FLEXIBILITY OF TORIC AFFINE VARIETIES II

MIKHAIL ZAIDENBERG

1. FLEXIBILITY CRITERIA

We fix an affine variety $X=\operatorname{Spec}(A)$ of $\operatorname{dim} X=n \geq 2$ over a field $\mathbb{k}=\overline{\mathbb{k}}$ with char $\mathbb{k}=0$.

1.1. NON-ALGEBRAICITY OF THE AUTOMORPHISM GROUP.

REMARK

If there exists $\partial \in \operatorname{LND}(A) \backslash\{0\}$ then

$$
\exp ((\operatorname{ker} \partial) \partial) \subset \operatorname{SAut}(X)
$$

is an infinite-dimensional unipotent Abelian subgroup. Indeed,

$$
\operatorname{tr} \cdot \operatorname{deg}[A: \operatorname{ker} \partial]=1
$$

CONJECTURE

If $\operatorname{LND}(A)=\{0\}$ then $\operatorname{Aut}^{0}(X)$ is an algebraic torus \mathbb{G}_{m}^{k} of dimension $k \leq \operatorname{dim} X$.
True if $\operatorname{dim} X=2$ (Perepechko-Z., unpublished).

1.2. FINITENESS CONJECTURE.

DEFINITION

X is called GENERICALLY FLEXIBLE if SAut (X) acts on X with an open orbit \mathscr{O}_{X} and is infinitely transitive on \mathscr{O}_{X}.
CONJECTURE
Any generically flexible affine variety X admits a finite collection of \mathbb{G}_{a}-subgroups H_{1}, \ldots, H_{N} of $\operatorname{Aut}(X)$ such that the group $G=$ $\left\langle H_{1}, \ldots, H_{N}\right\rangle$ acts on X with an open orbit \mathscr{O}_{G} and is infinitely transitive on \mathscr{O}_{G}.
REMARK
The conjecture is true if one replaces 'finite' by 'countable' (AKZ '18).

1.3. MAIN RESULTS.

THEOREM 1

For any toric affine variety X of dimension at least 2 with no toric factor and smooth in codimention 2 one can find a finite collection of \mathbb{G}_{a}-subgroups H_{1}, \ldots, H_{k} such that the group $G=\left\langle H_{1}, \ldots, H_{k}\right\rangle$ acts infinitely transitively in the smooth locus reg (X).

THEOREM 2

For any $n \geq 2$ one can find \mathbb{G}_{a}-subgroups $H_{1}, H_{2}, H_{3} \subset \operatorname{Aut}\left(\mathbb{A}^{n}\right)$ s.t. $G=\left\langle H_{1}, H_{2}, H_{3}\right\rangle$ acts infinitely transitively on \mathbb{A}^{n}.

1.4. GENERIC FLEXIBILITY: A CRITERION.

The next is a refined version of a result from AFKKZ '13.

THEOREM 0

Let a set $\partial_{1}, \ldots, \partial_{k} \in \operatorname{LND}(X)$ contains n linearly independent derivations $\partial_{1}, \ldots, \partial_{n}$. Let also $A_{i} \subset \operatorname{ker} \partial_{i}, i=1, \ldots, k$, be a finitely generated subalgebra such that $\left[\operatorname{Frac}\left(A_{i}\right): \operatorname{Frac}\left(\operatorname{ker} \partial_{i}\right)\right]<+\infty$. Assume one of the following holds:
(α) $\mathcal{O}_{X}(X)$ is generated by A_{1}, \ldots, A_{k};
$(\beta)\left[\operatorname{Frac}\left(\operatorname{ker} \partial_{1}\right): \operatorname{Frac}\left(A_{1}\right)\right]=1$;
(γ) $\left[\operatorname{Frac}\left(\operatorname{ker} \partial_{i}\right): \operatorname{Frac}\left(A_{i}\right)\right]>1 \forall i$ and there is an extra element $b_{1} \in \operatorname{ker} \partial_{1}$ such that $\operatorname{Frac}\left(\operatorname{ker} \partial_{1}\right)$ is generated by b_{1} and $\operatorname{Frac}\left(A_{1}\right)$.
Let G be the subgroup of $\operatorname{SAut}(X)$ generated by $H_{0}=\exp \left(\mathbb{k} b_{1} \partial_{1}\right)$ and $H_{i}\left(a_{i}\right)=\exp \left(\mathbb{k} a_{i} \partial_{i}\right), a_{i} \in A_{i}, i=1, \ldots, k$. Then G acts on X with an open orbit \mathscr{O}_{G} and the action of G on \mathscr{O}_{G} is infinitely transitive.

1.5. ORBITS OF THE CLOSURE OF A SUBGROUP.

LEMMA

(a) The closure \bar{G} of a subgroup $G \subset \operatorname{Aut}(X)$ is a closed indsubgroup of $\operatorname{Aut}(X)$.
(b) If $\rho: \mathbb{A}^{1} \rightarrow \operatorname{Aut}(X)$ is a morphism such that $\rho(t) \in G$ for $t \neq 0$ then $\rho(0) \in \bar{G}$.
(c) Any G-invariant closed subset $Y \subset X$ is \bar{G}-invariant.
(d) If G acts on X with an open orbit \mathscr{O}_{G} then \mathscr{O}_{G} coincides with the open orbit $\mathscr{O}_{\bar{G}}$ of \bar{G}.
(e) If a normal subgroup $G \subset \operatorname{Aut}(X)$ acts on X with an open orbit \mathscr{O}_{G} then $\mathscr{O}_{G}=\mathscr{O}_{\text {Aut }(X)}$.

DEFINITION

Let $G \subset \operatorname{Aut}(X)$ be subgroup. It is called ALGEBRAICALLY

GENERATED if it is generated by a family of connected algebraic subgroups of $\operatorname{Aut}(X)$. The orbits of G are locally closed subsets of X (AFKKZ '13).
PROPOSITION
Let $G \subset \operatorname{Aut}(X)$ be an algebraically generated subgroup. Then the following hold.
(a) The orbits of G and of \bar{G} in X are the same. In particular, if \bar{G} acts on X with an open orbit $\mathscr{O}_{\bar{G}}$ then G does and $\mathscr{O}_{G}=\mathscr{O}_{\bar{G}}$.
(b) If \bar{G} acts m-transitively on $\mathscr{O}_{\bar{G}}$ then also G does.
(c) If \bar{G} acts infinitely transitively on $\mathscr{O}_{\bar{G}}$ then also G does.

2. TORIC AFFINE VARIETIES

Fix the following objects:

- M - a lattice of rank $n \geq 2$;
- $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$ - a vector space over \mathbb{Q} of dimension n;
- $\sigma^{\vee} \subset M_{\mathbb{Q}}-$ a rational convex cone with a nonempty interior (called the WEIGHT CONE);
- a base of M;
- $\forall m=\left(m_{1}, \ldots, m_{n}\right) \in M$ the Laurent monomial $\chi^{m}=x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}$;
- the graded affine algebra

$$
A=\bigoplus_{m \in M \cap \sigma^{\vee}} \mathbb{k} \chi^{m} ;
$$

- the toric affine variety $X=\operatorname{Spec} A$, $\operatorname{dim} X=n$, where
- the action of the n-torus $\mathbb{T}=\mathbb{G}_{m}^{n}$ on X is defined by the grading.

REMARKS

- $\mathbb{T}=\operatorname{Hom}\left(M, \mathbb{G}_{m}\right)$ is the torus of characters of M.
- By duality, M is the character lattice of \mathbb{T}.
- In fact, any toric affine variety arises in this way.
2.1. DUAL CONE. Consider also the following associated objects:
- the dual lattice $N=\operatorname{Hom}(M, \mathbb{Z})$;
- the dual cone

$$
\sigma \subset N_{\mathbb{Q}}, \quad \sigma=\left\{x \in N_{\mathbb{Q}} \mid\langle x, y\rangle \geq 0 \quad \forall y \in \sigma^{\vee}\right\} ;
$$

- the set $\Xi=\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ of RAY GENERATORS of σ, that is, the primitive lattice vectors on the extremal rays of σ.

LEMMA TFAE:

- σ^{\vee} is a pointed cone, that is, σ^{\vee} contains no line;
- σ is of full dimension, that is, Ξ contains a basis of $N_{\mathbb{Q}}$;
- X has no toric factor, that is, X cannot be decomposed into a product $\mathbb{G}_{m} \times Y$ where Y is another toric variety.

CONVENTION

Assume in the sequel that the conidions of the lemma are fulfilled.

2.2. DEMAZURE ROOTS AND DEMAZURE FACETS.

DEFINITIONS

A DEMAZURE ROOT belonging to a primitive ray generator $\rho_{i} \in \Xi$ is a vector $e \in M$ such that
(i) $\left\langle\rho_{i}, e\right\rangle=-1$;
(ii) $\left\langle\rho_{j}, e\right\rangle \geqslant 0 \forall j \neq i$.

The DEMAZURE FACET \mathcal{S}_{i} of σ^{\vee} is the rational convex polyhedron defined by inequalities (ii) in the affine hyperplane

$$
\mathcal{H}_{i}=\left\{\left\langle\rho_{i}, e\right\rangle=-1\right\} .
$$

Thus, the Demazure roots which belong to the ray generator $\rho_{i} \in \Xi$ are the points in $\mathcal{S}_{i} \cap M$.

The ROOT SUBGROUP associated with a Demazure root $e \in \mathcal{S}_{i}$ is

$$
H_{e}=\exp \left(\mathbb{k} \partial_{\rho_{i}, e}\right) \subset \operatorname{SAut}(X),
$$

see the formula for $\partial_{\rho_{i}, e}$ below.

2.3. HOMOGENEOUS DERIVATIONS.

DEFINITION

A derivation $\partial \in \operatorname{Der}(A)$ is called homogeneous if ∂ respects the grading, that is, sends any graded piece to another one.

Given $\rho \in N, e \in M$, let

$$
\partial_{\rho, e}\left(\chi^{m}\right):=\langle\rho, m\rangle \chi^{m+e} \quad \forall m \in M .
$$

Then $\partial_{\rho, e}$ extends to a homogeneous derivation of A; the lattice vector $e \in M$ is called the DEGREE of $\partial_{\rho, e}$.

2.4. HOMOGENEOUS LNDs.

LEMMA (Liendo '10)

- If $\partial \in \operatorname{Der}(A)$ is homogeneous then $\partial=\lambda \partial_{\rho, e}$ for some $\lambda \in \mathbb{k}$, $\rho \in N$, and $e \in \Sigma^{\vee} \cap M$ where

$$
\Sigma^{\vee}=\sigma^{\vee} \cup \bigcup_{i=1}^{k} \mathcal{S}_{i}
$$

If $e \in \mathcal{S}_{i} \cap M$ then $\rho=\rho_{i}$;

- $\partial_{\rho, e} \in \operatorname{LND}(A) \Leftrightarrow e \in \mathcal{S}_{i}$ and $\rho=\rho_{i}$ for some $i \in\{1, \ldots, k\}$;
- $\operatorname{ker}\left(\partial_{\rho, e}\right)=\operatorname{span}\left(\chi^{m} \mid m \in \tau_{\rho}\right)$ where

$$
\tau_{\rho}=\left\{m \in \sigma^{\vee} \cap M \mid\langle\rho, m\rangle=0\right\} ;
$$

- $\tau_{\rho_{i}}=: \tau_{i}$ is the facet of σ^{\vee} parallel to \mathcal{S}_{i}.

2.5. GRADING ON Der (A).

LEMMA (Liendo '10)

- Any derivation $\partial \in \operatorname{Der}(A)$ admits a decomposition

$$
\partial=\sum_{e \in \Sigma^{\vee} \cap M} \partial_{e}
$$

where ∂_{e} is a homogeneous derivation of degree e.

- The set $\left\{e \in \Sigma^{\vee} \cap M \mid \partial_{e} \neq 0\right\}$ is finite. Its convex hull $N(\partial)$ is called the NEWTON POLYTOPE of ∂.
- Let $\partial \in \operatorname{LND}(A)$. Then for any face τ of $N(\partial)$ one has

$$
\partial_{\tau}:=\sum_{e \in \tau \cap M} \partial_{e} \in \operatorname{LND}(A) .
$$

In particular, for any vertex e of $N(\partial)$ one has $\partial_{e} \in \operatorname{LND}(A)$.

2.6. REPLICAS OF HOMOGENEOUS LNDs.

LEMMA

- The semigroup $\mathcal{S}_{i} \cap M$ is a finitely generated $\left(\tau_{i} \cap M\right)$-module.
- For any $e^{\prime} \in \tau_{i} \cap M$ one has

$$
\chi^{e^{\prime}} \partial_{\rho_{i}, e}=\partial_{\rho_{i}, e+e^{\prime}} \in \operatorname{LND}(A) .
$$

2.7. COMMUTATORS OF HOMOGENEOUS LNDs.

LEMMA (Romaskevich '14)

- Let $\partial=\partial_{\rho, e}$ and $\partial^{\prime}=\partial_{\rho^{\prime}, e^{\prime}}$. Then $\left[\partial, \partial^{\prime}\right]=\partial_{\hat{\rho}, \hat{e}}$ where

$$
\hat{\rho}=\left\langle\rho, e^{\prime}\right\rangle \rho^{\prime}-\left\langle\rho^{\prime}, e\right\rangle \rho \in N \quad \text { and } \quad \hat{e}=e+e^{\prime} \in M .
$$

- If $\hat{\rho} \neq 0$ then $\operatorname{deg}\left(\left[\partial, \partial^{\prime}\right]\right)=e+e^{\prime} \in \Sigma^{\vee} \cap M$.
- ∂ and ∂^{\prime} commute, that is, $\hat{\rho}=0$ if and only if one of the following holds:
$-\rho$ and ρ^{\prime} are collinear and $\langle\rho, e\rangle=\left\langle\rho, e^{\prime}\right\rangle$ (this holds, in particular, if e, $e^{\prime} \in \mathcal{S}_{i}$ for some $\left.i \in\{1, \ldots, k\}\right)$;
$-\rho$ and ρ^{\prime} are non-collinear and $\left\langle\rho^{\prime}, e\right\rangle=\left\langle\rho, e^{\prime}\right\rangle=0$.
LEMMA $\operatorname{Der}(A)=\bigoplus_{e \in \Sigma^{\vee} \cap M} \mathcal{L}_{e}$ is a graded Lie algebra, where \mathcal{L}_{e} is the span of all the homogeneous derivations of A of degree e.

2.8. ITERATED COMMUTATORS.

LEMMA (Manetti '12)

- Given $U=\partial_{1}$ and $V=\partial_{2} \in \operatorname{Der}(A)$ consider

$$
\operatorname{ad}_{U}^{m}(V)=[U,[U, \ldots[U, V] \ldots]]
$$

where U is repeated m times. Then $\operatorname{ad}_{U}^{m} \in \operatorname{End}(\operatorname{Der}(A))$ and

$$
\operatorname{ad}_{U}^{m}(V)=\sum_{i=0}^{m}\binom{m}{i} \partial_{1}^{m-i} \partial_{2}\left(-\partial_{1}\right)^{i}
$$

- Let $U \in \operatorname{LND}(A)$. Then $\operatorname{ad}_{U} \in \operatorname{End}(\operatorname{Der}(A))$ is locally nilpotent, that is, for any $V \in \operatorname{Der}(A)$,

$$
\operatorname{ad}_{U}^{m}(V)=0 \quad \forall m \gg 1 ;
$$

- (a version of the Baker-Campbell-Hausdorff formula)

$$
\operatorname{Ad}_{\exp (U)}(V)=\exp \left(\operatorname{ad}_{U}\right)(V)=\sum_{m=0}^{N(U)} \frac{1}{m!} \operatorname{ad}_{U}^{m}(V) \in \operatorname{LND}(A)
$$

2.9. NEWTON POLYTOPE OF A CONJUGATE LND.

LEMMA Let $U=\partial_{\rho_{1}, e_{1}}$ and $V=\partial_{\rho_{2}, e_{2}} \in \operatorname{LND}(A)$ where $e_{i} \in \mathcal{S}_{i} \cap M, i=1,2$. Let also

$$
c_{2}=\left\langle\rho_{2}, e_{1}\right\rangle, \quad d_{1}=\left\langle\rho_{1}, e_{2}\right\rangle, \quad \text { and } \delta=d_{1}+1
$$

- Assume that $c_{2} \geq 1$. Then

$$
\operatorname{ad}_{U}^{m}(V)=\partial_{r_{m}, e_{2}+m e_{1}} \quad \forall m=0, \ldots, d_{1}
$$

- If $d_{1} \geq 0$ then

$$
\operatorname{ad}_{U}^{m}(V)=0 \quad \forall m \geq \delta+1
$$

and

$$
\operatorname{ad}_{U}^{\delta}(V)=-c_{2} \delta!\partial_{\rho_{1}, e_{2}+\delta e_{1}} \in \operatorname{LND}(A)
$$

where

$$
e_{2}+\delta e_{1} \in \mathcal{S}_{1} \cap M
$$

- If $\partial=\operatorname{Ad}_{\exp (U)}(V)$ then $N(\partial)=\left[e_{2}, e_{2}+\delta e_{1}\right]$.

2.10. ROOT SUBGROUPS IN THE CLOSURE.

LEMMA Consider a subgroup $G \subset \operatorname{Aut}(X)$ normalized by the torus \mathbb{T}. Let $\partial \in \operatorname{LND}(A)$ be s.t. $H=\exp (\mathbb{k} \partial) \subset G$. Then any vertex e of the Newton polytope $N(\partial)$ belongs to some Demazure facet \mathcal{S}_{i}, and the root subgroup H_{e} is contained in \bar{G}.
LEMMA
Consider two roots $e_{i} \in \mathcal{S}_{i} \cap M, i=1,2$. Let $\delta=\left\langle\rho_{1}, e_{2}\right\rangle+1$. Suppose that $\delta e_{1}+e_{2} \in \mathcal{S}_{1}$, that is, $\left\langle\rho_{2}, e_{1}\right\rangle \geq 1$. Then $H_{\delta e_{1}+e_{2}} \subset \overline{\left\langle H_{e_{1}}, H_{e_{2}}\right\rangle}$.
Remind our
THEOREM 2
For any $n \geq 2$ one can find \mathbb{G}_{a}-subgroups $U_{1}, U_{2}, U_{3} \subset \operatorname{SAut}\left(\mathbb{A}^{n}\right)$ such that

$$
G=\left\langle U_{1}, U_{2}, U_{3}\right\rangle \subset \operatorname{SAut}\left(\mathbb{A}^{n}\right)
$$

acts infinitely transitively on \mathbb{A}^{n}.
LEMMA (Chistopolskaya '18)
For any nilpotent $x \in \operatorname{sl}(n, \mathbb{k})$ there exists a nilpotent $y \in \operatorname{sl}(n, \mathbb{k})$ such that $\operatorname{sl}(n, \mathbb{k})=\operatorname{lie}\langle x, y\rangle$.

HINT OF THE PROOF:

Assume $n \geq 3$; the case $n=2$ is left as an exercise. Consider the root vectors

$$
e_{1}=(-1,0, \ldots, 0) \in \mathcal{S}_{1}, \quad e_{2}=(0,-1,0, \ldots, 0) \in \mathcal{S}_{2},
$$

and

$$
u=(-1,2,0, \ldots, 0) \in \mathcal{S}_{1} .
$$

By the lemma preceding the theorem one has

$$
H_{u+e_{2}}=H_{e_{1}-e_{2}}=\exp (\mathbb{k} x) \subset \overline{\left\langle H_{u}, H_{e_{2}}\right\rangle} \cap \operatorname{SL}(n, \mathbb{k})
$$

where $x \in \operatorname{sl}(n, \mathbb{k})$ is the nilpotent generator of $H_{e_{1}-e_{2}}=U_{x}=\exp (\mathbb{k} x)$. Let $y \in \operatorname{sl}(n, \mathbb{k})$ be a nilpotent matrix such that $\operatorname{sl}(n, \mathbb{k})=\operatorname{lie}\langle x, y\rangle$. It follows that

$$
\operatorname{SL}(n, \mathbb{k})=\left\langle U_{x}, U_{y}\right\rangle \text { where } U_{y}=\exp (\mathbb{k} y)
$$

By virtue of the inclusion above one has

$$
\operatorname{SAff}_{n}=\left\langle U_{x}, U_{y}, H_{e_{2}}\right\rangle \subset \overline{\left\langle U_{y}, H_{e_{2}}, H_{u}\right\rangle}
$$

where $H_{u} \not \subset \mathrm{Aff}_{n}$.
Let $G=\left\langle U_{y}, H_{e_{2}}, H_{u}\right\rangle$. One shows that the subgroup $\left\langle\operatorname{SAff}_{n}, H_{u}\right\rangle \subset$ \bar{G} acts infinitely transitively on \mathbb{A}^{n}. Hence \bar{G} does. Then the same holds for G.

REMARK

Andrist '18 has found, for any $n \geq 2$, three explicit locally nilpotent derivations (vector fields) x, y, z on \mathbb{A}^{n} such that the group $\left\langle U_{x}, U_{y}, U_{z}\right\rangle$ acts infinitely transitively on \mathbb{A}^{n}.

2.11. SMOOTHNESS IN CODIMENSION 2.

DEFINITION

We say that X is SMOOTH IN CODIMENSION 2 if the singular locus of X has codimension ≥ 3 in X.

LEMMA

A toric affine variety X is smooth in codimension 2 if and only if, for any two-dimensional face τ of the cone $\sigma_{X} \subset N_{\mathbb{Q}}$, the ray generators $\left(\rho_{i}, \rho_{j}\right)$ of τ can be included in a base of the lattice N.
2.12. INFINITE TRANSITIVITY ON TORIC VARIETIES.

Recall our

THEOREM 1

Let X be a toric affine variety of dimension $n \geq 2$ with no toric factor and smooth in codimension 2. Then one can find root subgroups H_{1}, \ldots, H_{N} such that the group $G=\left\langle H_{1}, \ldots, H_{N}\right\rangle$ acts infinitely transitively in the regular locus reg (X).

HINT OF THE PROOF:

If $n=2$ then X is smooth, hence $X \cong \mathbb{A}^{2}$. Suppose $n \geq 3$.
We use the Cox ring construction. It replaces our initial toric variety X by the spectrum $\operatorname{Cox}(X)$ of its Cox ring, which is just the polynomial ring in k variables. The linear forms $\rho_{1}, \ldots, \rho_{k} \in \Xi$ define
the TOTAL COORDINATES on $\mathbb{A}^{k}=\operatorname{Cox}(X)$. The procedure now is very similar to the one in the case of the affine space.

One can find a finite collection of root subgroups H_{1}, \ldots, H_{r} such that the group generated by H_{1}, \ldots, H_{r} acts transitively in reg (X) (AFKKZ '13). To get infinite transitivity we need to enlarge this collection.
Assume that $\left[\rho_{1}, \rho_{2}\right]$ and $\left[\rho_{1}, \rho_{3}\right]$ are incident faces of σ. Using the assumption of smoothness in codimension 2 one constructs

- a cone $\omega \subset \tau_{1}$ of dimension $n-1$ with ray generators v_{1}, \ldots, v_{n-1};
- the submonoid $\mathcal{M}_{1}=\mathbb{Z}_{\geq 0} v_{1}+\ldots+\mathbb{Z}_{\geq 0} v_{n-1}$ of ω of rank $n-1$;
- a subgroup

$$
G_{1}=\left\langle H_{e_{1}}, H_{u_{1}}, H_{u_{2}}, \ldots, H_{u_{n-1}}, H_{e_{3}}\right\rangle \subset \operatorname{SAut}(X)
$$

where $u_{i}=v_{i}-e_{3} \in \mathcal{S}_{2} \cap M$ are such that

- $H_{w} \subset \bar{G}_{1}$ for any root $w \in e_{1}+\mathcal{M}_{1} \subset \mathcal{S}_{1} \cap M$.

Letting $\partial_{1}=\partial_{\rho_{1}, e_{1}} \in \operatorname{LND}(A)$ consider the subalgebra

$$
A_{1}=\mathbb{k}\left[\chi^{v} \mid v \in \mathcal{M}_{1}\right]=\mathbb{k}\left[\chi^{v_{1}}, \ldots, \chi^{v_{n-1}}\right] \subset \operatorname{ker}\left(\partial_{1}\right)
$$

For any $f \in A_{1}$ the replica $\exp \left(\mathbb{k} f \partial_{1}\right)$ of $H_{e_{1}}$ is a subgroup of \bar{G}_{1}. Since $\operatorname{rank}\left(\mathcal{M}_{1}\right)=n-1$ one has

$$
\left[\operatorname{Frac}\left(\operatorname{ker}\left(\partial_{1}\right)\right): \operatorname{Frac}\left(A_{1}\right)\right]<+\infty
$$

Hence there exists $b_{1} \in \operatorname{ker} \partial_{1}$ such that $\operatorname{Frac}\left(\operatorname{ker} \partial_{1}\right)$ is generated by b_{1} and $\operatorname{Frac}\left(A_{1}\right)$. One can write $b_{1}=\sum_{j=1}^{s} c_{j} \chi^{m_{j}}$ where $m_{j} \in$ $\tau_{1} \cap M$. Then $H_{0}=\exp \left(\mathbb{k} b_{1} \partial_{1}\right)$ is contained in the product of the root subgroups $H_{r+j}:=\exp \left(\mathbb{k} \chi^{m_{j}} \partial_{1}\right), j=1, \ldots, s$.

Choose linearly independent ray generators $\rho_{1}, \ldots, \rho_{n} \in \Xi$. Repeating the same construction one obtains for any $i=1,2, \ldots, n$ a triple $\left(G_{i}, \partial_{i}, A_{i}\right)$ with properties similar to the ones of $\left(G_{1}, \partial_{1}, A_{1}\right)$.
Let now

$$
G=\left\langle H_{1}, \ldots, H_{r+s}, G_{1}, \ldots, G_{n}\right\rangle \subset \operatorname{SAut}(X)
$$

The group \bar{G} satisfies (γ) from Theorem 0 (a criterion of infinite transitivity). Due to this criterion, \bar{G} acts infinitely transitively on its open orbit $\mathscr{O}_{\bar{G}}=\mathscr{O}_{G}=\operatorname{reg}(X)$. Then the same is true for G.

References

[An18] R. B. Andrist. Integrable generators of Lie algebras of vector fields on \mathbb{C}^{n}. arXiv:1808.06905 (2018), 7p.
[AFKKZ13] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg. Flexible varieties and automorphism groups. Duke Math. J., 162(4):767-823, 2013.
[AKZ12] I. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg. Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity. Sb. Math., 203(7):3-30, 2012.
[AKZ18] I. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg. Infinite transitivity, finite generation, and Demazure roots. arXiv:1803.10620 (2018), 24p.

