INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS IN HONOUR OF MICHAŁ MISIUREWICZ ON HIS 60TH BIRTHDAY

Bedlewo, Poland, June 30 – July 5, 2008

Multifractal analysis for multimodal maps

Mike Todd (Universidade do Porto)

Let $f: I \to I$ be a C^3 map of the interval I with critical points. Given an equilibrium state μ_{ϕ} for a Hölder potential $\phi: I \to \mathbb{R}$, the local dimension $d_{\mu_{\phi}}(x)$ measures how concentrated μ_{ϕ} is at this point. The dimension spectrum encodes the Hausdorff dimension of level sets of $d_{\mu_{\phi}}$. This spectrum can be understood via induced maps (X, F), where $F = f^{\tau}$ for some inducing time τ . A major challenge for maps with critical points is to find inducing schemes which 'see' a sufficiently large subset of the space. In this talk I will explain how this problem can be overcome, and hence that the dimension spectrum is encoded by a function related to the pressure of some potentials involving ϕ . These results apply to Collet-Eckmann maps, as well as to maps with weaker growth conditions.