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1. Introduction. Denote by A and ) the operators on arithmetic func-
tions defined by

Af(n):=fn+1)=f(n), Qf(n):=fn+1)/f(n)

There are two objectives to the present note. The first is related to a result
of the first named author, published jointly with Tao Yuan-Sheng and Shao
Pin-Tsung [3]:

THEOREM 1. If an additive function f : N — R/Z has the property
Af(n) — 0 as n — oo, then

f(n)=clogn+7Z  with some constant ¢ € R.

We will show that the proof of this theorem as given there, although
already quite short, can still be shortened and made clearer by a certain
rearrangement of the main arguments.

Theorem 1 has an obvious translation to the multiplicative setting: If
a multiplicative function f : N — C with modulus 1 has the property
Qf(n) — 1, then it is of the form n® with s a purely imaginary complex
number. In fact this statement remains true even if we drop the condition
of unimodularity, except that now of course the exponent can be arbitrary:

THEOREM 2. If f:N — C is multiplicative and Qf(n) — 1 as n — oo,
then f(n) =n® with some s € C.

On the other hand, for f : N— C of modulus 1 the conditions “Q f(n) —1"
and “Af(n) — 0” are equivalent, so a different strengthening of Theorem 1
is given by the following result, which is our second main objective:

THEOREM 3. If f: N — C is multiplicative and Af(n) — 0, then either
fn)=n® withs € C, 0 <Res <1, orelse f(n) — 0 as n — .
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Theorem 3, which confirms an older conjecture of Katai, was stated as a
consequence of Theorem 1 by the first named author in a letter to Katai in
1984, and is quoted and applied as “a result of Wirsing from 1984” in a paper
of Kétai and Phong from 1996 [1]. Unfortunately it was never published. We
shall supply here a proof of Theorem 3 via Theorem 2.

The results of this paper extend—and use—a well known theorem of
Erdos on additive functions, of which we append a short proof for the
reader’s convenience.

2. Proof of Theorem 1. We denote by || - || the norm in R/Z, defined
by ||kz| = |z — 2’|, where £ is the canonical mapping from R to R/Z and
z’ the integer nearest to x.

I. There is a function F' : N — R such that k o F = f and |AF(n)| =
|Af(n)|]. Just choose each F'(n+ 1) from (F(n)—1/2,F(n)+ 1/2]. Conse-
quently, AF(n) — 0.

II. In terms of F' the additivity of f is expressed by stating that
v(a,b) := F(ab) — F(a) — F(b) isin Z if (a,b) = 1.

ITI. For given a and bounded gaps between n, n’ we have ~y(a,n’) —
v(a,n) = F(an') — F(an) — F(n') + F(n) = o(1). Thus the subsequence of
the (integral!) y(a,n) with (a,n) = 1 stabilizes to some integer §(a), and
the whole sequence converges, i.e.

}ng\l{ v(a,n) = d(a) € Z.

IV. Consider the easily checked identity:
’7(&, b) = 7((1’ bC) + 7(b7 C) - W(Gba C)'

If we send c to oo, then in view of III we obtain

(1) (a,b) = d(a) + 6(b) — d(ab),
and here b — oo yields 6(ab) — 6(b) — 0, that is,
(2) d(ab) =6(b) for all b > n,, n, suitable.

The first of these relations is best expressed if we introduce the new function
G(n) :=F(n) +d0(n).
Then (1) states that G is completely additive.

V. Let us look at (2). In particular it implies that if b > ny then 6(b) =
5(2b). Now also 2b > ny etc., hence 6(2b) = §(4b) etc., §(b) = 5(2%b) for
all k. Furthermore for all large k (as soon as 2¥ > n;) another application
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of (2) gives §(b) = §(2%). Since this is independent of b we have:
The function ¢ is constant from some point (= ns) on.

VI. From this and I we obtain AG(n) — 0 for the (completely) additive
function G. Then by Erdés’s Theorem (cf. §4) it follows that G(n) = ¢ logn
for some constant ¢ € R and finally, since 6(n) € Zand f = ko F = koG,

f(n)=clogn+7Z. m

3. Proof of Theorems 2 and 3

Proof of Theorem 2. If we write f(n) = |f(n)]|e?™9() then under the
given assumptions log [f| : N — Rand g = (27) targ f : N — R/Z are addi-
tive and Alog|f(n)| = log|Qf(n)| — logl =0, Ag(n) = (27)LargQf(n)
— (2m)~targl = 0, so log|f(n)| = ologn and g(n) = 7(27) " tlogn + Z
by Erdés’s Theorem and Theorem 1 respectively. Thus, as claimed, f(n) =

no‘—l—i’r. -

Proof of Theorem 3. Note that Af(n) — 0 implies @ f(n) — 1, provided
|f(n)| is bounded below by some positive constant u:

Af(n)| _ |Af(n)]
Qn) —11= | 5] < U
So in this case Theorem 2 applies and gives f(n) = n®. Obviously Re s < 1,
since Af(n) — 0 implies f(n) = o(n).
It remains to show f(n) — 0 if f is not bounded in this way. In fact a
weaker assumption suffices and Theorem 3 will follow immediately from

LEMMA. If f : N — C is multiplicative, Af(n) — 0, and there is an
a € N such that |f(a)| < 1, then f(n) — 0 as n — oco.

Proof. Let a be a fixed number such that | f(a)| =: ¢ < 1. By assumption,
we have |Af(n)| < e/a? for n > ng(e). To each n € N we attach a sequence
n,n',n”,...,n®) by the modified division algorithm n(:=Y = an® +r; that
allows 0 < r; < a? but requires that a and n(¥) be coprime. We stop at the
first index k for which n®*) < ng(e) + a?. Breaking the gaps up into r; steps
of length 1 we see |f(n=Y) — f(a)f(n™)| < e fori=1,...,k Thus

[F ()] < gl f(nD)] + .
The total result from these inequalities is
[f(n)] < e+ale+ale+...+ale+alf(n™)])...)
<e(l—gq) " +¢*1f (™).

Since ¢ is arbitrary, f (n(k)) stays bounded once ¢ is fixed, and k tends to
infinity as n does, we see that indeed f(n) — 0. m =
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4. Appendix: Erdds’s Theorem

THEOREM 4 (Erdés, 1946). If an additive function f : N — R has the
property Af(n) — 0 as n — oo, then

f(n) =clogn  with some constant ¢ € R.

The following proof is taken from [2]. For convenience, assume first that f
is completely additive, which is all that is needed for our application. Choose
an integer g > 2 and attach to each n € N a sequence n,n’/,n”,...,n* by
the g-adic division algorithm n=Y = gn(® + r; where 0 < r; < g, which
terminates when n(*) < ¢. Breaking the gaps up into steps of length 1 we see
|f(nG=D) = f(n®) = f(g)| < ¢, for any &, as long as n(?) is sufficiently large,
and bounded for the remaining i. The total result from these inequalities is

[f(n) = kf(g)] < ke + O(1),
in other words,
f(n) =kf(g)+ o(k).

Since k ~ logn/logg as n — oo we have
__logn

fn) = oz g

The very first impression is disappointment: An asymptotic relation rather
than the expected identity? But the asymptotic behavior is independent of
the choice of g. Therefore f(g)/logg is a constant! The same proof works
with restricted additivity if one uses the modified division algorithm as in
the lemma. m

f(g) + o(logn).

References

[1] I. Kéatai and B. M. Phong, On some pairs of multiplicative functions correlated by an
equation, in: New Trends in Probability and Statistics, Vol. 4 (Palanga, 1996), VSP,
Utrecht, 1997, 191-203.

[2] E. Wirsing, Additive and completely additive functions with restricted growth, in:
H. Halberstam and C. Hooley (eds.), Recent Progress in Analytic Number Theory, 11
(Durham, 1979), Academic Press, 1981, 231-280.

[3] E. Wirsing, Y. S. Tao and P. T. Shao, On a conjecture of Kdtai for additive functions,
J. Number Theory 56 (1996), 391-395.

Universitat Ulm Max-Planck-Institut fiir Mathematik
Helmholtzstrafle 18 Vivatsgasse 7
D-89069 Ulm, Germany D-53111 Bonn, Germany
E-mail: wirsing@mathematik.uni-ulm.de E-mail: zagier@mpim-bonn.mpg.de

Received on 29.5.2000 (3827)



