International Conference on Dynamical Systems in honour of Micha乇 Misiurewicz on his 60th birthday

Będlewo, Poland, June 30 - July 5, 2008

Relationship between lower and interior cycles of the Lotka-Volterra map

Peter Maličký (Matej Bel University)

We consider the plane triangle $\Delta=\{[x, y]: 0 \leq x, 0 \leq y, x+y \leq 4\}$ and the transformation $F: \Delta \rightarrow \Delta,[x, y] \mapsto[x(4-x-y), x y]$. A point $P=[x, y] \in \Delta$ is said to be lower if $y=0$. Any lower periodic point P is of the form $P=\left[4 \sin ^{2} \frac{k \pi}{2^{n} \pm 1}, 0\right]$, where n and k are integers such that $0<n$ and $0 \leq 2 k<2^{n} \pm 1$. We give a condition for a lower periodic point under which there is an interior periodic point with the same itinerary with respect to sets $A=\{[x, y] \in \Delta: x<2\}$ and $B=\{[x, y] \in \Delta: x>2\}$. From this we deduce a lower estimate of the number of interior periodic points with period n. Moreover, we present a condition for the itinerary under which the corresponding interior periodic point does not exist.

