
FLEXIBILITY OF TORIC AFFINE VARIETIES II

MIKHAIL ZAIDENBERG

1. FLEXIBILITY CRITERIA

We fix an affine variety X = Spec (A) of dimX = n ≥ 2 over a
field k = k̄ with chark = 0.

1.1. NON-ALGEBRAICITY OF THE AUTOMORPHISMGROUP.

REMARK
If there exists ∂ ∈ LND(A) \ {0} then

exp ((ker ∂)∂) ⊂ SAut(X)

is an infinite-dimensional unipotent Abelian subgroup. Indeed,

tr.deg [A : ker ∂] = 1.

CONJECTURE
If LND(A) = {0} then Aut0 (X) is an algebraic torus Gk

m of dimen-
sion k ≤ dim X.

True if dimX = 2 (Perepechko-Z., unpublished).

1.2. FINITENESS CONJECTURE.
DEFINITION
X is called GENERICALLY FLEXIBLE if SAut (X) acts on X with
an open orbit OX and is infinitely transitive on OX.
CONJECTURE
Any generically flexible affine variety X admits a finite collection
of Ga-subgroups H1, . . . , HN of Aut(X) such that the group G =
〈H1, . . . , HN〉 acts on X with an open orbit OG and is infinitely tran-
sitive on OG.

REMARK
The conjecture is true if one replaces ‘finite’ by ‘countable’ (AKZ
′18).
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1.3. MAIN RESULTS.
THEOREM 1
For any toric affine variety X of dimension at least 2 with no toric
factor and smooth in codimention 2 one can find a finite collection
of Ga-subgroups H1, . . . , Hk such that the group G = 〈H1, . . . , Hk〉 acts
infinitely transitively in the smooth locus reg (X).
THEOREM 2
For any n ≥ 2 one can find Ga-subgroups H1, H2, H3 ⊂ Aut(An) s.t.
G = 〈H1, H2, H3〉 acts infinitely transitively on An.

1.4. GENERIC FLEXIBILITY: A CRITERION.
The next is a refined version of a result from AFKKZ ′13.

THEOREM 0
Let a set ∂1, . . . , ∂k ∈ LND(X) contains n linearly independent deriva-
tions ∂1, . . . , ∂n. Let also Ai ⊂ ker ∂i, i = 1, . . . , k, be a finitely gen-
erated subalgebra such that [Frac (Ai) : Frac (ker ∂i)] < +∞. Assume
one of the following holds:

(α) OX(X) is generated by A1, . . . , Ak;
(β) [Frac (ker ∂1) : Frac (A1)] = 1;
(γ) [Frac (ker ∂i) : Frac (Ai)] > 1 ∀i and there is an extra element

b1 ∈ ker ∂1 such that Frac (ker ∂1) is generated by b1 and Frac (A1).
Let G be the subgroup of SAut(X) generated by H0 = exp(kb1∂1)

and Hi(ai) = exp(kai∂i), ai ∈ Ai, i = 1, . . . , k . Then G acts on X with
an open orbit OG and the action of G on OG is infinitely transitive.

1.5. ORBITS OF THE CLOSURE OF A SUBGROUP.
LEMMA

(a) The closure G of a subgroup G ⊂ Aut(X) is a closed ind-
subgroup of Aut(X).

(b) If ρ : A1 → Aut(X) is a morphism such that ρ(t) ∈ G for t 6= 0
then ρ(0) ∈ G.

(c) Any G-invariant closed subset Y ⊂ X is G-invariant.
(d) If G acts on X with an open orbit OG then OG coincides with

the open orbit OG of G.
(e) If a normal subgroup G ⊂ Aut(X) acts on X with an open

orbit OG then OG = OAut(X).
DEFINITION
Let G ⊂ Aut(X) be subgroup. It is called ALGEBRAICALLY
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GENERATED if it is generated by a family of connected algebraic
subgroups of Aut(X). The orbits of G are locally closed subsets of
X (AFKKZ ′13).
PROPOSITION
Let G ⊂ Aut(X) be an algebraically generated subgroup. Then the
following hold.

(a) The orbits of G and of G in X are the same. In particular, if
G acts on X with an open orbit OG then G does and OG = OG.

(b) If G acts m-transitively on OG then also G does.
(c) If G acts infinitely transitively on OG then also G does.

2. TORIC AFFINE VARIETIES

Fix the following objects:
• M – a lattice of rank n ≥ 2;
• MQ = M ⊗Q – a vector space over Q of dimension n;
• σ∨ ⊂ MQ – a rational convex cone with a nonempty interior
(called the WEIGHT CONE);
• a base of M ;
• ∀m = (m1, . . . ,mn) ∈M the Laurent monomial χm = xm1

1 . . . xmn
n ;

• the graded affine algebra

A =
⊕

m∈M∩σ∨
kχm;

• the toric affine variety X = SpecA, dim X = n, where
• the action of the n-torus T = Gn

m on X is defined by the
grading.

REMARKS
• T = Hom (M,Gm) is the torus of characters of M .
• By duality, M is the character lattice of T.
• In fact, any toric affine variety arises in this way.

2.1. DUAL CONE. Consider also the following associated objects:

• the dual lattice N = Hom (M,Z);
• the dual cone

σ ⊂ NQ, σ = {x ∈ NQ | 〈x, y〉 ≥ 0 ∀y ∈ σ∨};

• the set Ξ = {ρ1, . . . , ρk} of RAY GENERATORS of σ, that is,
the primitive lattice vectors on the extremal rays of σ.
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LEMMA TFAE:

• σ∨ is a pointed cone, that is, σ∨ contains no line;
• σ is of full dimension, that is, Ξ contains a basis of NQ;
• X has no toric factor, that is, X cannot be decomposed into
a product Gm × Y where Y is another toric variety.

CONVENTION

Assume in the sequel that the conidions of the lemma are fulfilled.

2.2. DEMAZURE ROOTS AND DEMAZURE FACETS.

DEFINITIONS
A DEMAZURE ROOT belonging to a primitive ray generator

ρi ∈ Ξ is a vector e ∈M such that
(i) 〈ρi, e〉 = −1;
(ii) 〈ρj, e〉 > 0 ∀j 6= i.

The DEMAZURE FACET Si of σ∨ is the rational convex poly-
hedron defined by inequalities (ii) in the affine hyperplane

Hi = {〈ρi, e〉 = −1}.

Thus, the Demazure roots which belong to the ray generator
ρi ∈ Ξ are the points in Si ∩M .
The ROOT SUBGROUP associated with a Demazure root e ∈ Si

is

He = exp(k∂ρi,e) ⊂ SAut(X),

see the formula for ∂ρi,e below.

2.3. HOMOGENEOUS DERIVATIONS.

DEFINITION
A derivation ∂ ∈ Der (A) is called homogeneous if ∂ respects the
grading, that is, sends any graded piece to another one.

Given ρ ∈ N , e ∈M , let

∂ρ,e(χ
m) := 〈ρ,m〉χm+e ∀m ∈M .

Then ∂ρ,e extends to a homogeneous derivation of A;
the lattice vector e ∈M is called the DEGREE of ∂ρ,e.
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2.4. HOMOGENEOUS LNDs.

LEMMA (Liendo ′10)
• If ∂ ∈ Der (A) is homogeneous then ∂ = λ∂ρ,e for some λ ∈ k,
ρ ∈ N , and e ∈ Σ∨ ∩M where

Σ∨ = σ∨ ∪
k⋃
i=1

Si .

If e ∈ Si ∩M then ρ = ρi;
• ∂ρ,e ∈ LND (A)⇔ e ∈ Si and ρ = ρi for some i ∈ {1, . . . , k};
• ker(∂ρ,e) = span (χm |m ∈ τρ) where

τρ = {m ∈ σ∨ ∩M | 〈ρ,m〉 = 0};

• τρi =: τi is the facet of σ∨ parallel to Si.

2.5. GRADING ON Der (A).

LEMMA (Liendo ′10)
• Any derivation ∂ ∈ Der (A) admits a decomposition

∂ =
∑

e∈Σ∨∩M

∂e

where ∂e is a homogeneous derivation of degree e.
• The set {e ∈ Σ∨ ∩M |∂e 6= 0} is finite. Its convex hull N(∂) is
called the NEWTON POLYTOPE of ∂.
• Let ∂ ∈ LND (A). Then for any face τ of N(∂) one has

∂τ :=
∑

e∈τ∩M

∂e ∈ LND (A) .

In particular, for any vertex e of N(∂) one has ∂e ∈ LND (A).

2.6. REPLICAS OF HOMOGENEOUS LNDs.

LEMMA
• The semigroup Si ∩M is a finitely generated (τi ∩M)-module.
• For any e′ ∈ τi ∩M one has

χe
′
∂ρi,e = ∂ρi,e+e′ ∈ LND (A) .
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2.7. COMMUTATORS OF HOMOGENEOUS LNDs.
LEMMA (Romaskevich ′14)
• Let ∂ = ∂ρ,e and ∂′ = ∂ρ′,e′. Then [∂, ∂′] = ∂ρ̂,ê where

ρ̂ = 〈ρ, e′〉ρ′ − 〈ρ′, e〉ρ ∈ N and ê = e+ e′ ∈M .

• If ρ̂ 6= 0 then deg ([∂, ∂′]) = e+ e′ ∈ Σ∨ ∩M .
• ∂ and ∂′ commute, that is, ρ̂ = 0 if and only if one of the
following holds:
– ρ and ρ′ are collinear and 〈ρ, e〉 = 〈ρ, e′〉 (this holds, in
particular, if e, e′ ∈ Si for some i ∈ {1, . . . , k});

– ρ and ρ′ are non-collinear and 〈ρ′, e〉 = 〈ρ, e′〉 = 0.

LEMMA Der (A) =
⊕

e∈Σ∨∩M Le is a graded Lie algebra, where Le
is the span of all the homogeneous derivations of A of degree e.

2.8. ITERATED COMMUTATORS.
LEMMA (Manetti ′12)
• Given U = ∂1 and V = ∂2 ∈ Der (A) consider

admU (V ) = [U, [U, . . . [U, V ] . . .]]

where U is repeated m times. Then admU ∈ End (Der (A)) and

admU (V ) =
m∑
i=0

(
m

i

)
∂m−i1 ∂2(−∂1)

i.

• Let U ∈ LND(A). Then adU ∈ End (Der (A)) is locally nilpotent,
that is, for any V ∈ Der (A),

admU (V ) = 0 ∀m� 1;

• (a version of the Baker-Campbell-Hausdorff formula)

Adexp(U)(V ) = exp(adU)(V ) =

N(U)∑
m=0

1

m!
admU (V ) ∈ LND(A) .

2.9. NEWTON POLYTOPE OF A CONJUGATE LND.
LEMMA Let U = ∂ρ1,e1 and V = ∂ρ2,e2 ∈ LND (A)
where ei ∈ Si ∩M , i = 1, 2. Let also

c2 = 〈ρ2, e1〉, d1 = 〈ρ1, e2〉, and δ = d1 + 1.

• Assume that c2 ≥ 1. Then

admU (V ) = ∂rm,e2+me1 ∀m = 0, . . . , d1.
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• If d1 ≥ 0 then

admU (V ) = 0 ∀m ≥ δ + 1

and
adδU(V ) = −c2δ!∂ρ1,e2+δe1 ∈ LND(A)

where
e2 + δe1 ∈ S1 ∩M.

• If ∂ = Adexp(U)(V ) then N(∂) = [e2, e2 + δe1].

2.10. ROOT SUBGROUPS IN THE CLOSURE.
LEMMA Consider a subgroup G ⊂ Aut(X) normalized by the torus
T. Let ∂ ∈ LND (A) be s.t. H = exp(k∂) ⊂ G. Then any vertex e of
the Newton polytope N(∂) belongs to some Demazure facet Si, and
the root subgroup He is contained in G.
LEMMA
Consider two roots ei ∈ Si ∩M , i = 1, 2. Let δ = 〈ρ1, e2〉+ 1. Suppose
that δe1 + e2 ∈ S1, that is, 〈ρ2, e1〉 ≥ 1. Then Hδe1+e2 ⊂ 〈He1, He2〉 .
Remind our

THEOREM 2
For any n ≥ 2 one can find Ga-subgroups U1, U2, U3 ⊂ SAut(An) such
that

G = 〈U1, U2, U3〉 ⊂ SAut(An)

acts infinitely transitively on An.
LEMMA (Chistopolskaya ′18)
For any nilpotent x ∈ sl(n,k) there exists a nilpotent y ∈ sl(n,k)
such that sl(n,k) = lie 〈x, y〉.
HINT OF THE PROOF:

Assume n ≥ 3; the case n = 2 is left as an exercise. Consider the
root vectors

e1 = (−1, 0, . . . , 0) ∈ S1, e2 = (0,−1, 0, . . . , 0) ∈ S2,

and
u = (−1, 2, 0, . . . , 0) ∈ S1.

By the lemma preceding the theorem one has

Hu+e2 = He1−e2 = exp(kx) ⊂ 〈Hu, He2〉 ∩ SL(n,k)
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where x ∈ sl(n,k) is the nilpotent generator of He1−e2 = Ux = exp(kx).
Let y ∈ sl(n,k) be a nilpotent matrix such that sl(n,k) = lie 〈x, y〉.
It follows that

SL(n,k) = 〈Ux, Uy〉 where Uy = exp(ky).

By virtue of the inclusion above one has

SAffn = 〈Ux, Uy, He2〉 ⊂ 〈Uy, He2, Hu〉

where Hu 6⊂ Affn.
Let G = 〈Uy, He2, Hu〉. One shows that the subgroup 〈SAffn, Hu〉 ⊂

G acts infinitely transitively on An. Hence G does. Then the same
holds for G. �

REMARK
Andrist ′18 has found, for any n ≥ 2, three explicit locally nilpo-
tent derivations (vector fields) x, y, z on An such that the group
〈Ux, Uy, Uz〉 acts infinitely transitively on An.

2.11. SMOOTHNESS IN CODIMENSION 2.
DEFINITION
We say that X is SMOOTH IN CODIMENSION 2 if the singular
locus of X has codimension ≥ 3 in X.
LEMMA
A toric affine variety X is smooth in codimension 2 if and only
if, for any two-dimensional face τ of the cone σX ⊂ NQ, the ray
generators (ρi, ρj) of τ can be included in a base of the lattice N .

2.12. INFINITE TRANSITIVITY ON TORIC VARIETIES.
Recall our

THEOREM 1
Let X be a toric affine variety of dimension n ≥ 2 with no toric fac-
tor and smooth in codimension 2. Then one can find root subgroups
H1, . . . , HN such that the group G = 〈H1, . . . , HN〉 acts infinitely tran-
sitively in the regular locus reg(X).
HINT OF THE PROOF:
If n = 2 then X is smooth, hence X ∼= A2. Suppose n ≥ 3.
We use the Cox ring construction. It replaces our initial toric

variety X by the spectrum Cox(X) of its Cox ring, which is just the
polynomial ring in k variables. The linear forms ρ1, . . . , ρk ∈ Ξ define
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the TOTAL COORDINATES on Ak = Cox(X). The procedure now
is very similar to the one in the case of the affine space.
One can find a finite collection of root subgroups H1, . . . , Hr such

that the group generated by H1, . . . , Hr acts transitively in reg (X)
(AFKKZ ′13). To get infinite transitivity we need to enlarge this
collection.
Assume that [ρ1, ρ2] and [ρ1, ρ3] are incident faces of σ. Using the

assumption of smoothness in codimension 2 one constructs
• a cone ω ⊂ τ1 of dimension n−1 with ray generators v1, . . . , vn−1;
• the submonoid M1 = Z≥0v1 + . . .+ Z≥0vn−1 of ω of rank n− 1;
• a subgroup

G1 = 〈He1, Hu1, Hu2, . . . , Hun−1, He3〉 ⊂ SAut(X)

where ui = vi − e3 ∈ S2 ∩M are such that
• Hw ⊂ G1 for any root w ∈ e1 +M1 ⊂ S1 ∩M .

Letting ∂1 = ∂ρ1,e1 ∈ LND(A) consider the subalgebra

A1 = k[χv | v ∈M1] = k[χv1, . . . , χvn−1] ⊂ ker(∂1).

For any f ∈ A1 the replica exp(kf∂1) of He1 is a subgroup of G1.
Since rank (M1) = n− 1 one has

[Frac(ker(∂1)) : Frac(A1)] < +∞ .

Hence there exists b1 ∈ ker ∂1 such that Frac (ker ∂1) is generated
by b1 and Frac (A1). One can write b1 =

∑s
j=1 cjχ

mj where mj ∈
τ1 ∩M . Then H0 = exp(kb1∂1) is contained in the product of the
root subgroups Hr+j := exp(kχmj∂1), j = 1, . . . , s.
Choose linearly independent ray generators ρ1, . . . , ρn ∈ Ξ. Re-

peating the same construction one obtains for any i = 1, 2, . . . , n a
triple (Gi, ∂i, Ai) with properties similar to the ones of (G1, ∂1, A1).
Let now

G = 〈H1, . . . , Hr+s, G1, . . . , Gn〉 ⊂ SAut(X).

The group G satisfies (γ) from Theorem 0 (a criterion of infinite
transitivity). Due to this criterion, G acts infinitely transitively on
its open orbit OG = OG = reg(X). Then the same is true for G. �
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