Zbigniew Jurek

Uniwersytet Wrocławski

O rachunku na losowych odwzorowaniach całkowych

> (A calculus on random integral mappings)

For an interval $(a, b]$ in the positive half-line, two deterministic functions h and r, and a Lévy process $Y_{\nu}(t), t \geq 0$, where ν is the law of random variable $Y_{\nu}(1)$, we consider the following mapping

$$
\nu \longmapsto I_{(a, b]}^{h, r}(\nu):=\mathcal{L}\left(\int_{(a, b]} h(t) d Y_{\nu}(r(t))\right)
$$

where \mathcal{L} denotes the probability distribution of the random integral.

1. Retriving the measure ν.

PROPOSITION 1 Let $\nu \in I D\left(R^{d}\right)$, r is continuously differentiable and there exists $c \in(a, b)$ such that $h(c) \neq 0$ and $r^{\prime}(c) \neq 0$. Then

$$
\mathcal{L}\left(\int_{c}^{x} \frac{h(t)}{h(c)} d Y_{\nu}\left(\frac{r(t)}{r^{\prime}(c)}\right)\right)^{* \frac{1}{x-c}} \Rightarrow \nu, \quad \text { as } x \downarrow c
$$

2. Compositions of random integral mappings.

For functions h_{1}, \ldots, h_{m}, intervals $\left(a_{1}, b_{1}\right], \ldots,\left(a_{m}, b_{m}\right]$ and measures $\rho_{1}, \ldots, \rho_{m}$ let

$$
\mathbf{h}:=h_{1} \otimes \ldots \otimes h_{m}, \quad \text { (tensor product of functions) }
$$

i.e. $\mathbf{h}\left(t_{1}, t_{2}, \ldots, t_{m}\right):=h_{1}\left(t_{1}\right) \cdot h_{2}\left(t_{2}\right) \cdot \ldots \cdot h_{m}\left(t_{m}\right)$, where $a_{i}<t_{i} \leq b_{i}$;
$(\mathbf{a}, \mathbf{b}]:=\left(a_{1}, b_{1}\right] \times \ldots \times\left(a_{m}, b_{m}\right], \boldsymbol{\rho}:=\rho_{1} \times \ldots \times \rho_{m}$ (product measure)
THEOREM 1 If the image $\boldsymbol{h}((\boldsymbol{a}, \boldsymbol{b}])=(c, d] \subset \mathbb{R}^{+}$and $\nu \in I D(E)$ is from an appropriate domain then we have

$$
I_{\left(a_{1}, b_{1}\right]}^{h_{1}, \rho_{1}}\left(I_{\left(a_{2}, b_{2}\right]}^{h_{2}, \rho_{2}}\left(\ldots\left(I_{\left(a_{m}, b_{m}\right]}^{h_{m}, \rho_{m}}(\nu)\right)\right)\right)=I_{(c, d]}^{t, \boldsymbol{h} \boldsymbol{\rho}}(\nu)
$$

where $\boldsymbol{h} \boldsymbol{\rho}$ is the image of the product measure $\boldsymbol{\rho}=\rho_{1} \times \ldots \times \rho_{m}$ under the mapping $h:=h_{1} \otimes \ldots \otimes h_{m}$.

3. Fixed points of random integral mappings.

We will say that an infinitely divisible measure ρ is a fixed point of an integral mapping $I_{(a, b]}^{h, r}$, if

$$
I_{(a, b]}^{h, r}(\rho)=\rho^{* c} * \delta_{z}, \quad \text { for some } c>0 \text { and } z \in E .
$$

Equivalently, in terms of Lévy exponents Φ 's:

$$
\mathcal{I}_{(a, b]}^{h, r}(\Phi)(y)=c \Phi(y)+i<y, z>\text { for all } y \in E^{\prime} .
$$

PROPOSITION 2 In order that p-stable measure γ_{p} be a fixed point of the mapping $I_{(a, b]}^{h, r}$ it is necessary and sufficient that $0<\int_{(a, b]}|h(t)|^{p}|d r(t)|<\infty$.

4. Examples of iterated integral mappings and image measures

Example 1 For $\nu \in I D_{\log ^{m}}$ and $m=1,2, \ldots$
$I_{(0, \infty)}^{e^{-s}, s}\left(I_{(0, \infty)}^{e^{-s}, s}\left(\ldots I_{(0, \infty)}^{e^{-s}, s}(\nu)\right)\right)=I_{(0, \infty)}^{e^{-t} \frac{t^{m}}{m!}} \in L_{m}, \quad(m$-times selfdecomposable measures;
Example 2 For $\beta>0$ we have

$$
I_{(0,1]}^{t^{1 / \beta}}, t \circ I_{(0,1]}^{s^{1 / 2 \beta}, s}=I_{(0,1]}^{w, 2 w^{\beta}\left(1-(1 / 2) w^{\beta}\right)}=I_{(0,1]}^{(1-\sqrt{t})^{1 / \beta}, t}
$$

Or equivalently, for Lebesque measure l_{1} on $0<w \leq 1$ we get

$$
\left(t^{1 / \beta} \otimes s^{1 /(2 \beta)}\right)\left(l_{1} \times l_{1}\right)(d w)=i d^{\otimes 2}\left(\beta t^{\beta-1} d t \times 2 \beta s^{2 \beta-1} d t\right)(d w)=2 \beta w^{\beta-1}\left(1-w^{\beta}\right) d w
$$

Example 3 For $\beta>0$

$$
I_{(0,1]}^{t^{1 / \beta}}, t \circ I_{(0, \infty)}^{e^{-s}, s}=I_{(0, \infty)}^{e^{-s}, s+\beta^{-1} e^{-\beta s}-\beta^{-1}}=I_{(0,1]}^{-w, \beta^{-1} w^{\beta}-\log w-\beta^{-1}},
$$

or equivalently

$$
\left(t^{1 / \beta} \otimes e^{-s}\right)\left(l_{1} \times l\right)(d w)=\left(\beta^{-1} w^{\beta}-\log w-\beta^{-1}\right) d w
$$

Example 4 For $\alpha \in \mathbb{R} I_{(0, \infty)}^{t, \Gamma(\alpha ; t)} \circ I_{(0, \infty)}^{e^{-s}, s}=I_{(0, \infty)}^{t, \int_{t}^{\infty} s^{-1} \Gamma(\alpha ; s) d s}$,

Bibliografia

[1] Z. J. Jurek, Calculus on random integral mappings $I_{(a, b]}^{h, r}$ and their domains, 2013, arXiv:0817121 [math.PR]
[2] Z. J. Jurek, A random integral calculus on generalized s-selfdecomposable probability measures, Sankhya A, vol 76, 2014, pp. 1-14.
[3] Z. J. Jurek, Remarks on factorization property of some random integrals, Stat. Probab. Lettrs, vol. 94, 2014, pp. 192-195.

