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Certain classes of rapidly convergent series
representations for L(2n, χ) and L(2n+ 1, χ)

by

H. M. Srivastava (Victoria, BC) and Hirofumi Tsumura (Tokyo)

1. Introduction. For a non-trivial primitive Dirichlet character χ of
modulus q, let L(s, χ) denote the Dirichlet L-function defined (for <(s) > 1)
by

(1.1) L(s, χ) :=
∞∑

n=1

χ(n)
ns

(<(s) > 1),

and (for <(s) ≤ 1) by its analytic continuations (see, e.g., [5, Chapter 4]).
Then, in terms of the familiar generalized Bernoulli numbers Bn,χ defined
by means of the generating function

(1.2)
q∑

k=1

χ(k)tekt

eqt − 1
=
∞∑

n=0

Bn,χ
tn

n!
(|t| < 2π/q),

it is fairly well known that

(1.3) L(2n+ 1, χ) =
(−1)niτ(χ)
2 · (2n+ 1)!

(
2π
q

)2n+1

B2n+1,χ

(n ∈ N0 := N ∪ {0}; N := {1, 2, 3, . . .})
and

(1.4) L(2n, χ) =
(−1)n−1τ(χ)

2 · (2n)!

(
2π
q

)2n

B2n,χ (n ∈ N)

for χ with χ(−1) = −1 and χ(−1) = 1, respectively; here i :=
√
−1 and

τ(χ) is the Gauss sum defined by

τ(χ) :=
q∑

k=1

χ(k) exp
(

2kπi
q

)
.
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But no such simple (and useful) representations exist for L(2n, χ) and
L(2n+ 1, χ) for χ with χ(−1) = −1 and χ(−1) = 1, respectively. Recently,
by making use of the Mellin transformation technique, Katsurada [1] proved
the following series representations (see [1, p. 82, Theorem 3]): Let u ∈ R
with |u| ≤ 1. If χ(−1) = 1 and χ 6= 1, then

(1.5) nL(2n+ 1, χ)− n
∞∑

l=1

χ(l)
l2n+1 cos

(
2lπu
q

)
− πu

q

∞∑

l=1

χ(l)
l2n

sin
(

2lπu
q

)

= (−1)n
(

2πu
q

)2n[ n−1∑

k=1

(−1)k−1 · k
(2n− 2k)!

· L(2k + 1, χ)
(2πu/q)2k

+
τ(χ)
q

∞∑

k=1

(2k)!
(2n+ 2k)!

L(2k, χ)u2k
]

(n ∈ N).

Furthermore, if χ(−1) = −1, then

(1.6) L(2n, χ)−
∞∑

l=1

χ(l)
l2n

cos
(

2lπu
q

)

= (−1)n
(

2πu
q

)2n−1[ n−1∑

k=1

(−1)k−1

(2n− 2k)!
· L(2k, χ)

(2πu/q)2k−1

+
2τ(χ)i
q

∞∑

k=0

(2k)!
(2n+ 2k)!

L(2k + 1, χ)u2k+1
]

(n ∈ N).

The main object of this paper is to derive two (presumably new) members
of the class of the series representations (1.5) and (1.6) (see [3, Section 3]),
by using the same methods as those in our earlier work [2]. The infinite
series occurring in these two members (see (3.1) and (3.2) below) converge
remarkably faster than those in (1.5) and (1.6).

2. A set of lemmas. We make use of χ-analogues of the notations in-
troduced already in our earlier paper [2]. Throughout this paper, we assume
that χ is a non-trivial primitive Dirichlet character of modulus q. We define
the sequence {βn,χ(x)}∞n=0 by means of the generating function (cf. (1.2))

(2.1) F (x, t, χ) :=
q∑

k=1

χ(k)txq−kekt

eqt − xq =
∞∑

n=0

βn,χ(x)
tn

n!
(|t| < 2π/q)

(1 ≤ x ≤ 1 + c; c > 0),

so that, clearly,

(2.2) βn,χ(1) = Bn,χ (n ∈ N0).
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We note that the numbers βn,χ(x) are essentially the same as the generalized
Euler numbers which were considered elsewhere by Tsumura [4, p. 282, (5)].
Since

∑q
k=1 χ(k) = 0 and since the zeros of eqt − xq are given by

(2.3) t =
2nπi
q

+ log x (n ∈ Z),

the radius of convergence of the series in (2.1) is at least 2π/q. Hence, by the
Cauchy–Hadamard theorem for absolute convergence (cf., e.g., [6, p. 30]),
we have

Lemma 1. Let the sequence {βn,χ(x)}∞n=0 be defined by (2.1). Then there
exists some non-negative real number κ such that

(2.4) lim inf
n→∞

( |βn,χ(x)|
n!

)−1/n

=
2π
q

+ κ (κ ≥ 0).

We now consider the following Dirichlet series (cf. (1.1)):

(2.5) ω(s, x, χ) :=
∞∑

n=1

x−nχ(n)
ns

(1 ≤ x ≤ 1 + c; c > 0),

so that, clearly,

(2.6) ω(s, 1, χ) = L(s, χ).

In case 1 < x ≤ 1 + c (c > 0), we can see that the function ω(s, x, χ) is
holomorphic on the whole complex s-plane.

Lemma 2. Let βn,χ(x) and ω(s, x, χ) be defined by (2.1) and (2.5), re-
spectively. Then

(2.7) ω(1− n, x, χ) = −βn,χ(x)
n

(n ∈ N).

Proof. The relationship (2.7) is well known when x = 1. So we assume
that 1 < x ≤ 1 + c (c > 0). For t ∈ C with |t| < log x, it is easily seen that

1
zq − 1

q∑

k=1

χ(k)zk = −
q∑

k=1

χ(k)
∞∑

j=1

zk+q(j−1)

= −
∞∑

j=1

qj∑

k=1+q(j−1)

χ(k − qj + q)zk

= −
∞∑

j=1

χ(j)zj (z := et/x),

since |z| < 1. Thus, for t ∈ C and |t| < log x, the generating function (2.1)
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readily yields

F (x, t, χ) = −t
∞∑

j=1

x−jχ(j)ejt = −
∞∑

j=1

x−jχ(j)
∞∑

n=0

jntn+1

n!
(2.8)

= −
∞∑

n=0

( ∞∑

j=1

x−jχ(j)jn
) tn+1

n!

= −
∞∑

n=1

n
( ∞∑

j=1

x−jχ(j)jn−1
) tn
n!
,

where the inversion of the order of summation can be justified by absolute
convergence of the series involved. The assertion (2.7) of Lemma 2 would now
follow from (2.8) if we apply the definition (2.5) and compare the coefficients
of tn in (2.1) and (2.8).

Lemma 3. Let n ∈ N and |θ| < 2π/q (θ ∈ R).

(1) If χ(−1) = 1 and χ 6= 1, then
∞∑

k=1

x−kχ(k)
k2n+2 sin(kθ) =

n∑

k=0

(−1)kθ2k+1

(2k + 1)!
ω(2n− 2k + 1, x, χ)(2.9)

−
∞∑

k=n+1

(−1)kθ2k+1

(2k + 1)!
· β2k−2n,χ(x)

2k − 2n

(1 < x ≤ 1 + c; c > 0).

(2) If χ(−1) = −1, then
∞∑

k=1

x−kχ(k)
k2n+1 sin(kθ) =

n−1∑

k=0

(−1)kθ2k+1

(2k + 1)!
ω(2n− 2k, x, χ)(2.10)

−
∞∑

k=n

(−1)kθ2k+1

(2k + 1)!
· β2k−2n+1,χ(x)

2k − 2n+ 1

(1 < x ≤ 1 + c; c > 0).

Proof. Denote, for convenience, the left-hand side of (2.9) by Ωn(x, χ, θ).
Then it is easily seen that

Ωn(x, χ, θ) =
∞∑

k=1

x−kχ(k)
k2n+2

∞∑

j=0

(−1)j(kθ)2j+1

(2j + 1)!
(2.11)

=
∞∑

j=0

(−1)jθ2j+1

(2j + 1)!

∞∑

k=1

x−kχ(k)
k2n−2j+1 ,

where the various interchanges of the order of summation are justified by
absolute convergence of the series involved under the conditions stated al-
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ready in Lemma 3. Upon separating the j-sum in (2.11) into two parts, we
have

Ωn(x, χ, θ) =
n∑

j=0

(−1)jθ2j+1

(2j + 1)!

∞∑

k=1

x−kχ(k)
k2n−2j+1(2.12)

+
∞∑

j=n+1

(−1)jθ2j+1

(2j + 1)!

∞∑

k=1

x−kχ(k)
k2n−2j+1

=
n∑

j=0

(−1)jθ2j+1

(2j + 1)!
ω(2n− 2j + 1, x, χ)

−
∞∑

j=n+1

(−1)jθ2j+1

(2j + 1)!
· β2j−2n,χ(x)

2j − 2n
,

by the definition (2.5) and Lemma 2, which evidently completes the proof
of Lemma 3(1). By employing the same techniques as above, we can give
the proof of Lemma 3(2).

3. The main series representations. By applying Lemma 3, we next
prove the following

Theorem. Let u ∈ R and |u| ≤ 1.

(1) If χ(−1) = 1 and χ 6= 1, then

(3.1) L(2n+ 1, χ)− q

2πu

∞∑

l=1

χ(l)
l2n+2 sin

(
2lπu
q

)

= (−1)n+1
(

2πu
q

)2n[ n−1∑

k=0

(−1)k

(2n− 2k + 1)!
· L(2k + 1, χ)

(2πu/q)2k

+
2τ(χ)
q

∞∑

k=1

(2k − 1)!
(2n+ 2k + 1)!

L(2k, χ)u2k
]

(n ∈ N).

(2) If χ(−1) = −1, then

(3.2) L(2n, χ)− q

2πu

∞∑

l=1

χ(l)
l2n+1 sin

(
2lπu
q

)

= (−1)n+1
(

2πu
q

)2n−1[ n−1∑

k=1

(−1)k

(2n+ 2k + 1)!
· L(2k, χ)

(2πu/q)2k−1

− 2τ(χ)i
q

∞∑

k=0

(2k)!
(2n+ 2k + 1)!

L(2k + 1, χ)u2k+1
]

(n ∈ N).
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Proof. Let θ = 2πu/q. Then it is easily observed that the series on the
left-hand sides of (2.9) and (2.10) are uniformly convergent with respect to
x on the closed interval [1, 1 + c] (c > 0). On the other hand, it follows from
Lemma 1 that the series on the right-hand sides of (2.9) and (2.10) are also
uniformly convergent with respect to x on [1, 1+c] (c > 0). Hence, by letting
x→ 1+ in Lemma 3, we have, for all n ∈ N,

(3.3)
∞∑

k=1

χ(k)
k2n+2 sin

(
2kπu
q

)
=

n∑

k=0

(−1)k

(2k + 1)!

(
2kπu
q

)2k+1

L(2n−2k+1, χ)

−
∞∑

k=n+1

(−1)k

(2k + 1)!

(
2kπu
q

)2k+1
B2k−2n,χ

2k − 2n

and

(3.4)
∞∑

k=1

χ(k)
k2n+1 sin

(
2kπu
q

)
=
n−1∑

k=1

(−1)k

(2k + 1)!

(
2kπu
q

)2k+1

L(2n− 2k, χ)

−
∞∑

k=n

(−1)k

(2k + 1)!

(
2kπu
q

)2k+1
B2k−2n+1,χ

2k − 2n+ 1

for χ 6= 1 with χ(−1) = 1 and χ(−1) = −1, respectively. By using the
relationships (1.3) and (1.4), we readily obtain the assertions (3.1) and (3.2)
of the Theorem.

The infinite series occurring on the right-hand sides of (3.1) and (3.2)
obviously converge more rapidly than the corresponding ones in (1.5) and
(1.6), respectively.
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