INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS IN HONOUR OF MICHAŁ MISIUREWICZ ON HIS 60TH BIRTHDAY

Bedlewo, Poland, June 30 – July 5, 2008

Large entropy \mathbb{Z}^d shifts with highly restrictive subsystems and factors

Michael H. Schraudner (Universidad de Chile)

(joint work with Mike Boyle and Ronnie Pavlov)

Using recent techniques by Hochman and Meyerovitch we construct families of positive entropy \mathbb{Z}^d shifts of finite type (SFTs) and \mathbb{Z}^d sofic shifts satisfying the following constraints: For $d \geq 2$ there are topologically mixing \mathbb{Z}^d sofic shifts S of arbitrarily large entropy that contain a unique minimal subsystem which is also the only subSFT in S. S does not have any nontrivial SFT factor, any non-trivial block gluing subshift factor or any factor with measurably completely positive entropy, but S allows for a factor having topologically completely positive entropy. Similar results hold for \mathbb{Z}^d SFTs X(with $d \geq 2$) of arbitrarily large entropy: X contains a zero-entropy subSFT that intersects all non-empty subsystems of X and thus X can not factor onto any non-trivial block gluing shift (in particular there are no non-trivial full shift factors). Again X has a (sofic) factor of topologically completely positive entropy and can be made topologically mixing.

Contrary to this strengthening a previous result of Desai we are able to show that every block gluing \mathbb{Z}^d shift factors onto any lower entropy full shift.