[*see also*: element, member, membership]

Lebesgue discovered that a satisfactory theory of integration results if the sets $E_i$ are allowed to belong to a larger class of subsets of the line.

Two consecutive elements do not belong both to $A$ or both to $B$.

It turns out that $A$, $B$ and $C$ all belong to the same class, which we represent by the symbol $P_2$.

For the sake of clarity, we shall indicate in what follows to which space $X$ belongs.

[Do not write: “$E$ belongs to the most important classes of algebras” if you mean: * $E$ is one of the most important classes of algebras* or * $E$ is among the most important classes of algebras*.]

Go to the list of words starting with: a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
y
z