International Conference on Dynamical Systems in honour of Michae Misiurewicz on his 60th birthday

Będlewo, Poland, June 30 - July 5, 2008

Does a billiard orbit determine its (polygonal) table?

Jozef Bobok (Czech Technical University in Prague)
(joint work with Serge Troubetzkoy)

We consider a billiard transformation $T: V_{P} \subset \delta P \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow V_{P}$, where P is a polygon. We say that two polygons P, Q are related if there are points $u_{0} \in V_{P}, v_{0} \in V_{Q}$ such that (π_{1} is the first natural projection)

- the sequences $\left\{\pi_{1}\left(T^{n}\left(u_{0}\right)\right)\right\}_{n \geq 0},\left\{\pi_{1}\left(S^{n}\left(v_{0}\right)\right)\right\}_{n \geq 0}$ have the same combinatorial order.

In this talk we will present several results on related polygons.

