Lecture 2

Frits Beukers

October 26, 2018

The A-polytope

Start with a finite subset $A \subset \mathbb{Z}^{r} \subset \mathbb{R}^{r}$. We assume

- The \mathbb{Z}-span of A is \mathbb{Z}^{r}
- There is a linear form h such that $h(\mathbf{a})=1$ for all $\mathbf{a} \in A$.

Define a vector of parameters

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{R}^{r}
$$

Remember:

The set A and the vector α will completely characterise a so-called A-hypergeometric system of differential equations.

Lattice of relations

Write $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}$. The lattice of relations $L \subset \mathbb{Z}^{N}$ is formed by all $\mathbf{I}=\left(I_{1}, \ldots, I_{N}\right) \in \mathbb{Z}^{N}$ such that

$$
I_{1} \mathbf{a}_{1}+I_{2} \mathbf{a}_{2}+\cdots+I_{N} \mathbf{a}_{N}=\mathbf{0}
$$

Let h be the form such that $h\left(\mathbf{a}_{i}\right)=1$ for $i=1, \ldots, r$. Apply h to any relation $I_{1} \mathbf{a}_{1}+\cdots+I_{N} \mathbf{a}_{N}=\mathbf{0}$. Then we get $\sum_{i=1}^{N} l_{i}=0$ for all $\mathbf{I} \in L$.

Formal A-hypergeometric series

Choose $\gamma_{1}, \ldots, \gamma_{N}$ such that

$$
\alpha=\gamma_{1} \mathbf{a}_{1}+\cdots+\gamma_{N} \mathbf{a}_{N}
$$

Note that $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ is determined modulo $L \otimes \mathbb{R}$. Let v_{1}, \ldots, v_{N} be variables and consider

$$
\Phi=\sum_{1 \in L} \frac{v_{1}^{I_{1}+\gamma_{1}} \cdots v_{N}^{I_{N}+\gamma_{N}}}{\Gamma\left(I_{1}+\gamma_{1}+1\right) \cdots \Gamma\left(I_{N}+\gamma_{N}+1\right)}
$$

Power series solutions, Gauss' equation

Consider the set $A \subset \mathbb{Z}^{3}$ given by

$$
\mathbf{a}_{1}=\mathbf{e}_{1}, \quad \mathbf{a}_{2}=\mathbf{e}_{2}, \quad \mathbf{a}_{3}=\mathbf{e}_{3}, \quad \mathbf{a}_{4}=\mathbf{e}_{1}+\mathbf{e}_{2}-\mathbf{e}_{3}
$$

and the parameter triple $(-a,-b, c-1)$.
Lattice of relations L is generated by $(-1,-1,1,1)$. Choose $\gamma=(-a,-b, c-1,0)+\tau(-1,-1,1,1)$ for some τ. We choose τ such that one of the components of γ vanishes. Let us take $\tau=0$. Formal solution:

$$
\Phi=\sum_{n \in \mathbb{Z}} \frac{v_{1}^{-n-a} v_{2}^{-n-b} v_{3}^{n+c-1} v_{4}^{n}}{\Gamma(-n-a+1) \Gamma(-n-b+1) \Gamma(n+c) \Gamma(n+1)}
$$

Notice that $n \geq 0$. Standard identities for Γ yield

$$
\Phi \sim v_{1}^{-a} v_{2}^{-b} v_{3}^{c-1} \sum_{n \geq 0} \frac{\Gamma(n+a) \Gamma(n+b)}{\Gamma(n+c) \Gamma(n+1)}\left(\frac{v_{3} v_{4}}{v_{1} v_{2}}\right)^{n}
$$

This is ${ }_{2} F_{1}\left(\begin{array}{cc}a & b \\ c & z\end{array}\right)$, when we put $v_{1}=v_{2}=v_{3}=1, v_{4}=z$.

Power series, second solution at $z=0$

Same example, but now $\tau=1-c$ so that $\gamma=(c-a-1, c-b-1,0,1-c)$. We get

$$
\Phi=\sum_{n \in \mathbb{Z}} \frac{v_{1}^{-n+c-a-1} v_{2}^{-n+c-b-1} v_{3}^{n} v_{4}^{n+1-c}}{\Gamma(-n+c-a) \Gamma(-n+c-b) \Gamma(n+1) \Gamma(n+2-c)}
$$

Notice that $n \geq 0$. Standard identities for Γ yield
$\Phi \sim v_{1}^{c-a-1} v_{2}^{c-b-1} v_{4}^{1-c} \sum_{n \geq 0} \frac{\Gamma(n+a+1-c) \Gamma(n+b+1-c)}{\Gamma(n+1) \Gamma(n+2-c)}\left(\frac{v_{3} v_{4}}{v_{1} v_{2}}\right)^{n}$
This is $z^{1-c}{ }_{2} F_{1}\left(\begin{array}{c}a+1-c \\ 2-c\end{array}|z+1-c| z\right)$, when we put $v_{1}=v_{2}=v_{3}=1, v_{4}=z$.

Power series, solution at $z=\infty$

Same example, but now $\tau=$ a so that $\gamma=(0, a-b, c-a-1,-a)$. We get

$$
\Phi=\sum_{n \in \mathbb{Z}} \frac{v_{1}^{-n} v_{2}^{-n+a-b} v_{3}^{n+c-a-1} v_{4}^{n-a}}{\Gamma(-n+1) \Gamma(-n+a-b+1) \Gamma(n+c-a) \Gamma(n-a+1)}
$$

Notice that $n \leq 0$. Replace $n \rightarrow-n$. Standard identities for Γ yield

$$
\Phi \sim v_{2}^{a-b} v_{3}^{c-a-1} v_{4}^{-a} \sum_{n \geq 0} \frac{\Gamma(n+1+a-c) \Gamma(n+a)}{\Gamma(n+1) \Gamma(n+a-b+1)}\left(\frac{v_{1} v_{2}}{v_{3} v_{4}}\right)^{n}
$$

This is $z^{-a}{ }_{2} F_{1}\left(\left.\begin{array}{c}1+a-c a \\ a-b+1\end{array} \right\rvert\, \frac{1}{z}\right)$, when we put $v_{1}=v_{2}=v_{3}=1, v_{4}=z$.

Appell F_{1} again

Appell $F_{1}\left(\alpha, \beta, \beta^{\prime}, \gamma \mid x, y\right)$ is proportional to
$\sum_{m, n \in \mathbb{Z}} \frac{x^{m} y^{n}}{\Gamma(-m-n+1-\alpha) \Gamma(-m+1-\beta) \Gamma\left(-n+1-\beta^{\prime}\right) \Gamma(m+n+\gamma) \Gamma(m+1) \Gamma(n+1)}$
The lattice L is spanned by rows of

$$
\left(\begin{array}{cccccc}
-1 & -1 & 0 & 1 & 1 & 0 \\
-1 & 0 & -1 & 1 & 0 & 1
\end{array}\right)
$$

Denote i-th column by \mathbf{b}_{i}. We call this the B-matrix.

Then solution becomes

$\sum_{\mathbf{s} \in \mathbb{Z}^{2}} \frac{x^{\mathbf{b}_{5}} \cdot \mathbf{s}^{\mathbf{b}_{6}} \cdot \mathbf{s}}{\Gamma\left(\mathbf{b}_{1} \cdot \mathbf{s}+1-\alpha\right) \Gamma\left(\mathbf{b}_{2} \cdot \mathbf{s}+1-\beta\right) \Gamma\left(\mathbf{b}_{3} \cdot \mathbf{s}+1-\beta^{\prime}\right) \Gamma\left(\mathbf{b}_{4} \cdot \mathbf{s}+\gamma\right) \Gamma\left(\mathbf{b}_{5} \cdot \mathbf{s}+1\right) \Gamma\left(\mathbf{b}_{6} \cdot \mathbf{s}+1\right)}$

Power series in general

In general: $d:=N-r($ rank of $L)$ and γ_{i} are fixed. We write formal solution as

$$
\Phi_{\sigma}=\sum_{\mathbf{s} \in \mathbb{Z}^{d}} \prod_{i=1}^{N} \frac{v_{i}^{\mathbf{b}_{i} \cdot(\mathbf{s}+\sigma)+\gamma_{i}}}{\Gamma\left(\mathbf{b}_{i} \cdot(\mathbf{s}+\sigma)+\gamma_{i}+1\right)}
$$

where $\sigma \in \mathbb{R}^{d}$ is arbitary.
Choose a subset $\mathscr{I} \subset\{1,2, \ldots, N\}$ with $|\mathscr{I}|=d$ such that \mathbf{b}_{i} with $i \in \mathscr{I}$ are linearly independent.
Then choose σ such that $\mathbf{b}_{i} \cdot \sigma+\gamma_{i}=0$ for $i \in \mathscr{I}$. Then Φ_{σ} becomes Laurent series with support in $\mathbf{b}_{i} . \mathbf{s} \geq 0$ for $i \in \mathscr{I}$.

An example, F_{1}

Recall that the rows of L are given by

$$
\left(\begin{array}{cccccc}
-1 & -1 & 0 & 1 & 1 & 0 \\
-1 & 0 & -1 & 1 & 0 & 1
\end{array}\right)
$$

Then Φ_{σ} equals sum over $\mathbf{s} \in \mathbb{Z}^{2}$ of

$$
\begin{aligned}
& \frac{x^{\mathbf{b}_{5} \cdot(\mathbf{s}+\sigma)} \mathbf{y}_{\mathbf{b}}^{6} \cdot(\mathbf{s}+\sigma)}{\Gamma\left(\mathbf{b}_{1} \cdot(\mathbf{s}+\sigma)+1-\alpha\right) \Gamma\left(\mathbf{b}_{2} \cdot(\mathbf{s}+\sigma)+1-\beta\right) \Gamma\left(\mathbf{b}_{3} \cdot(\mathbf{s}+\sigma)+1-\beta^{\prime}\right.} \\
& \times \frac{1}{\Gamma\left(\mathbf{b}_{4} \cdot(\mathbf{s}+\sigma)+\gamma\right) \Gamma\left(\mathbf{b}_{5} \cdot(\mathbf{s}+\sigma)+1\right) \Gamma\left(\mathbf{b}_{6} \cdot(\mathbf{s}+\sigma)+1\right)} .
\end{aligned}
$$

Choose σ such that $\mathbf{b}_{1} \cdot \sigma-\alpha=0$ and $\mathbf{b}_{2} \cdot \sigma-\beta=0$. Explicitly, $-\sigma_{1}-\sigma_{2}=\alpha$ and $-\sigma_{1}=\beta$. So $\sigma_{1}=-\beta$ and $\sigma_{2}=\beta-\alpha$.

F_{1} continued

We get

$$
\begin{aligned}
\Phi_{1,2}= & \sum_{s_{1}, s_{2} \in \mathbb{Z}} \frac{x^{s_{1}-\beta} y^{s_{2}+\beta-\alpha}}{\Gamma\left(-s_{1}-s_{2}+1\right) \Gamma\left(-s_{1}+1\right) \Gamma\left(-s_{2}+1-\beta+\alpha-\beta^{\prime}\right)} \\
& \times \frac{1}{\Gamma\left(s_{1}+s_{2}+\gamma-\alpha\right) \Gamma\left(s_{1}+1-\beta\right) \Gamma\left(s_{2}+1+\beta-\alpha\right)} .
\end{aligned}
$$

Laurent series with support $-s_{1}-s_{2} \geq 0,-s_{1} \geq 0$. Setting $m=-s_{1}-s_{2}, n=-s_{1}$ gives

$$
\begin{aligned}
\Phi_{1,2}= & \sum_{m, n \geq 0} \frac{(y / x)^{n+\beta} y^{-(m+\alpha)}}{\Gamma(m+1) \Gamma(n+1) \Gamma\left(m-n+1-\beta+\alpha-\beta^{\prime}\right)} \\
& \times \frac{1}{\Gamma(-m+\gamma-\alpha) \Gamma(-n+1-\beta) \Gamma(n-m+1+\beta-\alpha)} .
\end{aligned}
$$

Triangulations

For any subset J of $\{1,2, \ldots, N\}$ we denote by Σ_{J} the convex hull of $\left\{a_{j}\right\}_{j \in J}$.

Definition

A triangulation of $Q(A)$ is a subset

$$
T \subset\left\{J \subset\{1,2, \ldots, N\}\left||J|=r \text { and } \operatorname{rank}\left(\Sigma_{J}\right)=r\right\}\right.
$$

such that

- $Q(A)=\cup_{J \in T} \Sigma_{J}$
- for all $J, J^{\prime} \in T: \Sigma_{J} \cap \Sigma_{J^{\prime}}=\Sigma_{J \cap J^{\prime}}$.

Basis of solutions

Theorem (GKZ)

Let T be a (regular) triangulation of $Q(A)$. Then the Laurent series $\Phi_{J c}$ with $J \subset T$ form a basis of solutions having a common domain of convergence.

Gauss' hypergeometric function with A-matrix

1	0	0	1
0	1	0	1
0	0	1	-1

Triangulations of $Q(A)$,

Algebraic Appell functions

Schwarz's list has been extended to Appell's functions in the following cases

- F_{1} and higher generalisations (Lauricella F_{D}) by T.Sasaki (1977) and P.Cohen, J.Wolfart (1992)
- $F_{2}\left(\right.$ and $\left.F_{3}\right)$ by Mitsuo Kato (2000)
- F_{4} by Mitsuo Kato (1997)

Examples of algebraic Appell functions;

- $F_{2}(1 / 2,5 / 6,1 / 6,2 / 3,1 / 3, x, y)$ with Galois group of order 192.
- $F_{2}(-1 / 10,3 / 10,1 / 10,3 / 5,1 / 5, x, y)$ with Galois group of order 14400.

Apexpoints

Let $C(A)$ be the positive real cone spanned by the elements of A and $\alpha \in \mathbb{R}^{r}$. Consider the set

$$
K(\alpha, A):=\left(\alpha+\mathbb{Z}^{r}\right) \cap C(A)
$$

A point $\mathbf{p} \in K(\alpha, A)$ is called apexpoint if there is no $\mathbf{q} \in K(\alpha, A)$, distinct from \mathbf{p}, such that $\mathbf{p}-\mathbf{q} \in C(A)$.

Maximal apexpoints

Lemma

The number of apexpoints in $K(\alpha, A)$ is at most equal to the volume of the convex hull of A.

We say that the number of apexpoints of $K(\alpha, A)$ is maximal if it equals this upper bound.

Algebraicity

Consider the A-hypergeometric system $H_{A}(\alpha)$ with $\alpha \in \mathbb{Q}^{r}$. Suppose the normality condition is satisfied and that the GKZ-system is irreducible.
Let N be the smallest positive integer such that $N \alpha \in \mathbb{Z}^{r}$.

Theorem (FB, 2006)

The GKZ-system has a solution space consisting of algebraic functions \Longleftrightarrow the number of apex points in $\left(k \alpha+\mathbb{Z}^{r}\right) \cap C(A)$ is maximal for all integers k with $\operatorname{gcd}(k, N)=1$.

Remark: Using this criterion it is possible to extend Schwarz's list to all algebraic Lauricella functions and two variable Horn functions (E.Bod, 2009).

The Horn series G_{3}

Consider

$$
G_{3}(a, b, x, y)=\sum_{m, n \geq 0} \frac{(a)_{2 m-n}(b)_{2 n-m}}{m!n!} x^{m} y^{n}
$$

Apexpoints for G_{3}

Algebraic G_{3}

Let $\alpha \in \mathbb{Q}$ and choose
 $a=\alpha, b=1-\alpha$.

Let $a=1 / 2, b=1 / 3$
and $a=1 / 2, b=2 / 3$.

G_{3}-list

It is proven by J.Schipper that the only $a, b \in \mathbb{Q}$ for which the system for $G_{3}(a, b, x, y)$ is irreducible with finite monodromy is given by the following cases
(1) $a+b \in \mathbb{Z}$ and $a, b \notin \mathbb{Z}$
(2) $a \equiv 1 / 2(\bmod \mathbb{Z}), \quad b \equiv 1 / 3,2 / 3(\bmod \mathbb{Z})$ or vice versa.

The first case explicitly,

$$
G_{3}(a, 1-a, x, y)=f(x, y)^{a} \sqrt{\frac{g(x, y)}{\Delta}}
$$

where

$$
\Delta=1+4 x+4 y+18 x y-27 x^{2} y^{2}
$$

and

$$
x f^{3}-y=f-f^{2}, \quad g(g-1-3 x)^{2}=x^{2} \Delta
$$

Steps of the proof

- The combinatorial condition is equivalent to the statement that for almost all primes p the GKZ-system modulo p has a maximal set of independent (over $\mathbb{F}_{p}\left[v_{1}^{p}, \ldots, v_{N}^{p}\right]$) polynomial solutions in $\mathbb{F}_{p}\left[v_{1}, \ldots, v_{N}\right]$.
- This is equivalent to the statement that the D-module associated to the GKZ-system has vanishing p-curvature for all almost all primes p.
- A conjecture of Grothendieck asserts that vanishing p-curvature for almost all p is equivalent to finite monodromy, hence a solution space consisting of algebraic functions.
- Grothendieck's conjecture has been proven by N.Katz (1972) in the case of systems of equation which are factors of Gauss-Manin systems, i.e systems that are associated to families of algebraic varieties.
- Any GKZ-system with rational parameters 'comes from algebraic geometry'.

Monodromy computation

Solutions for the Gauss hypergeometric equation. Solution base in $|z|<1$:

- $f_{0}={ }_{2} F_{1}\left(\left.\begin{array}{c}\alpha, \beta \\ \gamma\end{array} \right\rvert\, z\right)$
- $f_{1}=z^{1-\gamma}{ }_{2} F_{1}\left(\left.\begin{array}{c}1+\alpha-\gamma, 1+\beta-\gamma \\ 2-\gamma\end{array} \right\rvert\, z\right)$

Solution base in $|z|>1$ (locally around $z=\infty$):

- $g_{0}=z^{-\alpha}{ }_{2} F_{1}\left(\left.\begin{array}{c}\alpha, 1+\alpha-\gamma \\ 1+\alpha-\beta\end{array} \right\rvert\, \frac{1}{z}\right)$
- $g_{1}=z^{-\beta}{ }_{2} F_{1}\left(\left.\begin{array}{c}\beta, 1+\beta-\gamma \\ 1+\beta-\alpha\end{array} \right\rvert\, \frac{1}{z}\right)$

Mellin-Barnes integrals

Define

$$
M(z)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \Gamma(-\alpha+s) \Gamma(-\beta+s) \Gamma(1-\gamma-s) \Gamma(-s) z^{s} d s
$$

where $i=\sqrt{-1}$. Converges whenever $-2 \pi<\operatorname{Arg}(z)<2 \pi$.
Theorem
When $\alpha, \beta>0, \gamma<1$ this is solution of hypergeometric equation. Moreover, different argument choices for z yield two independent solutions.

Transition matrices

Let $z \in \mathbb{C} \backslash \mathbb{R}$. Let $M_{1}(z)$ be the Mellin-Barnes integral with $\operatorname{Arg}(z) \in(-2 \pi, 0)$ and $M_{2}(z)$ with $\operatorname{Arg}(z) \in(0,2 \pi)$.
After analytic continuation along a loop counter clockwise around 0 we get $M_{1}(z) \rightarrow M_{2}(z)$.
Let $f_{1}(z), z^{1-\gamma} f_{2}(z)$ be basis of hypergeometric solutions around $z=0$ with f_{1}, f_{2} analytic. There exist $\mu_{1}, \mu_{2} \in \mathbb{C}$ such that

$$
M_{1}(z)=\mu_{1} f_{1}(z)+\mu_{2} z^{1-\gamma} f_{2}(z)
$$

After analytic continuation around $z=0$,

$$
M_{2}(z)=\mu_{1} f_{1}(z)+\mu_{2} e^{2 \pi i(1-\gamma)} z^{1-\gamma} f_{2}(z)
$$

Note $\mu_{1}, \mu_{2} \neq 0$ and we can renormalize f_{1}, f_{2} to get

$$
\begin{aligned}
& M_{1}(z)=f_{1}(z)+z^{1-\gamma} f_{2}(z) \\
& M_{2}(z)=f_{1}(z)+c z^{1-\gamma} f_{2}(z), c=e^{2 \pi i(1-\gamma)}
\end{aligned}
$$

Monodromy matrix at 0

Previously,

$$
\begin{aligned}
& M_{1}(z)=f_{1}(z)+z^{1-\gamma} f_{2}(z) \\
& M_{2}(z)=f_{1}(z)+c z^{1-\gamma} f_{2}(z), c=e^{2 \pi i(1-\gamma)}
\end{aligned}
$$

So we have a transition matrix X_{0} between the bases M_{1}, M_{2} and $f_{1}, z^{1-\gamma} f_{2}$, namely

$$
X_{0}=\left(\begin{array}{ll}
1 & 1 \\
1 & c
\end{array}\right)
$$

After closed loop around 0: $f_{1} \rightarrow f_{1}$ and $z^{1-\gamma} f_{2} \rightarrow c z^{1-\gamma} f_{2}$. Hence,

$$
\binom{M_{1}(z)}{M_{2}(z)} \rightarrow X_{0}\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right) X_{0}^{-1}\binom{M_{1}(z)}{M_{2}(z)}=\left(\begin{array}{cc}
0 & 1 \\
-c & c+1
\end{array}\right)\binom{M 1(z)}{M_{2}(z)} .
$$

Monodromy matrix at ∞

Letting $z^{-\alpha} g_{1}(1 / z), z^{-\beta} g_{2}(1 / z)$ be suitably normalized basis around $z=\infty$,

$$
\begin{aligned}
& M_{1}(z)=z^{-\alpha} g_{1}(1 / z)+z^{-\beta} g_{2}(1 / z) \\
& M_{2}(z)=a z^{-\alpha} g_{1}(1 / z)+b z^{-\beta} g_{2}(1 / z), a=e^{-2 \pi i \alpha}, b=e^{-2 \pi i \beta}
\end{aligned}
$$

Transition matrix

$$
X_{\infty}=\left(\begin{array}{ll}
1 & 1 \\
a & b
\end{array}\right)
$$

After a closed loop around $\infty: z^{-\alpha} g_{1} \rightarrow a z^{-\alpha} g_{1}$ and $z^{-\beta} g_{2} \rightarrow b z^{-\beta} g_{2}$. Hence,
$\binom{M 1(z)}{M_{2}(z)} \rightarrow X_{\infty}\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) X_{\infty}^{-1}\binom{M 1(z)}{M_{2}(z)}=\left(\begin{array}{cc}0 & 1 \\ -a b & a+b\end{array}\right)\binom{M 1(z)}{M_{2}(z)}$.

Riemann's monodromy

With respect to the Mellin-Barnes basis of solutions M_{1}, M_{2} the monodromy group G of the Gauss hypergeometric equation is generated by

$$
\left(\begin{array}{cc}
0 & 1 \\
-c & c+1
\end{array}\right) \quad\left(\begin{array}{cc}
0 & 1 \\
-a b & a+b
\end{array}\right)
$$

where $a=e^{-2 \pi i \alpha}, b=e^{-2 \pi i \beta}, c=e^{-2 \pi i \gamma}$.
When $\alpha, \beta, \gamma \in \mathbb{R}$ there is G-invariant Hermitian form

$$
H=\left(\begin{array}{cc}
c-a b & a+b-(c+1) \\
(a+b) c+a b(c+1) & c-a b
\end{array}\right)
$$

(i.e. $\bar{g}^{\top} H g=H$ for all $g \in G$).

Horn G_{3}

Consider the Horn G_{3}-function

$$
G_{3}(a, b, x, y)=\sum_{m, n \geq 0} \frac{(a)_{2 n-m}(b)_{2 m-n}}{m!n!} x^{m} y^{n}
$$

We have

The B-matrix of G_{3}

Recall

$$
A=\left(\begin{array}{cccc}
-1 & 0 & 1 & 2 \\
2 & 1 & 0 & -1
\end{array}\right)
$$

Lattice of relations is generated by the rows of

$$
B=\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
0 & 1 & -2 & 1
\end{array}\right)
$$

We call this matrix the B-matrix.

The B-zonotope

Start with a set $A \subset \mathbb{Z}^{r}$ and construct a B-matrix. The number of rows is $N-r$ which we denote by d (number of essential variables). Denote its columns by $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{N} \in \mathbb{R}^{d}$. Define the B-zonotope by

$$
Z_{B}=\left\{\frac{1}{4} \sum_{j=1}^{N} \lambda_{j} \mathbf{b}_{j} \quad ; \quad-1<\lambda_{j}<1\right\}
$$

Picture for G_{3},

Mellin-Barnes in general

Given an A-hypergeometric system \boldsymbol{A}, α. Choose $\gamma_{1}, \ldots, \gamma_{N}$ such that

$$
\gamma_{1} \mathbf{a}_{1}+\cdots+\gamma_{N} \mathbf{a}_{N}=\alpha
$$

and define

$$
M(\mathbf{v})=\frac{1}{(2 \pi i)^{d}} \int_{i \mathbb{R}^{d}} \prod_{j=1}^{N} \Gamma\left(-\gamma_{j}-\mathbf{b}_{j} \cdot \mathbf{s}\right) v_{j}^{\gamma_{j}+\mathbf{b}_{j} \cdot \mathbf{s}} d \mathbf{s}
$$

where $\mathbf{s}=\left(s_{1}, \ldots, s_{d}\right)$ and $d \mathbf{s}=d s_{1} \wedge \cdots \wedge d s_{d}$.

Convergence

Recall

$$
M(\mathbf{v})=\frac{1}{(2 \pi i)^{d}} \int_{i \mathbb{R}^{d}} \prod_{j=1}^{N} \Gamma\left(-\gamma_{j}-\mathbf{b}_{j} \cdot \mathbf{s}\right) v_{j}^{\gamma_{j}+\mathbf{b}_{j} \cdot \mathbf{s}} d \mathbf{s}
$$

Theorem

For $j=1, \ldots, N$ let θ_{j} be an argument choice for v_{j}. Then the integral for $M(\mathbf{v})$ converges if

$$
\frac{\theta_{1}}{2 \pi} \mathbf{b}_{1}+\frac{\theta_{2}}{2 \pi} \mathbf{b}_{2}+\cdots+\frac{\theta_{N}}{2 \pi} \mathbf{b}_{N} \in Z_{B}
$$

Moreover, if $\gamma_{j}<0$ for all j, then $M(\mathbf{v})$ is a solution of the hypergeometric system A, α.

Mellin-Barnes for G_{3}

The Horn system has solution space of dimension 3. Consider the B-zonotope

Notice we have a basis of Mellin-Barnes solutions.

Questions, invariant form

Hypotheses underlying the monodromy calculation.
(1) We need a Mellin-Barnes basis of solutions.
(2) Is the global monodromy group generated by the local contributions?

Theorem
Let $M \subset G L_{D}(\mathbb{C})$ be the monodromy group of an irreducible A-hypergeometric system. Then there exists a non-trivial Hermitean matrix H such that $\bar{g}^{t} H g=H$ for all $g \in M$.

Signature

Signature in the case G_{3}. Take following triangulation of A, i.e.

$$
\left\{\binom{-1}{2},\binom{0}{1}\right\}, \quad\left\{\binom{0}{1},\binom{1}{0}\right\}, \quad\left\{\binom{1}{0},\binom{2}{-1}\right\}
$$

Then write the parameter vector $(-a,-b)$ as linear combination of each of these pairs

$$
a\binom{-1}{2}+(-b-2 a)\binom{0}{1},-b\binom{0}{1}-a\binom{1}{0},(-a-2 b)\binom{1}{0}+b\binom{2}{-1}
$$

Then the signs of
$\sin \pi a \cdot \sin \pi(-b-2 a), \sin \pi(-a) \cdot \sin \pi(-b), \sin \pi(-a-2 b) \cdot \sin \pi b$ determine the signature.

