Lecture 2

Frits Beukers

October 26, 2018

The A-polytope

Start with a finite subset $A \subset \mathbb{Z}^r \subset \mathbb{R}^r$. We assume

• The \mathbb{Z} -span of A is \mathbb{Z}^r

• There is a linear form h such that $h(\mathbf{a}) = 1$ for all $\mathbf{a} \in A$. Define a vector of parameters

 $\alpha = (\alpha_1, \ldots, \alpha_r) \in \mathbb{R}^r$

Remember:

The set A and the vector α will completely characterise a so-called A-hypergeometric system of differential equations.

Lattice of relations

Write $A = \{\mathbf{a}_1, \dots, \mathbf{a}_N\}$. The lattice of relations $L \subset \mathbb{Z}^N$ is formed by all $\mathbf{I} = (I_1, \dots, I_N) \in \mathbb{Z}^N$ such that

 $l_1\mathbf{a}_1+l_2\mathbf{a}_2+\cdots+l_N\mathbf{a}_N=\mathbf{0}.$

Let *h* be the form such that $h(\mathbf{a}_i) = 1$ for i = 1, ..., r. Apply *h* to any relation $l_1\mathbf{a}_1 + \cdots + l_N\mathbf{a}_N = \mathbf{0}$. Then we get $\sum_{i=1}^N l_i = 0$ for all $\mathbf{I} \in L$.

Formal A-hypergeometric series

Choose $\gamma_1, \ldots, \gamma_N$ such that

$$\alpha = \gamma_1 \mathbf{a}_1 + \dots + \gamma_N \mathbf{a}_N.$$

Note that $\gamma = (\gamma_1, \ldots, \gamma_N)$ is determined modulo $L \otimes \mathbb{R}$. Let v_1, \ldots, v_N be variables and consider

$$\Phi = \sum_{\mathbf{I} \in L} \frac{v_1^{I_1 + \gamma_1} \cdots v_N^{I_N + \gamma_N}}{\Gamma(I_1 + \gamma_1 + 1) \cdots \Gamma(I_N + \gamma_N + 1)}.$$

Power series solutions, Gauss' equation

Consider the set $A \subset \mathbb{Z}^3$ given by

 $a_1 = e_1, \quad a_2 = e_2, \quad a_3 = e_3, \quad a_4 = e_1 + e_2 - e_3$

and the parameter triple (-a, -b, c-1). Lattice of relations *L* is generated by (-1, -1, 1, 1). Choose $\gamma = (-a, -b, c-1, 0) + \tau(-1, -1, 1, 1)$ for some τ . We choose τ such that one of the components of γ vanishes. Let us take $\tau = 0$. Formal solution:

$$\Phi = \sum_{n \in \mathbb{Z}} \frac{v_1^{-n-a} v_2^{-n-b} v_3^{n+c-1} v_4^n}{\Gamma(-n-a+1)\Gamma(-n-b+1)\Gamma(n+c)\Gamma(n+1)}$$

Notice that $n \ge 0$. Standard identities for Γ yield

$$\Phi \sim v_1^{-a} v_2^{-b} v_3^{c-1} \sum_{n \ge 0} \frac{\Gamma(n+a)\Gamma(n+b)}{\Gamma(n+c)\Gamma(n+1)} \left(\frac{v_3 v_4}{v_1 v_2}\right)^n$$

This is $_2F_1\begin{pmatrix} a & b \\ c & c \end{pmatrix}$, when we put $v_1 = v_2 = v_3 = 1$, $v_4 = z$.

Power series, second solution at z = 0

Same example, but now $\tau = 1 - c$ so that $\gamma = (c - a - 1, c - b - 1, 0, 1 - c)$. We get

$$\Phi = \sum_{n \in \mathbb{Z}} \frac{v_1^{-n+c-a-1} v_2^{-n+c-b-1} v_3^n v_4^{n+1-c}}{\Gamma(-n+c-a)\Gamma(-n+c-b)\Gamma(n+1)\Gamma(n+2-c)}$$

Notice that $n \ge 0$. Standard identities for Γ yield

$$\Phi \sim v_1^{c-a-1} v_2^{c-b-1} v_4^{1-c} \sum_{n \ge 0} \frac{\Gamma(n+a+1-c)\Gamma(n+b+1-c)}{\Gamma(n+1)\Gamma(n+2-c)} \left(\frac{v_3 v_4}{v_1 v_2}\right)^n$$

This is
$$z^{1-c} {}_{2}F_{1} \left(\left. \begin{smallmatrix} a+1-c & b+1-c \\ 2-c \end{smallmatrix} \right| z \right)$$
, when we put $v_{1} = v_{2} = v_{3} = 1, v_{4} = z$.

Power series, solution at $z = \infty$

Same example, but now $\tau = a$ so that $\gamma = (0, a - b, c - a - 1, -a)$. We get

$$\Phi = \sum_{n \in \mathbb{Z}} \frac{v_1^{-n} v_2^{-n+a-b} v_3^{n+c-a-1} v_4^{n-a}}{\Gamma(-n+1)\Gamma(-n+a-b+1)\Gamma(n+c-a)\Gamma(n-a+1)}$$

Notice that $n \leq 0$. Replace $n \rightarrow -n$. Standard identities for Γ yield

$$\Phi \sim v_2^{a-b} v_3^{c-a-1} v_4^{-a} \sum_{n \ge 0} \frac{\Gamma(n+1+a-c)\Gamma(n+a)}{\Gamma(n+1)\Gamma(n+a-b+1)} \left(\frac{v_1 v_2}{v_3 v_4}\right)^n$$

This is
$$z^{-a} {}_2F_1\left(\left. \begin{array}{c} 1+a-c & a \\ a-b+1 \end{array} \right| \frac{1}{z} \right)$$
, when we put $v_1 = v_2 = v_3 = 1, v_4 = z$.

Appell F_1 again

Appell $F_1(\alpha, \beta, \beta', \gamma | x, y)$ is proportional to $\sum_{m,n \in \mathbb{Z}} \frac{x^m y^n}{\Gamma(-m-n+1-\alpha)\Gamma(-m+1-\beta)\Gamma(-n+1-\beta')\Gamma(m+n+\gamma)\Gamma(m+1)\Gamma(n+1)}$ The lattice L is spanned by rows of

$$\begin{pmatrix} -1 & -1 & 0 & 1 & 1 & 0 \ -1 & 0 & -1 & 1 & 0 & 1 \end{pmatrix}.$$

Denote *i*-th column by \mathbf{b}_i . We call this the *B*-matrix. Then solution becomes $\sum_{\mathbf{s}\in\mathbb{Z}^2} \frac{x^{\mathbf{b}_5\cdot\mathbf{s}}y^{\mathbf{b}_6\cdot\mathbf{s}}}{\Gamma(\mathbf{b}_1\cdot\mathbf{s}+1-\alpha)\Gamma(\mathbf{b}_2\cdot\mathbf{s}+1-\beta)\Gamma(\mathbf{b}_3\cdot\mathbf{s}+1-\beta')\Gamma(\mathbf{b}_4\cdot\mathbf{s}+\gamma)\Gamma(\mathbf{b}_5\cdot\mathbf{s}+1)\Gamma(\mathbf{b}_6\cdot\mathbf{s}+1)}$

Power series in general

In general: d := N - r (rank of *L*) and γ_i are fixed. We write formal solution as

$$\Phi_{\sigma} = \sum_{\mathbf{s} \in \mathbb{Z}^d} \prod_{i=1}^N \frac{v_i^{\mathbf{b}_i \cdot (\mathbf{s} + \sigma) + \gamma_i}}{\Gamma(\mathbf{b}_i \cdot (\mathbf{s} + \sigma) + \gamma_i + 1)},$$

where $\sigma \in \mathbb{R}^d$ is arbitary. Choose a subset $\mathscr{I} \subset \{1, 2, ..., N\}$ with $|\mathscr{I}| = d$ such that \mathbf{b}_i with $i \in \mathscr{I}$ are linearly independent. Then choose σ such that $\mathbf{b}_i \cdot \sigma + \gamma_i = 0$ for $i \in \mathscr{I}$. Then Φ_{σ} becomes Laurent series with support in $\mathbf{b}_i \cdot \mathbf{s} \ge 0$ for $i \in \mathscr{I}$.

An example, F_1

Recall that the rows of L are given by

$$\begin{pmatrix} -1 & -1 & 0 & 1 & 1 & 0 \\ -1 & 0 & -1 & 1 & 0 & 1 \end{pmatrix}.$$

Then Φ_{σ} equals sum over $\mathbf{s} \in \mathbb{Z}^2$ of

$$\frac{x^{\mathbf{b}_{5}.(\mathbf{s}+\sigma)}y^{\mathbf{b}_{6}.(\mathbf{s}+\sigma)}}{\Gamma(\mathbf{b}_{1}\cdot(\mathbf{s}+\sigma)+1-\alpha)\Gamma(\mathbf{b}_{2}\cdot(\mathbf{s}+\sigma)+1-\beta)\Gamma(\mathbf{b}_{3}\cdot(\mathbf{s}+\sigma)+1-\beta)} \times \frac{1}{\Gamma(\mathbf{b}_{4}\cdot(\mathbf{s}+\sigma)+\gamma)\Gamma(\mathbf{b}_{5}\cdot(\mathbf{s}+\sigma)+1)\Gamma(\mathbf{b}_{6}\cdot(\mathbf{s}+\sigma)+1)}.$$

Choose σ such that $\mathbf{b}_1 \cdot \sigma - \alpha = 0$ and $\mathbf{b}_2 \cdot \sigma - \beta = 0$. Explicitly, $-\sigma_1 - \sigma_2 = \alpha$ and $-\sigma_1 = \beta$. So $\sigma_1 = -\beta$ and $\sigma_2 = \beta - \alpha$.

F_1 continued

We get

$$\Phi_{1,2} = \sum_{s_1,s_2 \in \mathbb{Z}} \frac{x^{s_1 - \beta} y^{s_2 + \beta - \alpha}}{\Gamma(-s_1 - s_2 + 1)\Gamma(-s_1 + 1)\Gamma(-s_2 + 1 - \beta + \alpha - \beta')} \times \frac{1}{\Gamma(s_1 + s_2 + \gamma - \alpha)\Gamma(s_1 + 1 - \beta)\Gamma(s_2 + 1 + \beta - \alpha)}.$$

Laurent series with support $-s_1 - s_2 \ge 0, -s_1 \ge 0$. Setting $m = -s_1 - s_2, n = -s_1$ gives

$$\Phi_{1,2} = \sum_{m,n\geq 0} \frac{(y/x)^{n+\beta} y^{-(m+\alpha)}}{\Gamma(m+1)\Gamma(n+1)\Gamma(m-n+1-\beta+\alpha-\beta')} \times \frac{1}{\Gamma(-m+\gamma-\alpha)\Gamma(-n+1-\beta)\Gamma(n-m+1+\beta-\alpha)}.$$

Triangulations

For any subset J of $\{1, 2, ..., N\}$ we denote by Σ_J the convex hull of $\{a_j\}_{j \in J}$.

Definition

A triangulation of Q(A) is a subset

 $T \subset \{J \subset \{1, 2, \dots, N\} \mid |J| = r \text{ and } \operatorname{rank}(\Sigma_J) = r\}$

such that

- $Q(A) = \cup_{J \in T} \Sigma_J$
- for all $J, J' \in T$: $\Sigma_J \cap \Sigma_{J'} = \Sigma_{J \cap J'}$.

Basis of solutions

Theorem (GKZ)

Let T be a (regular) triangulation of Q(A). Then the Laurent series Φ_{J^c} with $J \subset T$ form a basis of solutions having a common domain of convergence.

Gauss' hypergeometric function with A-matrix

 $\begin{array}{ccccccccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}$

Triangulations of Q(A),

Algebraic Appell functions

Schwarz's list has been extended to Appell's functions in the following cases

- F₁ and higher generalisations (Lauricella F_D) by T.Sasaki (1977) and P.Cohen, J.Wolfart (1992)
- F₂ (and F₃) by Mitsuo Kato (2000)
- F₄ by Mitsuo Kato (1997)

Examples of algebraic Appell functions;

- $F_2(1/2, 5/6, 1/6, 2/3, 1/3, x, y)$ with Galois group of order 192.
- *F*₂(−1/10, 3/10, 1/10, 3/5, 1/5, *x*, *y*) with Galois group of order 14400.

Apexpoints

Let C(A) be the positive real cone spanned by the elements of A and $\alpha \in \mathbb{R}^r$. Consider the set

 $K(\alpha, A) := (\alpha + \mathbb{Z}^r) \cap C(A)$

A point $\mathbf{p} \in \mathcal{K}(\alpha, A)$ is called *apexpoint* if there is no $\mathbf{q} \in \mathcal{K}(\alpha, A)$, distinct from \mathbf{p} , such that $\mathbf{p} - \mathbf{q} \in C(A)$.

Maximal apexpoints

Lemma

The number of apexpoints in $K(\alpha, A)$ is at most equal to the volume of the convex hull of A.

We say that the number of apexpoints of $K(\alpha, A)$ is *maximal* if it equals this upper bound.

Algebraicity

Consider the A-hypergeometric system $H_A(\alpha)$ with $\alpha \in \mathbb{Q}^r$. Suppose the normality condition is satisfied and that the GKZ-system is irreducible.

Let *N* be the smallest positive integer such that $N\alpha \in \mathbb{Z}^r$.

Theorem (FB, 2006)

The GKZ-system has a solution space consisting of algebraic functions \iff the number of apex points in $(k\alpha + \mathbb{Z}^r) \cap C(A)$ is maximal for all integers k with gcd(k, N) = 1.

Remark: Using this criterion it is possible to extend Schwarz's list to all algebraic Lauricella functions and two variable Horn functions (E.Bod, 2009).

The Horn series G_3

Consider

$$G_3(a, b, x, y) = \sum_{m,n \ge 0} \frac{(a)_{2m-n}(b)_{2n-m}}{m! n!} x^m y^n$$

- · · ·				
Finit	e m	ono	drc	mv
		0110	aic	JIIIY

Apexpoints for G_3

Algebraic G_3

Let $\alpha \in \mathbb{Q}$ and choose $a = \alpha, b = 1 - \alpha$.

Let a = 1/2, b = 1/3and a = 1/2, b = 2/3.

G₃-list

It is proven by J.Schipper that the only $a, b \in \mathbb{Q}$ for which the system for $G_3(a, b, x, y)$ is irreducible with finite monodromy is given by the following cases

 $\bullet \ a+b\in \mathbb{Z} \text{ and } a,b \notin \mathbb{Z}$

2 $a \equiv 1/2 \pmod{\mathbb{Z}}, \quad b \equiv 1/3, 2/3 \pmod{\mathbb{Z}}$ or vice versa. The first case explicitly,

$$G_3(a, 1-a, x, y) = f(x, y)^a \sqrt{\frac{g(x, y)}{\Delta}}$$

where

$$\Delta = 1 + 4x + 4y + 18xy - 27x^2y^2$$

and

$$xf^3 - y = f - f^2$$
, $g(g - 1 - 3x)^2 = x^2 \Delta$

Steps of the proof

- The combinatorial condition is equivalent to the statement that for almost all primes p the GKZ-system modulo p has a maximal set of independent (over \(\mathbb{F}_p[v_1^p, \ldots, v_N^p]\)) polynomial solutions in \(\mathbb{F}_p[v_1, \ldots, v_N]\).
- This is equivalent to the statement that the *D*-module associated to the GKZ-system has vanishing *p*-curvature for all almost all primes *p*.
- A conjecture of Grothendieck asserts that vanishing *p*-curvature for almost all *p* is equivalent to finite monodromy, hence a solution space consisting of algebraic functions.
- Grothendieck's conjecture has been proven by N.Katz (1972) in the case of systems of equation which are factors of Gauss-Manin systems, i.e systems that are associated to families of algebraic varieties.
- Any GKZ-system with rational parameters 'comes from algebraic geometry'.

Monodromy computation

Solutions for the Gauss hypergeometric equation. Solution base in $\left|z\right|<1$:

•
$$f_0 = {}_2F_1\left(\left. \begin{array}{c} \alpha, \beta \\ \gamma \end{array} \right| z \right)$$

• $f_1 = z^{1-\gamma} {}_2F_1\left(\left. \begin{array}{c} 1+\alpha-\gamma, 1+\beta-\gamma \\ 2-\gamma \end{array} \right| z \right)$

Solution base in |z| > 1 (locally around $z = \infty$):

•
$$g_0 = z^{-\alpha} {}_2F_1 \left(\begin{array}{c} \alpha, 1+\alpha-\gamma \\ 1+\alpha-\beta \end{array} \middle| \frac{1}{z} \right)$$

• $g_1 = z^{-\beta} {}_2F_1 \left(\begin{array}{c} \beta, 1+\beta-\gamma \\ 1+\beta-\alpha \end{array} \middle| \frac{1}{z} \right)$

Mellin-Barnes integrals

Define

$$M(z) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \Gamma(-\alpha + s) \Gamma(-\beta + s) \Gamma(1 - \gamma - s) \Gamma(-s) z^s ds$$

where $i = \sqrt{-1}$. Converges whenever $-2\pi < \text{Arg}(z) < 2\pi$.

Theorem

When $\alpha, \beta > 0, \gamma < 1$ this is solution of hypergeometric equation. Moreover, different argument choices for z yield two independent solutions.

Transition matrices

Let $z \in \mathbb{C} \setminus \mathbb{R}$. Let $M_1(z)$ be the Mellin-Barnes integral with $\operatorname{Arg}(z) \in (-2\pi, 0)$ and $M_2(z)$ with $\operatorname{Arg}(z) \in (0, 2\pi)$. After analytic continuation along a loop counter clockwise around 0 we get $M_1(z) \to M_2(z)$. Let $f_1(z), z^{1-\gamma} f_2(z)$ be basis of hypergeometric solutions around

z = 0 with f_1, f_2 analytic. There exist $\mu_1, \mu_2 \in \mathbb{C}$ such that

$$M_1(z) = \mu_1 f_1(z) + \mu_2 z^{1-\gamma} f_2(z).$$

After analytic continuation around z = 0,

$$M_2(z) = \mu_1 f_1(z) + \mu_2 e^{2\pi i (1-\gamma)} z^{1-\gamma} f_2(z).$$

Note $\mu_1, \mu_2 \neq 0$ and we can renormalize f_1, f_2 to get

$$\begin{array}{lll} M_1(z) &=& f_1(z) + z^{1-\gamma} f_2(z) \\ M_2(z) &=& f_1(z) + c z^{1-\gamma} f_2(z), \ c = e^{2\pi i (1-\gamma)} \end{array}$$

Monodromy matrix at 0

Previously,

$$\begin{aligned} M_1(z) &= f_1(z) + z^{1-\gamma} f_2(z) \\ M_2(z) &= f_1(z) + c z^{1-\gamma} f_2(z), \ c = e^{2\pi i (1-\gamma)} \end{aligned}$$

So we have a transition matrix X_0 between the bases M_1, M_2 and $f_1, z^{1-\gamma} f_2$, namely

$$X_0 = egin{pmatrix} 1 & 1 \ 1 & c \end{pmatrix}.$$

After closed loop around 0: $f_1 \rightarrow f_1$ and $z^{1-\gamma}f_2 \rightarrow cz^{1-\gamma}f_2$. Hence,

$$\begin{pmatrix} M_1(z) \\ M_2(z) \end{pmatrix} o X_0 \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} X_0^{-1} \begin{pmatrix} M_1(z) \\ M_2(z) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -c & c+1 \end{pmatrix} \begin{pmatrix} M1(z) \\ M_2(z) \end{pmatrix}.$$

Monodromy matrix at ∞

Letting $z^{-\alpha}g_1(1/z), z^{-\beta}g_2(1/z)$ be suitably normalized basis around $z = \infty$,

$$\begin{array}{lll} M_1(z) &=& z^{-\alpha}g_1(1/z)+z^{-\beta}g_2(1/z)\\ M_2(z) &=& az^{-\alpha}g_1(1/z)+bz^{-\beta}g_2(1/z), \ a=e^{-2\pi i\alpha}, b=e^{-2\pi i\beta} \end{array}$$

Transition matrix

$$X_{\infty} = \begin{pmatrix} 1 & 1 \\ a & b \end{pmatrix}.$$

After a closed loop around $\infty: z^{-\alpha}g_1 \to az^{-\alpha}g_1$ and $z^{-\beta}g_2 \to bz^{-\beta}g_2$. Hence,

$$egin{pmatrix} M1(z)\ M_2(z) \end{pmatrix} o X_\infty egin{pmatrix} a & 0\ 0 & b \end{pmatrix} X_\infty^{-1} egin{pmatrix} M1(z)\ M_2(z) \end{pmatrix} = egin{pmatrix} 0 & 1\ -ab & a+b \end{pmatrix} egin{pmatrix} M1(z)\ M_2(z) \end{pmatrix}.$$

Riemann's monodromy

With respect to the Mellin-Barnes basis of solutions M_1 , M_2 the monodromy group G of the Gauss hypergeometric equation is generated by

$$\begin{pmatrix} 0 & 1 \\ -c & c+1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ -ab & a+b \end{pmatrix}$$

where $a = e^{-2\pi i \alpha}$, $b = e^{-2\pi i \beta}$, $c = e^{-2\pi i \gamma}$. When $\alpha, \beta, \gamma \in \mathbb{R}$ there is *G*-invariant Hermitian form

$$H = \begin{pmatrix} c - ab & a + b - (c + 1) \\ (a + b)c + ab(c + 1) & c - ab \end{pmatrix}$$

(i.e. $\overline{g}^T Hg = H$ for all $g \in G$).

Horn G_3

Consider the Horn G_3 -function

$$G_{3}(a, b, x, y) = \sum_{m,n \ge 0} \frac{(a)_{2n-m}(b)_{2m-n}}{m! n!} x^{m} y^{n}$$

We have

October 26, 2018 29 / 36

The B-matrix of G_3

Recall

$$A = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 2 & 1 & 0 & -1 \end{pmatrix}.$$

Lattice of relations is generated by the rows of

$$B = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & -2 & 1 \end{pmatrix}$$

We call this matrix the *B*-matrix.

The B-zonotope

Start with a set $A \subset \mathbb{Z}^r$ and construct a B-matrix. The number of rows is N - r which we denote by d (number of essential variables). Denote its columns by $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_N \in \mathbb{R}^d$. Define the *B-zonotope* by

$$Z_B = \left\{ \frac{1}{4} \sum_{j=1}^N \lambda_j \mathbf{b}_j \quad ; \quad -1 < \lambda_j < 1 \right\}$$

Picture for G_3 ,

Mellin-Barnes in general

Given an A-hypergeometric system $A, \alpha.$ Choose $\gamma_1, \ldots, \gamma_N$ such that

 $\gamma_1 \mathbf{a}_1 + \dots + \gamma_N \mathbf{a}_N = \alpha$

and define

$$M(\mathbf{v}) = \frac{1}{(2\pi i)^d} \int_{i\mathbb{R}^d} \prod_{j=1}^N \Gamma(-\gamma_j - \mathbf{b}_j \cdot \mathbf{s}) v_j^{\gamma_j + \mathbf{b}_j \cdot \mathbf{s}} d\mathbf{s}$$

where $\mathbf{s} = (s_1, \ldots, s_d)$ and $d\mathbf{s} = ds_1 \wedge \cdots \wedge ds_d$.

Convergence

Recall

$$M(\mathbf{v}) = \frac{1}{(2\pi i)^d} \int_{i\mathbb{R}^d} \prod_{j=1}^N \Gamma(-\gamma_j - \mathbf{b}_j \cdot \mathbf{s}) v_j^{\gamma_j + \mathbf{b}_j \cdot \mathbf{s}} d\mathbf{s}$$

Theorem

For j = 1, ..., N let θ_j be an argument choice for v_j . Then the integral for $M(\mathbf{v})$ converges if

$$\frac{\theta_1}{2\pi}\mathbf{b}_1 + \frac{\theta_2}{2\pi}\mathbf{b}_2 + \dots + \frac{\theta_N}{2\pi}\mathbf{b}_N \in Z_B.$$

Moreover, if $\gamma_j < 0$ for all *j*, then $M(\mathbf{v})$ is a solution of the hypergeometric system A, α .

Mellin-Barnes for G_3

The Horn system has solution space of dimension 3. Consider the B-zonotope

Notice we have a basis of Mellin-Barnes solutions.

Questions, invariant form

Hypotheses underlying the monodromy calculation.

- We need a Mellin-Barnes basis of solutions.
- Is the global monodromy group generated by the local contributions?

Theorem

Let $M \subset GL_D(\mathbb{C})$ be the monodromy group of an irreducible A-hypergeometric system. Then there exists a non-trivial Hermitean matrix H such that $\overline{g}^t Hg = H$ for all $g \in M$.

Signature

Signature in the case G_3 . Take following triangulation of A, i.e.

$$\left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}$$

Then write the parameter vector (-a, -b) as linear combination of each of these pairs

$$a \begin{pmatrix} -1 \\ 2 \end{pmatrix} + (-b-2a) \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ -b \begin{pmatrix} 0 \\ 1 \end{pmatrix} - a \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ (-a-2b) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Then the signs of $\sin \pi a \cdot \sin \pi (-b - 2a)$, $\sin \pi (-a) \cdot \sin \pi (-b)$, $\sin \pi (-a - 2b) \cdot \sin \pi b$ determine the signature.