FLEXIBILITY OF TORIC AFFINE VARIETIES II

MIKHAIL ZAIDENBERG

1. FLEXIBILITY CRITERIA

We fix an affine variety X = Spec(A) of $\dim X = n \ge 2$ over a field $\Bbbk = \overline{\Bbbk}$ with $\operatorname{char} \Bbbk = 0$.

1.1. NON-ALGEBRAICITY OF THE AUTOMORPHISM GROUP.

REMARK

If there exists $\partial \in \text{LND}(A) \setminus \{0\}$ then

 $\exp\left((\ker\partial)\partial\right) \subset \mathrm{SAut}(X)$

is an infinite-dimensional unipotent Abelian subgroup. Indeed,

 $\operatorname{tr.deg}\left[A:\ker\partial\right]=1.$

CONJECTURE

If $\text{LND}(A) = \{0\}$ then $\text{Aut}^0(X)$ is an algebraic torus \mathbb{G}_m^k of dimension $k \leq \dim X$.

True if $\dim X = 2$ (Perepechko-Z., unpublished).

1.2. FINITENESS CONJECTURE.

DEFINITION

X is called **GENERICALLY FLEXIBLE** if SAut (X) acts on X with an open orbit \mathcal{O}_X and is infinitely transitive on \mathcal{O}_X .

CONJECTURE

Any generically flexible affine variety X admits a finite collection of \mathbb{G}_a -subgroups H_1, \ldots, H_N of $\operatorname{Aut}(X)$ such that the group $G = \langle H_1, \ldots, H_N \rangle$ acts on X with an open orbit \mathcal{O}_G and is infinitely transitive on \mathcal{O}_G .

REMARK

The conjecture is true if one replaces 'finite' by 'countable' (AKZ '18).

1.3. MAIN RESULTS.

THEOREM 1

For any toric affine variety X of dimension at least 2 with no toric factor and smooth in codimention 2 one can find a finite collection of \mathbb{G}_a -subgroups H_1, \ldots, H_k such that the group $G = \langle H_1, \ldots, H_k \rangle$ acts infinitely transitively in the smooth locus reg (X).

THEOREM 2

For any $n \geq 2$ one can find \mathbb{G}_a -subgroups $H_1, H_2, H_3 \subset \operatorname{Aut}(\mathbb{A}^n)$ s.t. $G = \langle H_1, H_2, H_3 \rangle$ acts infinitely transitively on \mathbb{A}^n .

1.4. GENERIC FLEXIBILITY: A CRITERION.

The next is a refined version of a result from AFKKZ '13.

THEOREM 0

Let a set $\partial_1, \ldots, \partial_k \in \text{LND}(X)$ contains n linearly independent derivations $\partial_1, \ldots, \partial_n$. Let also $A_i \subset \ker \partial_i$, $i = 1, \ldots, k$, be a finitely generated subalgebra such that $[\text{Frac}(A_i) : \text{Frac}(\ker \partial_i)] < +\infty$. Assume one of the following holds:

- (a) $\mathcal{O}_X(X)$ is generated by A_1, \ldots, A_k ;
- (β) [Frac (ker ∂_1) : Frac (A_1)] = 1;
- (γ) [Frac (ker ∂_i) : Frac (A_i)] > 1 $\forall i$ and there is an extra element $b_1 \in \ker \partial_1$ such that Frac (ker ∂_1) is generated by b_1 and Frac (A_1).

Let G be the subgroup of SAut(X) generated by $H_0 = exp(\Bbbk b_1\partial_1)$ and $H_i(a_i) = exp(\Bbbk a_i\partial_i)$, $a_i \in A_i$, i = 1, ..., k. Then G acts on X with an open orbit \mathcal{O}_G and the action of G on \mathcal{O}_G is infinitely transitive.

1.5. ORBITS OF THE CLOSURE OF A SUBGROUP. LEMMA

- (a) The closure \overline{G} of a subgroup $G \subset Aut(X)$ is a closed indsubgroup of Aut(X).
- (b) If $\rho: \mathbb{A}^1 \to \operatorname{Aut}(X)$ is a morphism such that $\rho(t) \in G$ for $t \neq 0$ then $\rho(0) \in \overline{G}$.
- (c) Any G-invariant closed subset $Y \subset X$ is \overline{G} -invariant.
- (d) If G acts on X with an open orbit \mathcal{O}_G then \mathcal{O}_G coincides with the open orbit $\mathcal{O}_{\overline{G}}$ of \overline{G} .
- (e) If a normal subgroup $G \subset \operatorname{Aut}(X)$ acts on X with an open orbit \mathscr{O}_G then $\mathscr{O}_G = \mathscr{O}_{\operatorname{Aut}(X)}$.

DEFINITION

Let $G \subset Aut(X)$ be subgroup. It is called ALGEBRAICALLY

GENERATED if it is generated by a family of connected algebraic subgroups of Aut(X). The orbits of G are locally closed subsets of X (AFKKZ '13).

PROPOSITION

Let $G \subset Aut(X)$ be an algebraically generated subgroup. Then the following hold.

- (a) The orbits of G and of \overline{G} in X are the same. In particular, if \overline{G} acts on X with an open orbit $\mathscr{O}_{\overline{G}}$ then G does and $\mathscr{O}_{\overline{G}} = \mathscr{O}_{\overline{G}}$.
- (b) If \overline{G} acts *m*-transitively on $\mathscr{O}_{\overline{G}}$ then also *G* does.
- (c) If \overline{G} acts infinitely transitively on $\mathscr{O}_{\overline{G}}$ then also G does.

2. TORIC AFFINE VARIETIES

Fix the following objects:

- M a lattice of rank $n \ge 2$;
- $M_{\mathbb{Q}} = M \otimes \mathbb{Q}$ a vector space over \mathbb{Q} of dimension n;
- $\sigma^{\vee} \subset M_{\mathbb{Q}}$ a rational convex cone with a nonempty interior (called the WEIGHT CONE);
- a base of M;
- $\forall m = (m_1, \ldots, m_n) \in M$ the Laurent monomial $\chi^m = x_1^{m_1} \ldots x_n^{m_n}$;
- the graded affine algebra

$$A = \bigoplus_{m \in M \cap \sigma^{\vee}} \Bbbk \chi^m;$$

- the toric affine variety $X = \operatorname{Spec} A$, dim X = n, where
- the action of the *n*-torus $\mathbb{T} = \mathbb{G}_m^n$ on X is defined by the grading.

REMARKS

- $\mathbb{T} = \text{Hom}(M, \mathbb{G}_m)$ is the torus of characters of M.
- By duality, M is the character lattice of \mathbb{T} .
- In fact, any toric affine variety arises in this way.

2.1. DUAL CONE. Consider also the following associated objects:

- the dual lattice $N = \text{Hom}(M, \mathbb{Z})$;
- the dual cone

$$\sigma \subset N_{\mathbb{Q}}, \quad \sigma = \{ x \in N_{\mathbb{Q}} \, | \, \langle x, y \rangle \ge 0 \ \forall y \in \sigma^{\vee} \};$$

• the set $\Xi = \{\rho_1, \ldots, \rho_k\}$ of **RAY GENERATORS** of σ , that is, the primitive lattice vectors on the extremal rays of σ .

LEMMA TFAE:

- σ^{\vee} is a pointed cone, that is, σ^{\vee} contains no line;
- σ is of full dimension, that is, Ξ contains a basis of $N_{\mathbb{Q}}$;
- X has no toric factor, that is, X cannot be decomposed into a product $\mathbb{G}_m \times Y$ where Y is another toric variety.

CONVENTION

Assume in the sequel that the conidions of the lemma are fulfilled.

2.2. DEMAZURE ROOTS AND DEMAZURE FACETS.

DEFINITIONS

A DEMAZURE ROOT belonging to a primitive ray generator $\rho_i \in \Xi$ is a vector $e \in M$ such that

(i) $\langle \rho_i, e \rangle = -1;$ (ii) $\langle \rho_i, e \rangle \ge 0 \ \forall j \neq i.$

The **DEMAZURE FACET** S_i of σ^{\vee} is the rational convex polyhedron defined by inequalities (ii) in the affine hyperplane

 $\mathcal{H}_i = \{ \langle \rho_i, e \rangle = -1 \}.$

Thus, the Demazure roots which belong to the ray generator $\rho_i \in \Xi$ are the points in $S_i \cap M$.

The ROOT SUBGROUP associated with a Demazure root $e \in S_i$ is

 $H_e = \exp(\mathbb{k}\partial_{\rho_i, e}) \subset \operatorname{SAut}(X),$

see the formula for $\partial_{\rho_i,e}$ below.

2.3. HOMOGENEOUS DERIVATIONS.

DEFINITION

A derivation $\partial \in \text{Der}(A)$ is called *homogeneous* if ∂ respects the grading, that is, sends any graded piece to another one.

Given $\rho \in N$, $e \in M$, let

$$\partial_{\rho,e}(\chi^m) := \langle \rho, m \rangle \chi^{m+e} \quad \forall m \in M.$$

Then $\partial_{\rho,e}$ extends to a homogeneous derivation of A; the lattice vector $e \in M$ is called the **DEGREE** of $\partial_{\rho,e}$.

2.4. HOMOGENEOUS LNDs.

LEMMA (Liendo '10)

• If $\partial \in \text{Der}(A)$ is homogeneous then $\partial = \lambda \partial_{\rho,e}$ for some $\lambda \in \mathbb{k}$, $\rho \in N$, and $e \in \Sigma^{\vee} \cap M$ where

$$\Sigma^{\vee} = \sigma^{\vee} \cup \bigcup_{i=1}^k \mathcal{S}_i \,.$$

If $e \in S_i \cap M$ then $\rho = \rho_i$;

- $\partial_{\rho,e} \in \text{LND}(A) \Leftrightarrow e \in S_i \text{ and } \rho = \rho_i \text{ for some } i \in \{1, \dots, k\};$
- $\ker(\partial_{\rho,e}) = \operatorname{span}(\chi^m \mid m \in \tau_{\rho})$ where

$$\tau_{\rho} = \{ m \in \sigma^{\vee} \cap M \, | \, \langle \rho, m \rangle = 0 \};$$

• $\tau_{\rho_i} =: \tau_i$ is the facet of σ^{\vee} parallel to S_i .

2.5. **GRADING ON** Der(A).

LEMMA (Liendo '10)

• Any derivation $\partial \in \text{Der}(A)$ admits a decomposition

$$\partial = \sum_{e \in \Sigma^{\vee} \cap M} \partial_e$$

where ∂_e is a homogeneous derivation of degree e.

- The set $\{e \in \Sigma^{\vee} \cap M | \partial_e \neq 0\}$ is finite. Its convex hull $N(\partial)$ is called the NEWTON POLYTOPE of ∂ .
- Let $\partial \in \text{LND}(A)$. Then for any face τ of $N(\partial)$ one has

$$\partial_{\tau} := \sum_{e \in \tau \cap M} \partial_e \in \mathrm{LND}\left(A\right).$$

In particular, for any vertex e of $N(\partial)$ one has $\partial_e \in \text{LND}(A)$.

2.6. REPLICAS OF HOMOGENEOUS LNDs.

LEMMA

- The semigroup $S_i \cap M$ is a finitely generated $(\tau_i \cap M)$ -module.
- For any $e' \in \tau_i \cap M$ one has

$$\chi^{e'}\partial_{\rho_{i},e} = \partial_{\rho_{i},e+e'} \in \text{LND}(A).$$

2.7. COMMUTATORS OF HOMOGENEOUS LNDs. LEMMA (Romaskevich '14)

- Let $\partial = \partial_{\rho,e}$ and $\partial' = \partial_{\rho',e'}$. Then $[\partial, \partial'] = \partial_{\hat{\rho},\hat{e}}$ where $\hat{\rho} = \langle \rho, e' \rangle \rho' - \langle \rho', e \rangle \rho \in N$ and $\hat{e} = e + e' \in M$.
- If $\hat{\rho} \neq 0$ then $\deg([\partial, \partial']) = e + e' \in \Sigma^{\vee} \cap M$.
- ∂ and ∂' commute, that is, $\hat{\rho} = 0$ if and only if one of the following holds:
 - $-\rho$ and ρ' are collinear and $\langle \rho, e \rangle = \langle \rho, e' \rangle$ (this holds, in particular, if $e, e' \in S_i$ for some $i \in \{1, \ldots, k\}$);
 - ho and ho' are non-collinear and $\langle
 ho', e
 angle = \langle
 ho, e'
 angle = 0$.

LEMMA Der $(A) = \bigoplus_{e \in \Sigma^{\vee} \cap M} \mathcal{L}_e$ is a graded Lie algebra, where \mathcal{L}_e is the span of all the homogeneous derivations of A of degree e.

2.8. ITERATED COMMUTATORS.

LEMMA (Manetti '12)

• Given $U = \partial_1$ and $V = \partial_2 \in \text{Der}(A)$ consider

$$\mathrm{ad}_U^m(V) = [U, [U, \dots [U, V] \dots]]$$

where U is repeated m times. Then $\operatorname{ad}_U^m \in \operatorname{End} (\operatorname{Der} (A))$ and

$$\operatorname{ad}_{U}^{m}(V) = \sum_{i=0}^{m} \binom{m}{i} \partial_{1}^{m-i} \partial_{2} (-\partial_{1})^{i}.$$

• Let $U \in \text{LND}(A)$. Then $\operatorname{ad}_U \in \text{End}(\operatorname{Der}(A))$ is locally nilpotent, that is, for any $V \in \operatorname{Der}(A)$,

$$\operatorname{ad}_{U}^{m}(V) = 0 \ \forall m \gg 1;$$

• (a version of the Baker-Campbell-Hausdorff formula)

$$\operatorname{Ad}_{\exp(U)}(V) = \exp(\operatorname{ad}_U)(V) = \sum_{m=0}^{N(U)} \frac{1}{m!} \operatorname{ad}_U^m(V) \in \operatorname{LND}(A).$$

2.9. NEWTON POLYTOPE OF A CONJUGATE LND.

LEMMA Let $U = \partial_{\rho_1, e_1}$ and $V = \partial_{\rho_2, e_2} \in \text{LND}(A)$ where $e_i \in S_i \cap M$, i = 1, 2. Let also

$$c_2 = \langle \rho_2, e_1 \rangle, \quad d_1 = \langle \rho_1, e_2 \rangle, \text{ and } \delta = d_1 + 1.$$

• Assume that $c_2 \ge 1$. Then

$$\operatorname{ad}_{U}^{m}(V) = \partial_{r_{m},e_{2}+me_{1}} \quad \forall m = 0,\ldots,d_{1}.$$

• If $d_1 \ge 0$ then

$$\operatorname{ad}_U^m(V) = 0 \quad \forall m \ge \delta + 1$$

and

$$\operatorname{ad}_{U}^{\delta}(V) = -c_2 \delta! \partial_{\rho_1, e_2 + \delta e_1} \in \operatorname{LND}(A)$$

where

$$e_2 + \delta e_1 \in \mathcal{S}_1 \cap M.$$

• If $\partial = \operatorname{Ad}_{\exp(U)}(V)$ then $N(\partial) = [e_2, e_2 + \delta e_1].$

2.10. ROOT SUBGROUPS IN THE CLOSURE.

LEMMA Consider a subgroup $G \subset \operatorname{Aut}(X)$ normalized by the torus \mathbb{T} . Let $\partial \in \operatorname{LND}(A)$ be s.t. $H = \exp(\mathbb{k}\partial) \subset G$. Then any vertex e of the Newton polytope $N(\partial)$ belongs to some Demazure facet S_i , and the root subgroup H_e is contained in \overline{G} .

LEMMA

Consider two roots $e_i \in S_i \cap M$, i = 1, 2. Let $\delta = \langle \rho_1, e_2 \rangle + 1$. Suppose that $\delta e_1 + e_2 \in S_1$, that is, $\langle \rho_2, e_1 \rangle \geq 1$. Then $H_{\delta e_1 + e_2} \subset \overline{\langle H_{e_1}, H_{e_2} \rangle}$.

Remind our

THEOREM 2

For any $n \geq 2$ one can find \mathbb{G}_a -subgroups $U_1, U_2, U_3 \subset \text{SAut}(\mathbb{A}^n)$ such that

$$G = \langle U_1, U_2, U_3 \rangle \subset \mathrm{SAut}(\mathbb{A}^n)$$

acts infinitely transitively on \mathbb{A}^n .

LEMMA (Chistopolskaya '18)

For any nilpotent $x \in sl(n, \mathbb{k})$ there exists a nilpotent $y \in sl(n, \mathbb{k})$ such that $sl(n, \mathbb{k}) = lie \langle x, y \rangle$.

HINT OF THE PROOF:

Assume $n \ge 3$; the case n = 2 is left as an exercise. Consider the root vectors

$$e_1 = (-1, 0, \dots, 0) \in \mathcal{S}_1, \ e_2 = (0, -1, 0, \dots, 0) \in \mathcal{S}_2,$$

and

$$u = (-1, 2, 0, \dots, 0) \in \mathcal{S}_1.$$

By the lemma preceding the theorem one has

$$H_{u+e_2} = H_{e_1-e_2} = \exp(\Bbbk x) \subset \overline{\langle H_u, H_{e_2} \rangle} \cap \operatorname{SL}(n, \Bbbk)$$

where $x \in \mathrm{sl}(n, \mathbb{k})$ is the nilpotent generator of $H_{e_1-e_2} = U_x = \exp(\mathbb{k}x)$. Let $y \in \mathrm{sl}(n, \mathbb{k})$ be a nilpotent matrix such that $\mathrm{sl}(n, \mathbb{k}) = \mathrm{lie} \langle x, y \rangle$. It follows that

 $SL(n, \mathbb{k}) = \langle U_x, U_y \rangle$ where $U_y = \exp(\mathbb{k}y)$.

By virtue of the inclusion above one has

$$\mathrm{SAff}_n = \langle U_x, U_y, H_{e_2} \rangle \subset \overline{\langle U_y, H_{e_2}, H_u \rangle}$$

where $H_u \not\subset Aff_n$.

Let $G = \langle U_y, H_{e_2}, H_u \rangle$. One shows that the subgroup $\langle SAff_n, H_u \rangle \subset \overline{G}$ acts infinitely transitively on \mathbb{A}^n . Hence \overline{G} does. Then the same holds for G.

REMARK

Andrist '18 has found, for any $n \ge 2$, three explicit locally nilpotent derivations (vector fields) x, y, z on \mathbb{A}^n such that the group $\langle U_x, U_y, U_z \rangle$ acts infinitely transitively on \mathbb{A}^n .

2.11. SMOOTHNESS IN CODIMENSION 2.

DEFINITION

We say that X is **SMOOTH IN CODIMENSION 2** if the singular locus of X has codimension ≥ 3 in X.

LEMMA

A toric affine variety X is smooth in codimension 2 if and only if, for any two-dimensional face τ of the cone $\sigma_X \subset N_{\mathbb{Q}}$, the ray generators (ρ_i, ρ_j) of τ can be included in a base of the lattice N.

2.12. INFINITE TRANSITIVITY ON TORIC VARIETIES.

Recall our

THEOREM 1

Let X be a toric affine variety of dimension $n \ge 2$ with no toric factor and smooth in codimension 2. Then one can find root subgroups H_1, \ldots, H_N such that the group $G = \langle H_1, \ldots, H_N \rangle$ acts infinitely transitively in the regular locus $\operatorname{reg}(X)$.

HINT OF THE PROOF:

If n = 2 then X is smooth, hence $X \cong \mathbb{A}^2$. Suppose $n \ge 3$.

We use the Cox ring construction. It replaces our initial toric variety X by the spectrum Cox(X) of its Cox ring, which is just the polynomial ring in k variables. The linear forms $\rho_1, \ldots, \rho_k \in \Xi$ define

the TOTAL COORDINATES on $\mathbb{A}^k = \operatorname{Cox}(X)$. The procedure now is very similar to the one in the case of the affine space.

One can find a finite collection of root subgroups H_1, \ldots, H_r such that the group generated by H_1, \ldots, H_r acts transitively in reg(X) (AFKKZ '13). To get infinite transitivity we need to enlarge this collection.

Assume that $[\rho_1, \rho_2]$ and $[\rho_1, \rho_3]$ are incident faces of σ . Using the assumption of smoothness in codimension 2 one constructs

- a cone $\omega \subset \tau_1$ of dimension n-1 with ray generators v_1, \ldots, v_{n-1} ;
- the submonoid $\mathcal{M}_1 = \mathbb{Z}_{\geq 0}v_1 + \ldots + \mathbb{Z}_{\geq 0}v_{n-1}$ of ω of rank n-1;
- a subgroup

$$G_1 = \langle H_{e_1}, H_{u_1}, H_{u_2}, \dots, H_{u_{n-1}}, H_{e_3} \rangle \subset \operatorname{SAut}(X)$$

where $u_i = v_i - e_3 \in S_2 \cap M$ are such that

• $H_w \subset \overline{G}_1$ for any root $w \in e_1 + \mathcal{M}_1 \subset \mathcal{S}_1 \cap M$.

Letting $\partial_1 = \partial_{\rho_1, e_1} \in \text{LND}(A)$ consider the subalgebra

$$A_1 = \mathbb{k}[\chi^v \mid v \in \mathcal{M}_1] = \mathbb{k}[\chi^{v_1}, \dots, \chi^{v_{n-1}}] \subset \ker(\partial_1).$$

For any $f \in A_1$ the replica $\exp(kf\partial_1)$ of H_{e_1} is a subgroup of \overline{G}_1 . Since $\operatorname{rank}(\mathcal{M}_1) = n - 1$ one has

$$[\operatorname{Frac}(\ker(\partial_1)) : \operatorname{Frac}(A_1)] < +\infty.$$

Hence there exists $b_1 \in \ker \partial_1$ such that $\operatorname{Frac}(\ker \partial_1)$ is generated by b_1 and $\operatorname{Frac}(A_1)$. One can write $b_1 = \sum_{j=1}^s c_j \chi^{m_j}$ where $m_j \in \tau_1 \cap M$. Then $H_0 = \exp(\Bbbk b_1 \partial_1)$ is contained in the product of the root subgroups $H_{r+j} := \exp(\Bbbk \chi^{m_j} \partial_1), j = 1, \ldots, s$.

Choose linearly independent ray generators $\rho_1, \ldots, \rho_n \in \Xi$. Repeating the same construction one obtains for any $i = 1, 2, \ldots, n$ a triple (G_i, ∂_i, A_i) with properties similar to the ones of (G_1, ∂_1, A_1) .

Let now

$$G = \langle H_1, \ldots, H_{r+s}, G_1, \ldots, G_n \rangle \subset \mathrm{SAut}(X).$$

The group \overline{G} satisfies (γ) from Theorem 0 (a criterion of infinite transitivity). Due to this criterion, \overline{G} acts infinitely transitively on its open orbit $\mathcal{O}_{\overline{G}} = \mathcal{O}_G = \operatorname{reg}(X)$. Then the same is true for G. \Box

MIKHAIL ZAIDENBERG

REFERENCES

- [An18] R. B. Andrist. Integrable generators of Lie algebras of vector fields on \mathbb{C}^n . arXiv:1808.06905 (2018), 7p.
- [AFKKZ13] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg. Flexible varieties and automorphism groups. Duke Math. J., 162(4):767–823, 2013.
- [AKZ12] I. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg. Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity. *Sb. Math.*, 203(7):3–30, 2012.
- [AKZ18] I. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg. Infinite transitivity, finite generation, and Demazure roots. arXiv:1803.10620 (2018), 24p.