FLEXIBILITY OF TORIC AFFINE VARIETIES

MIKHAIL ZAIDENBERG

1. FLEXIBLE VARIETIES

1.1. **DEFINITIONS.**

- We work over a base field $\mathbb{k} = \overline{\mathbb{k}}$, $\operatorname{char}(\mathbb{k}) = 0$ (e.g., $\mathbb{k} = \mathbb{C}$).
- X is an affine algebraic variety of dimension ≥ 2 .
- $x \in X_{\text{reg}}$ is *FLEXIBLE* if $T_x X$ is spanned by tangent vectors to the orbits U.x where $U \subseteq \text{Aut}(X)$, $U \cong \mathbb{G}_a$, is a one-parameter unipotent subgroup.
- X is **FLEXIBLE** if any smooth point $x \in X_{reg}$ is.
- The SPECIAL AUTOMORPHISM GROUP is

$$\operatorname{SAut}(X) := \langle U | U \subset \operatorname{Aut}(X) \rangle.$$

1.2. FIRST EXAMPLES.

- $SAut(\mathbb{A}^n) \supset Transl(\mathbb{A}^n)$, hence $X = \mathbb{A}^n$ with $n \ge 2$ is flexible.
- SAut(A¹) = Transl(A¹) ⊆ Aff(A¹) is an algebraic group acting transitively, but not 2-transitively on A¹.
- In contrast, $SAut(\mathbb{A}^n)$ for $n \ge 2$ is a non-algebraic group. Indeed, it is ∞ -*TRANSITIVE* on \mathbb{A}^n , i.e. *m*-transitive $\forall m \ge 1$.
- For instance, SAut(A²) contains the *shears* (elementary transformations)

$$(x, y) \mapsto (x, y + P(x)), \quad P \in \mathbb{k}[x].$$

• $SAut(\mathbb{A}^2) = JAut(\mathbb{A}^2)$ where

$$\operatorname{JAut}(\mathbb{A}^2) := \{ f \in \operatorname{Aut}(\mathbb{A}^2) \, | \, \operatorname{Jac}(f) = 1 \}.$$

- $\forall n \geq 3$ one has $SAut(\mathbb{A}^n) \subset JAut(\mathbb{A}^n)$. However, it is unknown whether the equality holds.
- If X_{reg} carries an algebraic volume form ω , that is, if $K_{X_{\text{reg}}}$ is trivial, then SAut(X) preserves ω , that is, $\text{SAut}(X) \subset \text{JAut}(X)$.

1.3. FIRST RESULTS.

THEOREM (AFKKZ '13)

The following are equivalent:

- X is flexible;
- SAut(X) is transitive in X_{reg} ;
- SAut(X) is ∞ -transitive in X_{reg} .

REMARK

- An algebraic group G cannot act ∞ -transitively.
- (A. Borel F. Knop) G cannot act 3-transitively on an affine X.

THEOREM (Gromov-Winkelmann for $X = \mathbb{A}^n$; **FKZ '16)** If $Y \subset X$ is a closed subset of $\operatorname{codim}_X Y \ge 2$ then $\operatorname{Stab}_{\operatorname{SAut}(X)}(Y)$ acts ∞ -transitively in $X_{\operatorname{reg}} \setminus Y$.

1.4. FLEXIBILITY OF SUSPENSIONS.

DEFINITION

A SUSPENSION X over Y is a hypersurface in $Y \times \mathbb{A}^2$ given by

$$uv - f(y) = 0, \quad f \in \mathcal{O}_Y(Y), \quad f \neq \text{cst.}$$

THEOREM (KZ '99, AKZ '12)

If Y is flexible then $X = \text{Susp}_f(Y)$ is.

THEOREM (AFKKZ '13) X *flexible* \Rightarrow $(TX)^{\otimes m} \otimes (T^*X)^{\otimes n}$ *is* $\forall m, n$.

1.5. FLEXIBILITY OF ORBITS.

THEOREM

- Any SAut(X)-orbit O with $\dim O \ge 2$ is a flexible quasi-affine variety.
- An open orbit O (if any) consists of all flexible points in X_{reg}, and SAut(X) is ∞-transitive in O.

HINT: O is locally closed in X (Ramanujam).

ROSENLICHT THEOREM ON INVARIANTS $\exists f_1, \ldots, f_m \in \mathcal{O}_X(X)^{\mathrm{SAut}(X)}$ separating general $\mathrm{SAut}(X)$ -orbits.

1.6. FLEXIBILITY OF HOMOGENEOUS VARIETIES.

THEOREM (AFKKZ '13)

Let G be an algebraic group without characters, i.e. $G^{\vee} = \{1\}$. If G/H is affine with dim $G/H \ge 2$ then G/H is flexible.

REMARK

 $G^{\vee} = \{1\}$ if G is unipotent, or semisimple, or an extention of one by another.

THEOREM (AKZ '12)

Let G/P be a flag variety, and let $G/P \hookrightarrow \mathbb{P}^n$ be an equivariant embedding. Then $X = \operatorname{AffCone}(G/P)$ is flexible.

1.7. FLEXIBILITY OF QUASIHOMOGENEOUS VARIETIES.

THEOREM (AKZ '12)

Any non-degenerate toric affine variety is flexible.

THEOREM (AFKKZ '13)

Let G be semisimple, and let X be a smooth G-variety. If G acts on X with an open orbit then X is flexible.

HINT: $\exists \tilde{G} \supseteq G$ s.t. $\tilde{G}^{\vee} = \{1\}$ and $\tilde{G} : X$ is transitive (Luna's Étale Slice Theorem).

1.8. FLEXIBLE NON-HOMOGENEOUS VARIETIES: EXAMPLE.

Consider a smooth del Pezzo surface Y_d of degree $d \in \{1, \ldots, 9\}$ and a pluri-anticanonical embedding $Y_d \hookrightarrow \mathbb{P}^n$. Then Y_d is a toric affine 3-fold for $6 \le d \le 9$, while $\operatorname{Aut}(Y_d)$ is finite for $d \le 5$.

THEOREM (KPZ '14, Perepechko '13, Cheltsov-Park-Won '14-'15) Let $X_d = \operatorname{AffCone}(Y_d) \subseteq \mathbb{A}^{n+1}$.

- X_d is flexible $\Leftrightarrow d \ge 4$.
- For $d \leq 3$, X_d does not admit any effective \mathbb{G}_a -action.

1.9. LNDs.

DEFINITION

Let $A = \mathcal{O}_X(X)$ be an affine algebra. A *LOCALLY NILPOTENT DERIVATION* (LND, for short) on A is a derivation $\partial \in \text{Der } A$ such that

$$\forall a \in A \ \exists n \in \mathbb{N} : \partial^n(a) = 0.$$

The associated one parameter unipotent subgroup with infinite simal generator ∂ is

$$U = \exp(\mathbb{k}\partial) \subseteq \mathrm{SAut}(A).$$

The element $h_t \in U, t \in \mathbb{G}_a$ acts on A via

$$h_t(a) = \sum_{k=0}^{\infty} \frac{1}{k!} t^k \partial^{(k)}(a), \ a \in A.$$

1.10. **REPLICAS.**

DEFINITION

A **REPLICA** of ∂ is a derivation $f \partial \in \text{LND}(A)$ where $f \in A^U = \ker \partial$. The associated one parameter unipotent subgroup $U_f = \exp(\Bbbk f \partial)$ is also called a **REPLICA** of U.

EXAMPLE (NAGATA AUTOMORPHISM) Set

$$X = \mathbb{A}^3 = \operatorname{Spec} \mathbb{k}[X, Y, Z]$$
$$\partial = X \frac{\partial}{\partial Y} + Y \frac{\partial}{\partial Z}$$
$$f = Y^2 - 2XZ \in \ker \partial$$

THEOREM ("Nagata Conjecture", Shestakov and Umirbaev '04)

The replica $\exp(f\partial) \in SAut(\mathbb{A}^3)$ is wild, that is, it is not a product of affine and triangular transformations.

References

- [AFKKZ13] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg. Flexible varieties and automorphism groups. Duke Math. J., 162(4):767–823, 2013.
- [AKZ12] I. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg. Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity. Sb. Math., 203(7):3–30, 2012.
- [FKZ16] H. Flenner, S. Kaliman, and M. Zaidenberg. The Gromov–Winkelmann theorem for flexible varieties. J. Eur. Math. Soc. 18(11):2483–2510, 2016.
- [KZ99] S. Kaliman and M. Zaidenberg. Affine modifications and affine varieties with a very transitive automorphism group. *Transform. Groups* 4:53–95, 1999.
- [KPZ14] T. Kishimoto, Yu. Prokhorov, and M. Zaidenberg. Unipotent Group Actions On Del Pezzo Cones. Algebraic Geometry (Foundation Compositio Math.) 1:46–56, 2014.