j<1}
Picture for Gs,
1.0

-1.0
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Mellin-Barnes in general

Given an A-hypergeometric system A, . Choose 71, ...,y such
that
’Ylal-i-"'-l-’}’/\/a/\/:a

and define

N
_ 1 . vj+bj-s
M(v) = i) /iRdjl:[l F(—=v —bj-s)y ds

where s = (s1,...,54) and ds = ds; A -+ - A dsg.
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Recall

N
1 ~j+bj-s
M(v) = @ /’Rdjl;[l [(— —bj-s)v" 7 °ds
Theorem
For j=1,..., N let 0; be an argument choice for v;. Then the

integral for M(v) converges if

01 0> On
—b —b -+ —b ZB.
27 1+27T 2+ +27T N E B

Moreover, if v; < 0 for all j, then M(v) is a solution of the
hypergeometric system A, a.
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Mellin-Barnes for G

The Horn system has solution space of dimension 3. Consider the
B-zonotope

10

-1.0

Notice we have a basis of Mellin-Barnes solutions.
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Hypotheses underlying the monodromy calculation.
@ We need a Mellin-Barnes basis of solutions.
@ s the global monodromy group generated by the local
contributions?
Theorem

Let M C GLp(C) be the monodromy group of an irreducible
A-hypergeometric system. Then there exists a non-trivial
Hermitean matrix H such that gtHg = H for all g € M.
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Signature in the case G3z. Take following triangulation of A, i.e.

()G Q)G o) (B

Then write the parameter vector (—a, —b) as linear combination of
each of these pairs

(2 ) (3) = (5) o) o (o) ()

Then the signs of
sinma-sinm(—b — 2a), sinm(—a)-sinw(—b), sinw(—a—2b)-sinwb
determine the signature.
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