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1. Introduction. Since the early days of the Hardy–Littlewood method,
investigations concerning the exceptional set of integers not represented in a
prescribed manner have been pursued, in various additive problems of War-
ing type, as a means of gaining insight going beyond that available through
direct analysis. The conventional aim is to establish that the set of excep-
tions has density zero amongst all natural numbers, or a large subset thereof.
Our objective in this series of papers is to obtain analogous conclusions for
the set of exceptions even amongst the elements of a thin polynomial se-
quence, such as the set of integral squares. In our primary opus [4], we
discussed in general terms the philosophy underlying our novel approach to
this circle of problems, illustrating our ideas with a detailed investigation
of the set of integers in quadratic and cubic polynomial sequences failing
to admit a representation as the sum of six cubes of natural numbers. Our
secondary opus [5] was devoted to the binary Goldbach problem. We now
turn our attention to corresponding problems in which, for the number of
representations of a prescribed type, one seeks to establish the validity of the
expected asymptotic formula for almost all integers in a given polynomial
sequence.

The flavour of the results now available is perhaps best illustrated with
a discussion of Waring’s problem for cubes, and this necessitates the intro-
duction of some notation. Denote by Rs(n) the number of representations
of n as the sum of s cubes of positive integers. A heuristic application of
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the circle method suggests that for s ≥ 4, one should have the asymptotic
formula

(1.1) Rs(n) =
Γ (4/3)s

Γ (s/3)
Ss(n)ns/3−1 + o(ns/3−1),

where

Ss(n) =
∞∑

q=1

q∑

a=1
(a,q)=1

(
1
q

q∑

r=1

e(ar3/q)
)s
e(−an/q),

and e(z) = exp(2πiz). We remark that when s ≥ 4, the singular series
Ss(n) is known to satisfy the lower bound Ss(n) � 1 (see Theorem 4.5 of
Vaughan [19]), and thus the relation (1.1) does indeed constitute an asymp-
totic formula.

The conjectured formula (1.1) has been established by Hardy and Lit-
tlewood [9] for s ≥ 9, and by Vaughan [17] for s = 8. Subject to the truth of
an unproved hypothesis concerning certain Hasse–Weil L-functions, one has
sharp estimates for the sixth moment of the cubic Weyl sum due to Hooley
[12] (see Hooley [13] and Heath-Brown [10] for the sharpest available con-
clusions), and these permit the conditional proof of (1.1) in the additional
case s = 7. For smaller values of s, this formula is known to hold only in
an average sense. When s is a natural number, denote by Es(N) the num-
ber of natural numbers not exceeding N for which (1.1) fails. The above
mentioned work of Vaughan [17] shows that for a certain positive number δ,
one has E4(N) � N(logN)−δ, whence the asymptotic formula (1.1) holds
for almost all n. Indeed, by employing refinements due to Boklan [1], one
may show that any δ < 3 is permissible. The only available conclusion of
which we are aware for thin sequences is due to Brüdern and Watt [6], who
demonstrate the validity of the formula (1.1) for R4(n) for almost all inte-
gers n in certain short intervals. With additional variables it is reasonable
to expect stronger conclusions, but this is largely unexplored territory. By
combining use of the sharpest available version of Weyl’s inequality with
the classical approach leading to the above estimate for E4(N), it is simple
to establish that whenever ε > 0, one has E4+t(N)� N1−t/6(logN)ε−3+t/2

for t = 1, 2, 3. Plainly, these estimates lack sufficient power to provide any
conclusions concerning the validity of (1.1) in quadratic sequences of natu-
ral numbers n when s = 6, or cubic sequences when s = 7. However, as we
demonstrate in Section 2 below, it is possible to show that (1.1) does indeed
hold when s = 6, for almost all square values of n, and likewise when s = 7,
for almost all cubic values of n.

It is convenient henceforth to describe a polynomial φ ∈ Q[t] as being an
integral polynomial if, whenever the parameter t is an integer, then the value
φ(t) is also an integer. Next recall the notation pertaining to the equation
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(1.1). When φ is an integral polynomial and γ is a fixed positive number,
we denote by Es,φ(N ; γ) the number of integers n with 1 ≤ n ≤ N for which
φ(n) is positive, and

(1.2)
∣∣∣∣Rs(φ(n))− Γ (4/3)s

Γ (s/3)
Ss(φ(n))φ(n)s/3−1

∣∣∣∣ >
φ(n)s/3−1

(logn)γ
.

Our first conclusion shows that when s = 6 or 7, the asymptotic formula
(1.1) holds for almost all natural numbers lying in a fixed quadratic sequence.

Theorem 1.1. Let φ be an integral quadratic polynomial.

(i) When γ and δ are positive numbers with δ < max{2− γ, 5/2− 2γ},
one has E6,φ(N ; γ)� N(logN)−δ.

(ii) For any positive numbers γ and δ, one has E7,φ(N ; γ)� N2/3+δ.

In each case, the implicit constant in Vinogradov’s notation may depend on
φ, γ and δ.

In order to obtain useful conclusions concerning cubic sequences, our
methods require the availability of seven cubes in the representation.

Theorem 1.2. Let Φ be an integral cubic polynomial , and suppose that γ
and δ are positive numbers with δ < 2−2γ. Then E7,Φ(N ; γ)� N(logN)−δ.
Here, the implicit constant in Vinogradov’s notation may depend on Φ, γ
and δ.

It may be worth pointing out that the conclusions of Theorems 1.1 and
1.2 may also be established in many cases where the polynomials φ and
Φ depend on N . In the cases φ(t) = M − t2, where we take N = M1/2,
and Φ(t) = M − t3, where we take N = M1/3, for example, the above
conclusions may be established with the dependence of the implicit constants
on φ and Φ suppressed. The energetic reader may also care to verify that a
similar argument yields a conclusion resembling Theorem 1.1(i), but with the
polynomial φ(n) now replaced by the cubic polynomial φ(t, u) = M−t3−u3.
Thus, with this substitution in mind, and with N = M 1/3, one finds that
whenever δ < 2− γ, the inequality (1.2) holds for at most O(N 2(logN)−δ)
of the pairs (t, u) with 1 ≤ t, u ≤ N .

At this stage, rather than describe in detail the strategy for establish-
ing conclusions of the type typified in Theorems 1.1 and 1.2, we refer the
reader to our earlier paper [4] for a lengthy discussion concerning the ba-
sic plan of attack on such problems. The relevant ideas are described in
Section 2 of the present paper. Suffice it to say that on this occasion, we en-
gineer an exponential sum which encodes information concerning the failure
of the asymptotic formula (1.1) within the sequence of integers n of inter-
est (see, for example, the exponential sum K(α) defined in (2.6) below).
Mean value estimates involving this exponential sum play a prominent role
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within our application of the Hardy–Littlewood method, and it is crucial to
our argument that this sum preserve the arithmetic information concerning
the sequence of integers under consideration. Such information is frequently
lost, or at least exploited rather inefficiently, in more traditional approaches
involving the use of Bessel’s inequality.

We have concentrated thus far on sums of cubes, but of course the same
ideas are applicable for sums of higher powers, and indeed, in certain circum-
stances, there is little to be lost when one restricts the integers concerned
to be prime numbers.

Theorem 1.3. When k is a positive integer , define s1(k) by

s1(k) =
{

2k when 1 ≤ k ≤ 5,
7
8 · 2k when k ≥ 6.

Then whenever φ is an integral polynomial with positive leading coefficient ,
the expected asymptotic formula for the number of representations of the
integer φ(n) as the sum of s kth powers of primes holds for almost all n,
provided only that s ≥ s1(k).

We remark that when k ≥ 9 or thereabouts, the work of Ford [7] may
be used to reduce the permissible choice for s1(k). Thus, when k is large,
one may take s1(k) = (1 + o(1))k2 log k in the conclusion of Theorem 1.3.
With an additional variable, of course, one may establish a conclusion in
which the expected asymptotic formula holds for all large integers (see, for
example, Hua [14]). We omit the proof of Theorem 1.3, noting only that
estimates of the form

1�

0

∣∣∣
∑

x≤P
e(αxk)

∣∣∣
s1(k)

dα� P s1(k)−k,

due to Vaughan [17], [18] and Boklan [2], together with well-known estimates
for the exponential sum ∑

p≤P
e(αpk),

in which an arbitrarily large power of logP is saved over the trivial estimate
when α lies on a “minor arc”, suffice to establish the desired conclusion
through a method paralleling that of the proof of Theorem 1.1 in Section 2.

It transpires that our methods offer great flexibility in their application
to the study of exceptional sets in additive number theory. In principle the
proofs of Theorems 1.1 and 1.2 might be regarded as providing a model for
almost any application of our methods. We provide several further results
within the compass of our ideas in Sections 3 and 4, together with brief proofs
of these results. As illustrations of what is possible beyond Waring’s problem
for cubes, we mention at this point two further results (but see Theorem 3.2
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below for further conclusions on sums of mixed powers). First we provide a
conclusion which can be considered as a strengthening of Theorem 1.1(i). We
first require some notation. Write R(n) for the number of representations of
n as the sum of five cubes and a sixth power of positive integers, and write

S(n) =
∞∑

q=1

q∑

a=1
(a,q)=1

q−6
( q∑

r=1

e(ar3/q)
)5 q∑

t=1

e(at6/q)e(−an/q).

It is a simple consequence of Vaughan [19], Theorem 4.5, that S(n)� 1 for
each integer n. When φ is an integral polynomial and γ is a fixed positive
number, denote by E∗φ(N ; γ) the number of integers n with 1 ≤ n ≤ N for
which φ(n) is positive and

(1.3)
∣∣∣∣R(φ(n))− Γ (4/3)5Γ (7/6)

Γ (11/6)
S(φ(n))φ(n)5/6

∣∣∣∣ >
φ(n)5/6

(logn)γ
.

Theorem 1.4. Let φ denote an integral quadratic polynomial with pos-
itive leading coefficient. Suppose that γ and δ are positive numbers with
γ + δ < 3/2. Then E∗φ(N ; γ) � N(logN)−δ. Here, the implicit constant in
Vinogradov’s notation may depend on φ, γ and δ.

In a sense, Theorem 1.4 shows that one may restrict one of the cubes
in the representation implicit in Theorem 1.1(i) to be a sixth power, and
deduce nonetheless that almost all integers in a fixed quadratic sequence
possess the expected number of representations.

Next we consider polynomial sequences represented by sums of kth pow-
ers, for larger k. When φ is an integral polynomial with positive leading
coefficient, denote by G̃+

φ (k) the least number s with the property that, for
almost all natural numbers n, the expected asymptotic formula holds for
the number of representations of φ(n) in the shape

(1.4) xk1 + . . .+ xks = φ(n),

with xi ∈ N (1 ≤ i ≤ s).
Theorem 1.5. Let φ be an integral polynomial of degree 1 or 2 with

positive leading coefficient. Then for large k one has

G̃+
φ (k) ≤ 1

2k
2(log k + log log k +O(1)).

If , on the other hand , φ is an integral polynomial of degree l > 2, then for
large k one has

G̃+
φ (k) ≤ (1− 1/l)k2(log k + log log k +O(1)).

As we mentioned implicitly following the statement of Theorem 1.3, the
expected asymptotic formula for sums of s kth powers was established by
Ford [7], provided that s ≥ k2(log k + log log k + O(1)). When l = 1, the
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conclusion of Theorem 1.5 follows easily from the methods underlying the
latter conclusion via a classical argument. We therefore describe the proof
of Theorem 1.5 only in the cases in which l ≥ 2, and it is in fact the latter
situation wherein our new approach plays a crucial role. It is curious that the
number of variables required almost always to obtain the expected number
of representations in the shape (1.4) is almost the same, in the current state
of knowledge, for φ of degree both 1 and 2.

Throughout, the letter ε will denote a sufficiently small positive number.
We take P to be the basic parameter, a large real number depending at
most on ε and any coefficients of implicit polynomials if necessary. We use
� and � to denote Vinogradov’s well-known notation, implicit constants
depending at most on ε and implicit polynomials. Sometimes we make use of
vector notation. For example, the expression (c1, . . . , ct) is abbreviated to c.
Also we write [x] for the greatest integer not exceeding x, and dxe for the
least integer y with y ≥ x. Summations start at 1 unless indicated otherwise.
In an effort to simplify our analysis, we adopt the following convention
concerning the parameter ε. Whenever ε appears in a statement, we assert
that for each ε > 0 the statement holds for sufficiently large values of the
main parameter. Note that the “value” of ε may consequently change from
statement to statement, and hence also the dependence of implicit constants
on ε.

2. Waring’s problem for cubes. The proof of Theorem 1.1 is suffi-
ciently simple that the principles underlying our methods are clearly visible.
We therefore discuss this proof in some detail, so as to provide a model for
future analyses.

The proof of Theorem 1.1. Let φ be an integral quadratic polynomial,
and let N be a large real number. We consider a fixed positive number γ.
Suppose that s = 6 or 7, and define Zs(N) to be the set of integers n
with N/2 < n ≤ N for which φ(n) > 0 and the inequality (1.2) holds.
Our first goal is to show that whenever δ is a positive number with δ <
max{2−γ, 5/2−2γ}, then one has card(Z6(N))�φ N(logN)−δ. Our second
goal is to show that for any positive number δ, one has card(Z7(N)) �φ

N2/3+δ . By summing over dyadic intervals, one then obtains the bounds for
Es,φ(N ; γ) (s = 6, 7) claimed in the statement of Theorem 1.1.

Note first that if the leading coefficient of φ is not positive, then the
desired conclusion is trivial. We therefore suppose that the leading coefficient
of φ is positive, and define P = φ(N)1/3, so that P � N2/3. Next define

(2.1) f(α) =
∑

1≤x≤P
e(αx3).
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Then by orthogonality, for each integer n with N/2 < n ≤ N one has

(2.2) Rs(φ(n)) =
1�

0

f(α)se(−αφ(n)) dα.

Let M denote the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ P (6φ(N))−1},
with 0 ≤ a ≤ q ≤ P/6 and (a, q) = 1. Then, by Theorem 4.4 of Vaughan
[19], there is a positive number τ such that whenever N/2 < n ≤ N one has

(2.3)
�

M

f(α)se(−αφ(n)) dα

=
Γ (4/3)s

Γ (s/3)
Ss(φ(n))φ(n)s/3−1 +O(φ(n)s/3−1−τ ).

Now write m = [0, 1) \M. Then for n ∈ Zs(N), it follows from (1.2), (2.2)
and (2.3) that

(2.4)
∣∣∣

�

m

f(α)se(−αφ(n)) dα
∣∣∣ > 1

2
· φ(n)s/3−1

(logn)γ
.

We next define the complex numbers ηn = ηn,s by taking ηn = 0 for
n 6∈ Zs(N), and when n ∈ Zs(N) by means of the equation

∣∣∣
�

m

f(α)se(−αφ(n)) dα
∣∣∣ = ηn

�

m

f(α)se(−αφ(n)) dα.

In view of (2.4), one obtains

φ(N)s/3−1

(logN)γ
card(Zs(N))�

∑

N/2<n≤N
ηn

�

m

f(α)se(−αφ(n)) dα(2.5)

=
�

m

f(α)sK(−α) dα,

where

(2.6) K(α) =
∑

N/2<n≤N
ηne(αφ(n)).

We now divide into cases.
(i) Suppose that s = 6. As our first treatment of the integral on the right

hand side of (2.5), we apply Hölder’s inequality to obtain

(2.7)
N2

(logN)γ
card(Z6(N))� I

3/4
1 I

1/4
2 ,
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where

(2.8) I1 =
�

m

|f(α)|8 dα and I2 =
1�

0

|K(α)|4 dα.

The mean value I1 is swiftly estimated by reference to Boklan [1], who
established the upper bound

(2.9) I1 � P 5(logP )ε−3

for any positive number ε. The integral I2, by orthogonality, is bounded
above by the number of integral solutions of the equation

φ(n1)− φ(n2) = φ(n3)− φ(n4),

with 1 ≤ ni ≤ N (1 ≤ i ≤ 4). By completing the square in the quadratic
polynomial φ, and considering the associated equation x2

1−x2
2 = x2

3− x2
4, it

follows from well-known estimates that

(2.10) I2 � N2 logN.

On collecting together (2.7), (2.9) and (2.10), we conclude that

N2

(logN)γ
card(Z6(N))� P 15/4(logN)ε−9/4N1/2(logN)1/4

� N3(logN)ε−2,

whence for any ε > 0 one has

(2.11) card(Z6(N))� N(logN)ε+γ−2.

As an alternative to the application of Hölder’s inequality implicit in
(2.7), we may instead apply Schwarz’s inequality to (2.5) to obtain

(2.12)
N2

(logN)γ
card(Z6(N))� (sup

α∈m
|f(α)|)I1/2

1 I
1/2
3 ,

where

(2.13) I3 =
1�

0

|f(α)K(α)|2 dα.

By orthogonality, the integral I3 is bounded above by the number of integral
solutions of the equation

(2.14) φ(n1)− φ(n2) = x3
1 − x3

2,

with ni ∈ Z6(N) and xi ≤ P (i = 1, 2). Consider any solution n,x of (2.14)
counted by I3. When n1 = n2 one has x1 = x2, so that the number of
diagonal solutions is at most P card(Z6(N)). Since N is large, meanwhile,
when n1 6= n2 one has φ(n1) 6= φ(n2), whence x3

1 6= x3
2. But n1 − n2 is a

divisor of φ(n1)−φ(n2), so that an elementary estimate shows that for each
of the O(P 2) possible choices of x1, x2 with x3

1 6= x3
2, one has O(P ε) choices
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for n1 − n2. Fixing any one of the latter choices for n1 − n2, the equation
(2.14) uniquely determines n1 + n2, and hence also each of n1 and n2. It
follows that the number of non-diagonal solutions of (2.14) counted by I3 is
O(P 2+ε). Thus we obtain

(2.15) I3 � P card(Z6(N)) + P 2+ε.

Finally, we note that on combining the refined estimates of Hall and Tenen-
baum [8] for Hooley’s ∆-function with the proof of Lemma 1 of Vaughan
[17], one obtains

(2.16) sup
α∈m
|f(α)| � P 3/4(logP )1/4+ε.

On collecting together (2.9), (2.15), (2.16) with (2.12), we may conclude
that

N2

(logN)γ
card(Z6(N))� P 15/4(logP )ε−5/4(card(Z6(N)))1/2 + P 17/4+ε,

whence the relation P � N 2/3 leads to the upper bound

(2.17) card(Z6(N))� N(logN)ε+2γ−5/2.

In view of our opening comments, the conclusion of Theorem 1.1(i) fol-
lows on combining (2.11) and (2.17), and summing over dyadic intervals.

(ii) Suppose that s = 7. In this case we apply Schwarz’s inequality to
(2.5) to obtain

N8/3

(logN)γ
card(Z7(N))� (sup

α∈m
|f(α)|)2I

1/2
1 I

1/2
3 .

By an argument paralleling that leading to (2.15), one finds on this occasion
that

I3 � P card(Z7(N)) + P 2+ε,

whence by (2.9) and (2.16), we deduce that

N8/3

(logN)γ
card(Z7(N))� P 9/2(logP )ε−1(card(Z7(N)))1/2 + P 5+ε.

The relation P � N2/3 in this case leads to the estimate

card(Z7(N))� N2/3+ε,

and the conclusion of Theorem 1.1(ii) follows on summing over dyadic in-
tervals.

Having prepared the ground with our proof of Theorem 1.1 above, we
may be brief in our discussion of the proof of Theorem 1.2.

The proof of Theorem 1.2. We take φ to be an integral cubic polynomial,
and follow the argument of the proof of Theorem 1.1 down to equations (2.5)
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and (2.6). Our goal is now to show that whenever δ < 2− 2γ, then one has
card(Z7(N))�φ N(logN)−δ. Moreover, in the current situation one should
note that P � N . Fixing s = 7, and applying Schwarz’s inequality to (2.5),
we obtain

(2.18)
N4

(logN)γ
card(Z7(N))� (sup

α∈m
|f(α)|)2I

1/2
1 I

1/2
3 ,

where I1 and I3 are defined as in (2.8) and (2.13), though we stress that in
(2.13) the implicit polynomial φ is now cubic. By orthogonality, the integral
I3 is bounded above by the number of integral solutions of the equation
(2.14) with ni ∈ Z7(N) and xi ≤ P (i = 1, 2). The left hand side of the
latter equation is divisible by the factor n1−n2, and the right hand side of the
equation is divisible by x1−x2. Moreover, the right hand side of the equation
is a homogeneous polynomial in x1, x2. An inspection of the argument of
the proof of Theorem 1.1 of Skinner and Wooley [15] therefore reveals that
I3 is bounded above by the number of diagonal solutions, together with at
most O(N11/6+ε) non-diagonal solutions. We therefore obtain

I3 � N card(Z7(N)) +N11/6+ε,

whence by (2.9), (2.16) and (2.18), we deduce that

N4

(logN)γ
card(Z7(N))

� P 3/2(logP )1/2+ε(N card(Z7(N)) +N11/6+ε)1/2(P 5(logP )ε−3)1/2.

Consequently,
card(Z7(N))� N(logN)ε+2γ−2,

and the conclusion of Theorem 1.2 follows on summing over dyadic intervals.

3. Sums of mixed powers. In this section we explore exceptional sets
in polynomial sequences for additive problems involving mixed powers. Here
one is struck by the utility of sharp mean value estimates for mixed sums
of powers familiar to aficionados of the circle method. We recall two such
estimates in the form of a lemma.

Lemma 3.1. Suppose that X is a large real number. Let φ be an integral
quadratic polynomial with positive leading coefficient. Let κ be a fixed positive
number and let A ⊆ N ∩ [1, κX1/2]. Define

Fj(α) =
∑

y≤X1/j

e(αyj) and G(α) =
∑

n∈A
e(αφ(n)).

Then

(3.1)
1�

0

|G(α)F4(α)2|2 dα� X(logX)ε
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and

(3.2)
1�

0

|G(α)F3(α)F6(α)|2 dα� X(logX)ε.

Proof. On considering the underlying diophantine equations, the esti-
mate (3.1) follows from the argument of the proof of Théorème 2′(i) of
Tenenbaum [16] (see §2, and in particular the estimation of W on p. 235).
The estimate (3.2), meanwhile, follows by applying the methods of Hooley
[11] and Hall and Tenenbaum [8].

As our opening salvo in this offensive on mixed powers, we establish
Theorem 1.4, thereby setting the pattern for our subsequent discussion.

The proof of Theorem 1.4. Let φ be an integral quadratic polynomial
with positive leading coefficient. We consider a fixed positive number γ, and
define Z(N) to be the set of integers n with N/2 < n ≤ N for which the
inequality (1.3) holds. We aim to show that whenever δ is a positive number
with δ < 3/2 − γ, then one has card(Z(N)) �φ N(logN)−δ, whence the
conclusion of Theorem 1.4 follows on summing over dyadic intervals.

Define P = φ(N)1/3, let f(α) be defined as in (2.1), and write

g(α) =
∑

y≤P 1/2

e(αy6).

Then, for each integer n with N/2 < n ≤ N one has

R(φ(n)) =
1�

0

f(α)5g(α)e(−αφ(n)) dα.

Defining the arcs M and m as in the proof of Theorem 1.1, one may apply
the argument of the proof of Theorem 4.4 of Vaughan [19] (with trivial
summation over the variable corresponding to the sixth power) to establish
that there is a positive number τ such that whenever N/2 < n ≤ N , one has

�

M

f(α)5g(α)e(−αφ(n)) dα=
Γ (4/3)5Γ (7/6)

Γ (11/6)
S(φ(n))φ(n)5/6+O(φ(n)5/6−τ ).

Thus we may conclude that for n ∈ Z(N),

(3.3)
∣∣∣

�

m

f(α)5g(α)e(−αφ(n)) dα
∣∣∣ > 1

2
· φ(n)5/6

(logn)γ
.

Define the complex numbers ηn by taking ηn = 0 when n 6∈ Z(N), and
when n ∈ Z(N) by means of the equation

∣∣∣
�

m

f(α)5g(α)e(−αφ(n)) dα
∣∣∣ = ηn

�

m

f(α)5g(α)e(−αφ(n)) dα.



278 J. Brüdern et al.

Then it follows from (3.3) that

(3.4)
N5/3

(logN)γ
card(Z(N))�

�

m

f(α)5g(α)K(−α) dα,

where K(α) is defined as in (2.6). On applying Schwarz’s inequality to (3.4),
we find that

N5/3

(logN)γ
card(Z(N))� I

1/2
1

( 1�

0

|K(α)f(α)g(α)|2 dα
)1/2

,

where I1 is defined as in (2.8). Thus, by (2.9) and Lemma 3.1, we obtain

N5/3

(logN)γ
card(Z(N))� P 4(logP )ε−3/2.

The conclusion of Theorem 1.4 follows on noting that P � N 2/3, and sum-
ming over dyadic intervals.

The ideas underlying the proof of Theorem 1.4 are susceptible to general-
isation, and we illustrate such extensions with a few additional conclusions.
We first require some notation. Let k ≥ 2 be a fixed integer, and denote by
R1(n) the number of representations of the integer n in the form

n = x2 + y4
1 + y4

2 + y4
3 + y4

4 + zk,

with x, yi, z ∈ N. Let R2(n) denote the corresponding number of represen-
tations of n in the form

n = x4
1 + x4

2 + . . .+ x4
10,

with xi ∈ N, and let R3(n) denote the number of representations of n as

n = x3
1 + x3

2 + x3
3 + x3

4 + y4
1 + y4

2 ,

with xi, yj ∈ N. When l is a natural number, write

Sl(q, a) =
q∑

r=1

e(arl/q)

and

U1(q, a) = q−6S2(q, a)S4(q, a)4Sk(q, a),

U2(q, a) = q−10S4(q, a)10, U3(q, a) = q−6S3(q, a)4S4(q, a)2.

Now define the singular series

Si(n) =
∞∑

q=1

q∑

a=1
(a,q)=1

Ui(q, a)e(−an/q) (i = 1, 2, 3).

The methods of Chapters 2 and 4 of Vaughan [19] may be used to show
that for i = 1, 2, 3 one has 0 ≤ Si(n) � 1 uniformly in n, and indeed
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that Si(n) � 1 whenever n lies in the union of a non-empty collection of
congruence classes. Indeed, when i = 3 one has S3(n)� 1 for all n. Finally,
when φ is an integral polynomial and γ is a fixed positive number, denote
by E(i)

φ (N ; γ) the number of integers n with 1 ≤ n ≤ N for which φ(n) is
positive, and

(3.5) |Ri(φ(n))−R∗i (φ(n))| > φ(n)ei

(logn)γ
,

where we write e1 = 1/2 + 1/k, e2 = 3/2, e3 = 5/6, and

R∗1(m) =
Γ (3/2)Γ (5/4)4Γ (1 + 1/k)

Γ (3/2 + 1/k)
S1(m)me1 ,

R∗2(m) =
Γ (5/4)10

Γ (5/2)
S2(m)me2 ,

R∗3(m) =
Γ (4/3)4Γ (5/4)2

Γ (11/6)
S3(m)me3 .

Theorem 3.2. Let φ be an integral quadratic polynomial with positive
leading coefficient. Then, whenever γ > 0 is sufficiently small , for i = 1, 2, 3
there is a positive number δ, depending at most on γ, such that

E(i)
φ (N ; γ)� N(logN)−δ.

Here, the implicit constants in Vinogradov’s notation may depend on φ, γ
and δ.

Proof. Let φ be as in the statement of the theorem, and let γ > 0. Define
Zi(N) to be the set of all integers n with N/2 < n ≤ N for which (3.5)
holds. The goal is to establish the inequality card(Zi(N))�φ N(logN)−δ,
for sufficiently small values of γ and δ. The theorem then follows by summing
over dyadic intervals.

When l is a natural number, write Pl = φ(N)1/l and

fl(α) =
∑

x≤Pl
e(αxl).

Then, for each integer n with N/2 < n ≤ N one has

Ri(φ(n)) =
1�

0

Fi(α)f4(α)2e(−αφ(n)) dα,

where we write

F1(α) = f2(α)f4(α)2fk(α), F2(α) = f4(α)8, F3(α) = f3(α)4.

In the interest of brevity we write K1 = max{4, k}, K2 = K3 = 4, and then
define, for i = 1, 2, 3, the major arcs Mi as the union of the intervals

Mi(q, a) = {α ∈ [0, 1) : |qα− a| ≤ PKi(2Kiφ(N))−1},
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with 0 ≤ a ≤ q ≤ (2Ki)−1PKi and (a, q) = 1. Also, we write mi = [0, 1)\Mi.
Then one may apply the methods of Chapters 2 and 4 of Vaughan [19] to
establish that there is a positive number τ such that wheneverN/2 < n ≤ N ,
one has �

Mi

Fi(α)f4(α)2e(−αφ(n)) dα = R∗i (φ(n)) +O(φ(n)ei−τ ).

Thus we may conclude that for n ∈ Zi(N),

(3.6)
∣∣∣

�

mi

Fi(α)f4(α)2e(−αφ(n)) dα
∣∣∣ > 1

2R
∗
i (φ(n))(logn)−γ .

Define the complex numbers ηn = ηn,i by taking ηn = 0 when n 6∈ Zi(N),
and when n ∈ Zi(N), by means of the equation

∣∣∣
�

mi

Fi(α)f4(α)2e(−αφ(n)) dα
∣∣∣ = ηn

�

mi

Fi(α)f4(α)2e(−αφ(n)) dα.

We thus obtain from (3.6) the relation

(3.7)
N2ei

(logN)γ
card(Zi(N))�

�

mi

Fi(α)f4(α)2K(−α) dα,

where K(α) is defined as in (2.6). On applying Schwarz’s inequality to (3.7),
we obtain

(3.8)
N2ei

(logN)γ
card(Zi(N))

�
( �

mi

|Fi(α)|2 dα
)1/2( 1�

0

|K(α)f4(α)2|2 dα
)1/2

.

In order to complete the proof of the theorem, we must recall some mean
value estimates. By considering the underlying diophantine equation, it fol-
lows from Lemma 3.1 that

(3.9)
1�

0

|K(α)f4(α)2|2 dα� N2(logN)ε.

Moreover, by employing in the respective cases the methods of Chapter 2 of
Vaughan [19] combined with Lemma 3.1 and the methods of Vaughan [17],
[18], one has

(3.10)
�

mi

|Fi(α)|2 dα� N4ei(logN)−3τ ,

for a suitable positive number τ . Consequently, on combining (3.8)–(3.10)
we arrive at the conclusion

card(Zi(N))� N(logN)γ−τ ,

which suffices to establish the theorem.



Additive representation in thin sequences, III 281

4. Waring’s problem for larger exponents. We conclude this paper
with the proof of Theorem 1.5. Here we work slightly harder than is necessary
for the application at hand, since we intend to apply some of the associated
apparatus in future work connected with this topic. We note that the error
term implicit in Theorem 1.5 could certainly be reduced with additional
effort, but that we have chosen brevity over precision. We begin by recording
some notation. Let φl be an integral polynomial of degree l ≥ 2 with positive
leading coefficient, and suppose that k is sufficiently large. We take N to be
a large real number. Suppose that (η̃n) is a sequence of complex numbers
with |η̃n| ≤ 1 for each n. We define the exponential sums

K̃l(α) =
∑

N/2<n≤N
η̃ne(αφl(n)) and Kl(α) =

∑

N/2<n≤N
e(αφl(n)).

Our argument is facilitated by the following technical lemma.

Lemma 4.1. Suppose that l is an integer with l ≥ 2. Let (an), (bn) and
(cn) be sequences of non-negative real numbers satisfying the condition that
when n is sufficiently large in terms of N , one has an = bn = cn = 0. Define

F(α) =
∑

n∈N
ane(nα), G(α) =

∑

n∈N
bne(nα), H(α) =

∑

n∈N
cne(nα),

and suppose that

1�

0

|F(α)|2 dα� F(0)2Nε−l,(4.1)

1�

0

|G(α)|2l dα� G(0)2lNε−l+l2−l .(4.2)

Also, when l > 2, suppose that

(4.3)
1�

0

|H(α)|2l/(l−2) dα�H(0)2l/(l−2)Nε−l.

Then one has
1�

0

|K̃l(α)F(α)G(α)2H(α)| dα� N−l+1+εF(0)G(0)2H(0).

Proof. We begin by estimating the auxiliary integral

(4.4) I1 =
1�

0

|K̃l(α)G(α)2H(α)|2 dα.
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Observe that by orthogonality, the integral I1 counts the solutions of the
diophantine equation

n1 +m1 +m2 + φl(z1) = n2 +m3 +m4 + φl(z2),

with N/2 < z1, z2 ≤ N , and with each solution n,m, z counted with weight
at most

bm1bm2bm3bm4cn1cn2 |η̃z1 η̃z2 |.

On applying the available bound |η̃z| ≤ 1 for each z, we therefore deduce
that

(4.5) I1 ≤
1�

0

|Kl(α)G(α)2H(α)|2 dα.

We now apply the Hardy–Littlewood method. When Q is a positive real
number, we define the major arcs M(Q) to be the union of the intervals

M(q, a;Q) = {α ∈ [0, 1) : |qα− a| ≤ QN−l},

with 0 ≤ a ≤ q ≤ Q and (a, q) = 1. For the sake of concision, we write

(4.6) M = M(N1/2), P = M(N l2−l), m = [0, 1)\M, p = [0, 1)\P.

By Weyl’s inequality (see, for example, Lemma 2.4 of Vaughan [19]), one
has

(4.7) sup
α∈m
|Kl(α)| � N1−2−l+ε.

On the other hand, it follows from Theorems 7.1–7.3 of Vaughan [19] that
whenever α ∈M(q, a;N1/2) ⊆M, one has

|Kl(α)| � N1+ε(q + φl(N)|qα− a|)−1/l + (q + φl(N)|qα− a|)(4.8)

� N1+ε(q +N l|qα− a|)−1/l +N1/2.

In particular, we deduce from (4.6)–(4.8) that whenever l ≥ 2, one has

(4.9) sup
α∈p
|Kl(α)| � N1−2−l+ε.

Define the function ∆(α) on [0, 1) by taking ∆(α) = (q + N l|qα − a|)−1

when α ∈ M(q, a;N l2−l) ⊆ P, and by defining ∆(α) = 0 otherwise. Then
we conclude from (4.8) and (4.9) that uniformly for α ∈ [0, 1), one has

(4.10) |Kl(α)| � N1+ε∆(α)1/l +N1−2−l+ε.
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On substituting (4.10) into (4.5), we obtain

(4.11) I1 � I2 + I3,

where

(4.12) I2 = N2+ε
1�

0

|∆(α)1/lG(α)2H(α)|2 dα

and

(4.13) I3 = N2−21−l+ε
1�

0

|G(α)2H(α)|2 dα.

Suppose temporarily that l ≥ 3. Then on applying Hölder’s inequality to
(4.13) in combination with the hypotheses (4.2) and (4.3), we obtain

I3 ≤ N2−21−l+ε
(1�

0

|G(α)|2l dα
)2/l(1�

0

|H(α)|2l/(l−2) dα
)1−2/l

(4.14)

� G(0)4H(0)2N2−21−l+ε(Nε−l+l2−l)2/l(Nε−l)1−2/l

� G(0)4H(0)2N2−l+ε.

On the other hand, an application of Hölder’s inequality to (4.12) yields

(4.15) I2 ≤ N2+εI
2/l
4

(1�

0

|H(α)|2l/(l−2) dα
)1−2/l

,

where
I4 =

�

P

∆(α)|G(α)|2l dα.

But on recalling (4.6), it follows from Lemma 2 of Brüdern [3] that

(4.16) I4 � Nε−l
(
N l2−l

1�

0

|G(α)|2l dα+ |G(0)|2l
)
.

We note here that the estimate (4.16) remains valid also when l = 2. In view
of the hypotheses (4.2) and (4.3), we therefore deduce from (4.15) that

I2 � G(0)4H(0)2N2+ε(Nε−2l+l21−l
+Nε−l)2/l(Nε−l)1−2/l(4.17)

� G(0)4H(0)2N2−l+ε.

When l = 2, meanwhile, the estimate (4.14) follows from the hypothesis
(4.2) via the trivial estimate

I3 ≤ N2−21−l+εH(0)2
1�

0

|G(α)|4 dα,
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and the estimate (4.17) follows similarly from (4.2), (4.16), and the trivial
estimate

I2 � N2+εH(0)2
1�

0

∆(α)|G(α)|4 dα.

Thus, on collecting together (4.11), (4.14) and (4.17), we conclude that when
l ≥ 2, one has

(4.18) I1 � G(0)4H(0)2N2−l+ε.

The proof of the lemma is completed on applying Schwarz’s inequality
to obtain

1�

0

|K̃l(α)F(α)G(α)2H(α)| dα ≤ I1/2
1

(1�

0

|F(α)|2 dα
)1/2

,

where I1 is defined as in (4.4), and then substituting from (4.1) and (4.18)
to conclude that

1�

0

|K̃l(α)F(α)G(α)2H(α)| dα� (G(0)4H(0)2N2−l+ε)1/2(F(0)2Nε−l)1/2

� F(0)G(0)2H(0)N1−l+ε.

Before proceeding to the main body of our argument, we pause to record
some auxiliary mean value estimates. In this context, we define P by means
of the relation P k = φl(N), and then write

h(α) =
∑

x≤P
e(αxk).

Lemma 4.2. Define the natural numbers t, u, v, w by

t = k
⌈

1
2k(log k + log log k + 1)

⌉
, u = 3k2, v = k2

and

w = k
⌈

1
2 (1− 2/l)k(log k + log log k + 1)

⌉
+ kd3(1− 2/l)ke+ k.

Then
1�

0

|h(α)|2(t+u) dα� P 2(t+u)−k,(4.19)

1�

0

|h(α)|2vl dα� P 2vl−k(1−2−l),(4.20)

and when l > 2, one has also

(4.21)
1�

0

|h(α)|2wl/(l−2) dα� P 2wl/(l−2)−k.
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Proof. We recall that by employing the version of Vinogradov’s mean
value theorem due to Wooley [20] within Theorem 1 of Ford [7] (see also
Lemma 5.2 of Ford [7]), one finds that for each natural number r with
1 ≤ r ≤ k(log k − log log k),

(4.22)
1�

0

|h(α)|2rk dα� P 2rk−k+∆r ,

where

(4.23) ∆r = ke1−2r/k.

The estimate (4.20) is immediate from (4.22) and (4.23), since

∆vl/k = ke1−2l < k2−l.

We note also that wl/(l−2) ≥ t+u, and so, possibly by employing the trivial
estimate |h(α)| ≤ P , one finds that (4.21) is an immediate consequence of
(4.19).

We concentrate now on establishing the bound (4.19). Here we again
employ the Hardy–Littlewood method. In the notation introduced in the
proof of Lemma 4.1, we take as our Hardy–Littlewood dissection the set of
arcs N = M(P/(2k)) and n = [0, 1) \ N. Then by Vinogradov’s version of
Weyl’s inequality (see, for example, Theorem 5.3 of Vaughan [19]), one has

(4.24) sup
α∈n
|h(α)| � P 1−σ(k),

where σ(k)−1 = 5k2 log k. But by (4.22) and (4.23), one has

1�

0

|h(α)|2t dα� P 2t−k+∆t/k ,

where
∆t/k ≤ k exp(1− (log k + log log k + 1)) = 1/log k.

Thus

(4.25)
�

n

|h(α)|2(t+u) dα ≤ (sup
α∈n
|h(α)|)2u

1�

0

|h(α)|2t dα� P 2(t+u)−k−δ,

where
δ = 2uσ(k)− 1/log k = 1/(5 log k) > 0.

On the other hand, the methods of Chapter 4 of Vaughan [19] show that
whenever s ≥ max{5, k + 1}, then one has

�

N

|h(α)|s dα� P s−k.
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We therefore conclude from (4.25) that
1�

0

|h(α)|2(t+u) dα =
�

N

|h(α)|2(t+u) dα+
�

n

|h(α)|2(t+u) dα� P 2(t+u)−k,

and this completes the proof of the lemma.

For the application of interest to us here, we draw the following conse-
quence of Lemma 4.2.

Corollary. Suppose that l is a natural number with l ≥ 2. Write

(4.26) s1 = k[(1− 1/l)k(log k + log log k + 20)].

Then we have the upper bound
1�

0

|K̃l(α)h(α)s1 | dα� P s1N−l+1+ε.

Proof. We apply Lemma 4.1 with

F(α) = h(α)t+u, G(α) = h(α)v, H(α) = h(α)w.

On noting that P k � N l, we find that the conclusions (4.19)–(4.21) of
Lemma 4.2 imply the validity of the hypotheses (4.1)–(4.3) of Lemma 4.1.
On employing the trivial estimate |h(α)| ≤ P , one therefore finds that the
desired conclusion is immediate from Lemma 4.1.

We are now equipped to describe the proof of Theorem 1.5. Write s =
s1 + 1, where s1 is given by (4.26). Denote by R(n) the number of rep-
resentations of n as the sum of s kth powers of positive integers. Then a
heuristic application of the circle method suggests that whenever s ≥ k+ 1,
one should have the asymptotic formula

R(n) =
Γ (1 + 1/k)s

Γ (s/k)
S(n)ns/k−1 + o(ns/k−1),

where

S(n) =
∞∑

q=1

q∑

a=1
(a,q)=1

(
q−1

q∑

r=1

e(ark/q)
)s
e(−an/q).

We note here that Theorem 4.6 of Vaughan [19] shows that whenever s ≥ 4k,
one has S(n)� 1 uniformly in n. We fix a positive number γ, and denote by
E(X) the number of integers n with 1 ≤ n ≤ X for which φl(n) is positive
and

(4.27)
∣∣∣∣R(φl(n))− Γ (1 + 1/k)s

Γ (s/k)
S(φl(n))φl(n)s/k−1

∣∣∣∣ >
φl(n)s/k−1

(logn)γ
.

Define Z(X) to be the set of integers n with X/2 < n ≤ X for which
φl(n) > 0 and the inequality (4.27) holds. Our goal is to show that for some
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positive number τ , one has card(Z(N))� N 1−τ . By summing over dyadic
intervals, we infer from the latter bound that E(N) = o(N), and when l ≥ 2,
the conclusion of Theorem 1.5 follows immediately from the definitions of
s1 and s.

We begin by noting that for each integer n with N/2 < n ≤ N , one has

(4.28) R(φl(n)) =
1�

0

h(α)se(−αφl(n)) dα.

Let N and n be defined as in the proof of Lemma 4.2. Then by Theorem 4.4
of Vaughan [19], there is a positive number ν such that whenever N/2 <
n ≤ N , one has

(4.29)
�

N

h(α)se(−αφl(n)) dα

=
Γ (1 + 1/k)s

Γ (s/k)
S(φl(n))φl(n)s/k−1 +O(φl(n)s/k−1−ν).

From (4.28) and (4.29), we find that for n ∈ Z(N), one has

(4.30)
∣∣∣

�

n

h(α)se(−αφl(n)) dα
∣∣∣ > 1

2
· φl(n)s/k−1

(logn)γ
.

We next define the complex numbers ηn by taking ηn = 0 for n 6∈ Z(N),
and when n ∈ Z(N) by means of the equation

∣∣∣
�

n

h(α)se(−αφl(n)) dα
∣∣∣ = ηn

�

n

h(α)se(−αφl(n)) dα.

In view of (4.30), one obtains

φl(N)s/k−1

(logN)γ
card(Z(N))�

∑

N/2<n≤N
ηn

�

n

h(α)se(−αφl(n)) dα(4.31)

=
�

n

h(α)sKl(−α) dα,

where
Kl(α) =

∑

N/2<n≤N
ηne(αφl(n)).

A comparison of the exponential sums Kl(α) and K̃l(α) reveals that, as
a consequence of the corollary to Lemma 4.2, one has

1�

0

|Kl(α)h(α)s1 | dα� P s1N−l+1+ε.
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Thus, on recalling the estimate (4.24), we find that

�

n

h(α)sKl(−α) dα� (sup
α∈n
|h(α)|)

1�

0

|Kl(α)h(α)s1 | dα

� P s−σ(k)N−l+1+ε � P sN1−l−τ ,

for a suitable positive number τ . On recalling that N l � P k, we therefore
conclude from (4.31) that

P sN−l

(logN)γ
card(Z(N))� P sN1−l−τ ,

whence card(Z(N))� N1−τ/2. This completes the proof of Theorem 1.5.
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