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The A-polytope

Start with a finite subset A ⊂ Zr ⊂ Rr . We assume

The Z-span of A is Zr

There is a linear form h such that h(a) = 1 for all a ∈ A.

Define a vector of parameters

α = (α1, . . . , αr ) ∈ Rr

Remember:

The set A and the vector α will completely characterise a so-called
A-hypergeometric system of differential equations.
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Lattice of relations

Write A = {a1, . . . , aN}. The lattice of relations L ⊂ ZN is formed
by all l = (l1, . . . , lN) ∈ ZN such that

l1a1 + l2a2 + · · ·+ lNaN = 0.

Let h be the form such that h(ai ) = 1 for i = 1, . . . , r .
Apply h to any relation l1a1 + · · ·+ lNaN = 0.
Then we get

∑N
i=1 li = 0 for all l ∈ L.
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Formal A-hypergeometric series

Choose γ1, . . . , γN such that

α = γ1a1 + · · ·+ γNaN .

Note that γ = (γ1, . . . , γN) is determined modulo L⊗ R.
Let v1, . . . , vN be variables and consider

Φ =
∑
l∈L

v l1+γ1
1 · · · v lN+γN

N

Γ(l1 + γ1 + 1) · · · Γ(lN + γN + 1)
.
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Power series solutions, Gauss’ equation

Consider the set A ⊂ Z3 given by

a1 = e1, a2 = e2, a3 = e3, a4 = e1 + e2 − e3

and the parameter triple (−a,−b, c − 1).
Lattice of relations L is generated by (−1,−1, 1, 1). Choose
γ = (−a,−b, c − 1, 0) + τ(−1,−1, 1, 1) for some τ . We choose τ
such that one of the components of γ vanishes. Let us take τ = 0.
Formal solution:

Φ =
∑
n∈Z

v−n−a1 v−n−b2 vn+c−1
3 vn4

Γ(−n − a + 1)Γ(−n − b + 1)Γ(n + c)Γ(n + 1)

Notice that n ≥ 0. Standard identities for Γ yield

Φ ∼ v−a1 v−b2 v c−1
3

∑
n≥0

Γ(n + a)Γ(n + b)

Γ(n + c)Γ(n + 1)

(
v3v4

v1v2

)n

This is 2F1

(
a b
c

∣∣∣ z), when we put v1 = v2 = v3 = 1, v4 = z .

Solutions Lecture 2 October 26, 2018 5 / 36



Power series, second solution at z = 0

Same example, but now τ = 1− c so that
γ = (c − a− 1, c − b − 1, 0, 1− c). We get

Φ =
∑
n∈Z

v−n+c−a−1
1 v−n+c−b−1

2 vn3 v
n+1−c
4

Γ(−n + c − a)Γ(−n + c − b)Γ(n + 1)Γ(n + 2− c)

Notice that n ≥ 0. Standard identities for Γ yield

Φ ∼ v c−a−1
1 v c−b−1

2 v1−c
4

∑
n≥0

Γ(n + a + 1− c)Γ(n + b + 1− c)

Γ(n + 1)Γ(n + 2− c)

(
v3v4

v1v2

)n

This is z1−c
2F1

(
a+1−c b+1−c

2−c

∣∣∣ z), when we put

v1 = v2 = v3 = 1, v4 = z .
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Power series, solution at z =∞

Same example, but now τ = a so that
γ = (0, a− b, c − a− 1,−a). We get

Φ =
∑
n∈Z

v−n1 v−n+a−b
2 vn+c−a−1

3 vn−a4

Γ(−n + 1)Γ(−n + a− b + 1)Γ(n + c − a)Γ(n − a + 1)

Notice that n ≤ 0. Replace n→ −n. Standard identities for Γ yield

Φ ∼ va−b2 v c−a−1
3 v−a4

∑
n≥0

Γ(n + 1 + a− c)Γ(n + a)

Γ(n + 1)Γ(n + a− b + 1)

(
v1v2

v3v4

)n

This is z−a 2F1

(
1+a−c a
a−b+1

∣∣∣ 1
z

)
, when we put

v1 = v2 = v3 = 1, v4 = z .
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Appell F1 again

Appell F1(α, β, β′, γ|x , y) is proportional to∑
m,n∈Z

xmyn

Γ(−m−n+1−α)Γ(−m+1−β)Γ(−n+1−β′)Γ(m+n+γ)Γ(m+1)Γ(n+1)

The lattice L is spanned by rows of(
−1 −1 0 1 1 0
−1 0 −1 1 0 1

)
.

Denote i-th column by bi . We call this the B-matrix.
Then solution becomes∑

s∈Z2
xb5.syb6.s

Γ(b1·s+1−α)Γ(b2·s+1−β)Γ(b3·s+1−β′)Γ(b4·s+γ)Γ(b5·s+1)Γ(b6·s+1)
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Power series in general

In general: d := N − r (rank of L) and γi are fixed. We write
formal solution as

Φσ =
∑
s∈Zd

N∏
i=1

v
bi ·(s+σ)+γi
i

Γ(bi · (s + σ) + γi + 1)
,

where σ ∈ Rd is arbitary.
Choose a subset I ⊂ {1, 2, . . . ,N} with |I | = d such that bi
with i ∈ I are linearly independent.
Then choose σ such that bi · σ + γi = 0 for i ∈ I . Then Φσ

becomes Laurent series with support in bi .s ≥ 0 for i ∈ I .
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An example, F1

Recall that the rows of L are given by(
−1 −1 0 1 1 0
−1 0 −1 1 0 1

)
.

Then Φσ equals sum over s ∈ Z2 of

xb5.(s+σ)yb6.(s+σ)

Γ(b1 · (s + σ) + 1− α)Γ(b2 · (s + σ) + 1− β)Γ(b3 · (s + σ) + 1− β′)

× 1

Γ(b4 · (s + σ) + γ)Γ(b5 · (s + σ) + 1)Γ(b6 · (s + σ) + 1)
.

Choose σ such that b1 · σ − α = 0 and b2 · σ − β = 0. Explicitly,
−σ1 − σ2 = α and −σ1 = β. So σ1 = −β and σ2 = β − α.
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F1 continued

We get

Φ1,2 =
∑

s1,s2∈Z

x s1−βy s2+β−α

Γ(−s1 − s2 + 1)Γ(−s1 + 1)Γ(−s2 + 1− β + α− β′)

× 1

Γ(s1 + s2 + γ − α)Γ(s1 + 1− β)Γ(s2 + 1 + β − α)
.

Laurent series with support −s1 − s2 ≥ 0,−s1 ≥ 0.Setting
m = −s1 − s2, n = −s1 gives

Φ1,2 =
∑

m,n≥0

(y/x)n+βy−(m+α)

Γ(m + 1)Γ(n + 1)Γ(m − n + 1− β + α− β′)

× 1

Γ(−m + γ − α)Γ(−n + 1− β)Γ(n −m + 1 + β − α)
.
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Triangulations

For any subset J of {1, 2, . . . ,N} we denote by ΣJ the convex hull
of {aj}j∈J .

Definition

A triangulation of Q(A) is a subset

T ⊂ {J ⊂ {1, 2, . . . ,N}| |J| = r and rank(ΣJ) = r}

such that

Q(A) = ∪J∈TΣJ

for all J, J ′ ∈ T : ΣJ ∩ ΣJ′ = ΣJ∩J′ .
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Basis of solutions

Theorem (GKZ)

Let T be a (regular) triangulation of Q(A). Then the Laurent
series ΦJc with J ⊂ T form a basis of solutions having a common
domain of convergence.

Gauss’ hypergeometric function with A-matrix

1 0 0 1
0 1 0 1
0 0 1 −1

Triangulations of Q(A),

t tt t
t tt t

1 1

2 2

3 3

4 4

@
@

@

�
�
�T1 : T2 :
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Algebraic Appell functions

Schwarz’s list has been extended to Appell’s functions in the
following cases

F1 and higher generalisations (Lauricella FD) by T.Sasaki
(1977) and P.Cohen, J.Wolfart (1992)

F2 (and F3) by Mitsuo Kato (2000)

F4 by Mitsuo Kato (1997)

Examples of algebraic Appell functions;

F2(1/2, 5/6, 1/6, 2/3, 1/3, x , y) with Galois group of order
192.

F2(−1/10, 3/10, 1/10, 3/5, 1/5, x , y) with Galois group of
order 14400.

Finite monodromy Lecture 2 October 26, 2018 14 / 36



Apexpoints

Let C (A) be the positive real cone spanned by the elements of A
and α ∈ Rr . Consider the set

K (α,A) := (α + Zr ) ∩ C (A)

A point p ∈ K (α,A) is called apexpoint if there is no q ∈ K (α,A),
distinct from p, such that p− q ∈ C (A).

C(A)
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Maximal apexpoints

Lemma

The number of apexpoints in K (α,A) is at most equal to the
volume of the convex hull of A.

We say that the number of apexpoints of K (α,A) is maximal if it
equals this upper bound.
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Algebraicity

Consider the A-hypergeometric system HA(α) with α ∈ Qr .
Suppose the normality condition is satisfied and that the
GKZ-system is irreducible.
Let N be the smallest positive integer such that Nα ∈ Zr .

Theorem (FB, 2006)

The GKZ-system has a solution space consisting of algebraic
functions ⇐⇒ the number of apex points in (kα + Zr ) ∩ C (A) is
maximal for all integers k with gcd(k ,N) = 1.

Remark: Using this criterion it is possible to extend Schwarz’s list
to all algebraic Lauricella functions and two variable Horn functions
(E.Bod, 2009).
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The Horn series G3

Consider

G3(a, b, x , y) =
∑

m,n≥0

(a)2m−n(b)2n−m
m!n!

xmyn

(0,0)
(1,0)

(0,1)

(2,-1)

(-1,2)

A and C(A)
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Apexpoints for G3

(0,0)
(1,0)

(0,1)

(2,-1)

(-1,2)

apexpoints in A

(0,0)
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Algebraic G3

Let α ∈ Q and choose
a = α, b = 1− α.

(0,0)

Let a = 1/2, b = 1/3
and a = 1/2, b = 2/3.

(0,0)

Finite monodromy Lecture 2 October 26, 2018 20 / 36



G3-list

It is proven by J.Schipper that the only a, b ∈ Q for which the
system for G3(a, b, x , y) is irreducible with finite monodromy is
given by the following cases

1 a + b ∈ Z and a, b 6∈ Z
2 a ≡ 1/2(mod Z), b ≡ 1/3, 2/3(mod Z) or vice versa.

The first case explicitly,

G3(a, 1− a, x , y) = f (x , y)a
√

g(x , y)

∆

where
∆ = 1 + 4x + 4y + 18xy − 27x2y2

and
xf 3 − y = f − f 2, g(g − 1− 3x)2 = x2∆
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Steps of the proof

The combinatorial condition is equivalent to the statement
that for almost all primes p the GKZ-system modulo p has a
maximal set of independent (over Fp[vp1 , . . . , v

p
N ]) polynomial

solutions in Fp[v1, . . . , vN ].
This is equivalent to the statement that the D-module
associated to the GKZ-system has vanishing p-curvature for
all almost all primes p.
A conjecture of Grothendieck asserts that vanishing
p-curvature for almost all p is equivalent to finite monodromy,
hence a solution space consisting of algebraic functions.
Grothendieck’s conjecture has been proven by N.Katz (1972)
in the case of systems of equation which are factors of
Gauss-Manin systems, i.e systems that are associated to
families of algebraic varieties.
Any GKZ-system with rational parameters ’comes from
algebraic geometry’.
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Monodromy computation

Solutions for the Gauss hypergeometric equation.
Solution base in |z | < 1:

f0 = 2F1

(
α,β
γ

∣∣∣ z)
f1 = z1−γ

2F1

(
1+α−γ,1+β−γ

2−γ

∣∣∣ z)
Solution base in |z | > 1 (locally around z =∞):

g0 = z−α 2F1

(
α,1+α−γ
1+α−β

∣∣∣ 1
z

)
g1 = z−β 2F1

(
β,1+β−γ
1+β−α

∣∣∣ 1
z

)
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Mellin-Barnes integrals

Define

M(z) =
1

2πi

∫ i∞

−i∞
Γ(−α + s)Γ(−β + s)Γ(1− γ − s)Γ(−s)zsds

where i =
√
−1. Converges whenever −2π < Arg(z) < 2π.

Theorem

When α, β > 0, γ < 1 this is solution of hypergeometric equation.
Moreover, different argument choices for z yield two independent
solutions.
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Transition matrices

Let z ∈ C \ R. Let M1(z) be the Mellin-Barnes integral with
Arg(z) ∈ (−2π, 0) and M2(z) with Arg(z) ∈ (0, 2π).
After analytic continuation along a loop counter clockwise around
0 we get M1(z)→ M2(z).
Let f1(z), z1−γf2(z) be basis of hypergeometric solutions around
z = 0 with f1, f2 analytic. There exist µ1, µ2 ∈ C such that

M1(z) = µ1f1(z) + µ2z
1−γf2(z).

After analytic continuation around z = 0,

M2(z) = µ1f1(z) + µ2e
2πi(1−γ)z1−γf2(z).

Note µ1, µ2 6= 0 and we can renormalize f1, f2 to get

M1(z) = f1(z) + z1−γf2(z)

M2(z) = f1(z) + cz1−γf2(z), c = e2πi(1−γ)
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Monodromy matrix at 0

Previously,

M1(z) = f1(z) + z1−γf2(z)

M2(z) = f1(z) + cz1−γf2(z), c = e2πi(1−γ)

So we have a transition matrix X0 between the bases M1,M2 and
f1, z

1−γf2, namely

X0 =

(
1 1
1 c

)
.

After closed loop around 0: f1 → f1 and z1−γf2 → cz1−γf2. Hence,(
M1(z)
M2(z)

)
→ X0

(
1 0
0 c

)
X−1

0

(
M1(z)
M2(z)

)
=

(
0 1
−c c + 1

)(
M1(z)
M2(z)

)
.
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Monodromy matrix at ∞

Letting z−αg1(1/z), z−βg2(1/z) be suitably normalized basis
around z =∞,

M1(z) = z−αg1(1/z) + z−βg2(1/z)

M2(z) = az−αg1(1/z) + bz−βg2(1/z), a = e−2πiα, b = e−2πiβ

Transition matrix

X∞ =

(
1 1
a b

)
.

After a closed loop around ∞: z−αg1 → az−αg1 and
z−βg2 → bz−βg2. Hence,(
M1(z)
M2(z)

)
→ X∞

(
a 0
0 b

)
X−1
∞

(
M1(z)
M2(z)

)
=

(
0 1
−ab a + b

)(
M1(z)
M2(z)

)
.

Finite monodromy Lecture 2 October 26, 2018 27 / 36



Riemann’s monodromy

With respect to the Mellin-Barnes basis of solutions M1,M2 the
monodromy group G of the Gauss hypergeometric equation is
generated by (

0 1
−c c + 1

) (
0 1
−ab a + b

)
where a = e−2πiα, b = e−2πiβ, c = e−2πiγ .
When α, β, γ ∈ R there is G -invariant Hermitian form

H =

(
c − ab a + b − (c + 1)

(a + b)c + ab(c + 1) c − ab

)
(i.e. gTHg = H for all g ∈ G ).
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Horn G3

Consider the Horn G3-function

G3(a, b, x , y) =
∑

m,n≥0

(a)2n−m(b)2m−n
m!n!

xmyn

We have

A =

(
−1 0 1 2
2 1 0 −1

)
(0,0)

(1,0)

(0,1)

(2,-1)

(-1,2)

A and C(A)
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The B-matrix of G3

Recall

A =

(
−1 0 1 2
2 1 0 −1

)
.

Lattice of relations is generated by the rows of

B =

(
1 1 −1 −1
0 1 −2 1

)
We call this matrix the B-matrix.
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The B-zonotope

Start with a set A ⊂ Zr and construct a B-matrix. The number of
rows is N − r which we denote by d (number of essential
variables). Denote its columns by b1,b2, . . . ,bN ∈ Rd . Define the
B-zonotope by

ZB =
{

1
4

∑N
j=1 λjbj ; −1 < λj < 1

}
Picture for G3,

-1.0 1.0

1.0

-1.0

Finite monodromy Lecture 2 October 26, 2018 31 / 36



Mellin-Barnes in general

Given an A-hypergeometric system A, α. Choose γ1, . . . , γN such
that

γ1a1 + · · ·+ γNaN = α

and define

M(v) =
1

(2πi)d

∫
iRd

N∏
j=1

Γ(−γj − bj · s)v
γj+bj ·s
j ds

where s = (s1, . . . , sd) and ds = ds1 ∧ · · · ∧ dsd .
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Convergence

Recall

M(v) =
1

(2πi)d

∫
iRd

N∏
j=1

Γ(−γj − bj · s)v
γj+bj ·s
j ds

Theorem

For j = 1, . . . ,N let θj be an argument choice for vj . Then the
integral for M(v) converges if

θ1

2π
b1 +

θ2

2π
b2 + · · ·+ θN

2π
bN ∈ ZB .

Moreover, if γj < 0 for all j , then M(v) is a solution of the
hypergeometric system A, α.
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Mellin-Barnes for G3

The Horn system has solution space of dimension 3. Consider the
B-zonotope

-1.0 1.0

1.0

-1.0

Notice we have a basis of Mellin-Barnes solutions.
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Questions, invariant form

Hypotheses underlying the monodromy calculation.

1 We need a Mellin-Barnes basis of solutions.

2 Is the global monodromy group generated by the local
contributions?

Theorem

Let M ⊂ GLD(C) be the monodromy group of an irreducible
A-hypergeometric system. Then there exists a non-trivial
Hermitean matrix H such that g tHg = H for all g ∈ M.
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Signature

Signature in the case G3. Take following triangulation of A, i.e.

{
(
−1

2

)
,

(
0

1

)
}, {

(
0

1

)
,

(
1

0

)
}, {

(
1

0

)
,

(
2

−1

)
}

Then write the parameter vector (−a,−b) as linear combination of
each of these pairs

a

(
−1

2

)
+(−b−2a)

(
0

1

)
, −b

(
0

1

)
−a
(

1

0

)
, (−a−2b)

(
1

0

)
+b

(
2

−1

)
.

Then the signs of
sinπa · sinπ(−b − 2a), sinπ(−a) · sinπ(−b), sinπ(−a− 2b) · sinπb
determine the signature.
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